1
|
Abstract
Glucose isomerase (GI, also known as xylose isomerase) reversibly isomerizes D-glucose and D-xylose to D-fructose and D-xylulose, respectively. GI plays an important role in sugar metabolism, fulfilling nutritional requirements in bacteria. In addition, GI is an important industrial enzyme for the production of high-fructose corn syrup and bioethanol. This review introduces the functions, structure, and applications of GI, in addition to presenting updated information on the characteristics of newly discovered GIs and structural information regarding the metal-binding active site of GI and its interaction with the inhibitor xylitol. This review provides an overview of recent advancements in the characterization and engineering of GI, as well as its industrial applications, and will help to guide future research in this field.
Collapse
|
2
|
Mehrabi P, Schulz EC, Agthe M, Horrell S, Bourenkov G, von Stetten D, Leimkohl JP, Schikora H, Schneider TR, Pearson AR, Tellkamp F, Miller RJD. Liquid application method for time-resolved analyses by serial synchrotron crystallography. Nat Methods 2019; 16:979-982. [DOI: 10.1038/s41592-019-0553-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/06/2019] [Indexed: 01/01/2023]
|
3
|
Lobley CMC, Sandy J, Sanchez-Weatherby J, Mazzorana M, Krojer T, Nowak RP, Sorensen TL. A generic protocol for protein crystal dehydration using the HC1b humidity controller. Acta Crystallogr D Struct Biol 2016; 72:629-40. [PMID: 27139626 PMCID: PMC4854313 DOI: 10.1107/s2059798316003065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/21/2016] [Indexed: 11/11/2022] Open
Abstract
Dehydration may change the crystal lattice and affect the mosaicity, resolution and quality of X-ray diffraction data. A dehydrating environment can be generated around a crystal in several ways with various degrees of precision and complexity. This study uses a high-precision crystal humidifier/dehumidifier to provide an airstream of known relative humidity in which the crystals are mounted: a precise yet hassle-free approach to altering crystal hydration. A protocol is introduced to assess the impact of crystal dehydration systematically applied to nine experimental crystal systems. In one case, that of glucose isomerase, dehydration triggering a change of space group from I222 to P21212 was observed. This observation is supported by an extended study of the behaviour of the glucose isomerase crystal structure during crystal dehydration.
Collapse
Affiliation(s)
- Carina M. C. Lobley
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - James Sandy
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | | | - Marco Mazzorana
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Tobias Krojer
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7DQ, England
| | - Radosław P. Nowak
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7DQ, England
| | - Thomas L. Sorensen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| |
Collapse
|
4
|
Production and partial characterization of extracellular glucose isomerase using thermophilic Bacillus sp. isolated from agricultural land. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2013. [DOI: 10.1016/j.bcab.2012.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Pastinen O, Schoemaker HE, Leisola M. Xylose Isomerase Catalysed Novel Hexose Epimerization. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242429909015238] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Kappl R, Ranguelova K, Koch B, Duboc C, Hüttermann J. Multi-frequency high-field EPR studies on metal-substituted xylose isomerase. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2005; 43 Spec no.:S65-73. [PMID: 16235215 DOI: 10.1002/mrc.1691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The bacterial enzyme D-xylose isomerase (XI) catalyses the conversion of D-xylose to D-xylulose. Each subunit of the homotetrameric protein contains a bimetallic active centre requiring divalent metal ions such as Mg2+, Mn2+ or Co2+ for catalytic activity. We report here on XI in which the metal binding site 1 is specifically loaded with EPR active Mn2+, while binding site 2 is occupied by Co2+ or Cd2+, rendering a catalytically active or inactive species respectively. The Q-band (34 GHz) EPR spectra of these mixed-metal samples (Co2+/Mn2+ and Cd2+/Mn2+ XI) show a clear influence of the metal in site 2 on the Mn2+ EPR parameters. Likewise, a systematic increase of the zero field splitting parameters (zfs) of Mn2+ in site 1 upon incubation with the inhibitor xylitol or substrates for both mixed-metal samples is found. For Co2+/Mn2+ XI complexed with substrate, a drastic line broadening of the central -1/2 <--> +1/2 transition is observed in Q-band EPR, which was not amenable to analysis so far. By means of a multi-frequency approach at frequencies beyond Q-band, the relevant zfs parameters were derived from spectral simulations of EPR spectra measured at 94, 285 and 670 GHz. It is shown that parallel to the increase of the D-value its distribution also grows considerably in going from free Co2+/Mn2+ XI to the species complexed with inhibitor or substrate. For XI with bound substrate, D-values in the range of 70-90 mT and a distribution of about 30 mT were found from simulation trials. The large distribution in zfs values is thought to be correlated to the structural disorder induced by the shift of the metal ion of site 2 into a location necessary for the isomerisation reaction. The results are discussed with respect to high-resolution crystal data.
Collapse
Affiliation(s)
- R Kappl
- Institut fuer Biophysik, FR 2.5, Geb. 76, Klinikum, Universität des Saarlandes, 66421 Homburg, Germany
| | | | | | | | | |
Collapse
|
7
|
Jokela J, Leisola M. Chromatographic separation of nucleosides using a cross-linked xylose isomerase crystal stationary phase. J Sep Sci 2004; 27:1491-7. [PMID: 15638157 DOI: 10.1002/jssc.200401786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cross-linked xylose isomerase (EC 5.3.1.5., from Streptomyces rubiginosus) crystals (CLXIC) packed into a 7.8 x 300 mm steel column showed specific affinity towards uridine (Urd), cytidine (Cyd), adenosine (Ado), guanosine (Guo), and thymidine. These nucleosides eluted out of the CLXIC column in the same order as the corresponding nucleoside bases, indicating that the retention depends mainly on the base component of the molecule. The interaction of nucleosides with the CLXIC material was not based merely on ion exchange or hydrophobic interactions but also on the unique properties of the CLXIC column. Decrease in temperature increased the retention but not the resolution factors of the adjacent nucleosides. The CLXIC column maintained its separation capacity even when 100 mg of ribonucleosides in equimass amounts were injected into the column in a volume of 1 mL corresponding to 10% of the total column volume. Analysis of sugar beet molasses, a side stream from sucrose production, showed it to contain 1-2.5 mg mL(-1) of Urd, Cyd, Ado, and Guo. The CLXIC column was able to separate and enrich these nucleosides also from highly viscous sugar beet molasses. The CLXIC column was especially efficient in the purification of guanosine. Other commercially interesting sugar beet molasses components such as the acidic compounds betaine, gamma-amino butyric acid, and D- and L-pyroglutamic acids or neutral sucrose did not interact with the CLXIC material.
Collapse
Affiliation(s)
- Jouni Jokela
- Laboratory of Bioprocess Engineering, Helsinki University of Technology, FIN-02015 HUT, Finland.
| | | |
Collapse
|
8
|
Kim BC, Lee YH, Lee HS, Lee DW, Choe EA, Pyun YR. Cloning, expression and characterization of L-arabinose isomerase from Thermotoga neapolitana: bioconversion of D-galactose to D-tagatose using the enzyme. FEMS Microbiol Lett 2002; 212:121-6. [PMID: 12076797 DOI: 10.1111/j.1574-6968.2002.tb11254.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Gene araA encoding an L-arabinose isomerase (AraA) from the hyperthermophile, Thermotoga neapolitana 5068 was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a polypeptide of 496 residues with a calculated molecular mass of 56677 Da. The deduced amino acid sequence has 94.8% identical amino acids compared with the residues in a putative L-arabinose isomerase of Thermotoga maritima. The recombinant enzyme expressed in E. coli was purified to homogeneity by heat treatment, ion exchange chromatography and gel filtration. The thermophilic enzyme had a maximum activity of L-arabinose isomerization and D-galactose isomerization at 85 degrees C, and required divalent cations such as Co(2+) and Mn(2+) for its activity and thermostability. The apparent K(m) values of the enzyme for L-arabinose and D-galactose were 116 mM (v(max), 119 micromol min(-1) mg(-1)) and 250 mM (v(max), 14.3 micromol min(-1) mg(-1)), respectively, that were determined in the presence of both 1 mM Co(2+) and 1 mM Mn(2+). A 68% conversion of D-galactose to D-tagatose was obtained using the recombinant enzyme at the isomerization temperature of 80 degrees C.
Collapse
Affiliation(s)
- Byoung-Chan Kim
- Department of Biotechnology and Bioproducts Research Center, Yonsei University, 134 Shinchon-Dong, Sudaemun-Ku, Seoul 120-749, South Korea
| | | | | | | | | | | |
Collapse
|
9
|
Hodgson DA. Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 2001; 42:47-238. [PMID: 10907551 DOI: 10.1016/s0065-2911(00)42003-5] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Streptomycetes are Gram-positive bacteria with a unique capacity for the production of a multitude of varied and complex secondary metabolites. They also have a complex life cycle including differentiation into at least three distinct cell types. Whilst much attention has been paid to the pathways and regulation of secondary metabolism, less has been paid to the pathways and the regulation of primary metabolism, which supplies the precursors. With the imminent completion of the total genome sequence of Streptomyces coelicolor A3(2), we need to understand the pathways of primary metabolism if we are to understand the role of newly discovered genes. This review is written as a contribution to supplying these wants. Streptomycetes inhabit soil, which, because of the high numbers of microbial competitors, is an oligotrophic environment. Soil nutrient levels reflect the fact that plant-derived material is the main nutrient input; i.e. it is carbon-rich and nitrogen- and phosphate-poor. Control of streptomycete primary metabolism reflects the nutrient availability. The variety and multiplicity of carbohydrate catabolic pathways reflects the variety and multiplicity of carbohydrates in the soil. This multiplicity of pathways has led to investment by streptomycetes in pathway-specific and global regulatory networks such as glucose repression. The mechanism of glucose repression is clearly different from that in other bacteria. Streptomycetes feed by secreting complexes of extracellular enzymes that break down plant cell walls to release nutrients. The induction of these enzyme complexes is often coordinated by inducers that bear no structural relation to the substrate or product of any particular enzyme in the complex; e.g. a product of xylan breakdown may induce cellulase production. Control of amino acid catabolism reflects the relative absence of nitrogen catabolites in soil. The cognate amino acid induces about half of the catabolic pathways and half are constitutive. There are reduced instances of global carbon and nitrogen catabolite control of amino acid catabolism, which again presumably reflects the relative rarity of the catabolites. There are few examples of feedback repression of amino acid biosynthesis. Again this is taken as a reflection of the oligotrophic nature of the streptomycete ecological niche. As amino acids are not present in the environment, streptomycetes have rarely invested in feedback repression. Exceptions to this generalization are the arginine and branched-chain amino acid pathways and some parts of the aromatic amino acid pathways which have regulatory systems similar to Escherichia coli and Bacillus subtilis and other copiotrophic bacteria.
Collapse
Affiliation(s)
- D A Hodgson
- Department of Biological Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
10
|
|
11
|
He X, Agnihotri G, Liu Hw HW. Novel enzymatic mechanisms in carbohydrate metabolism. Chem Rev 2000; 100:4615-62. [PMID: 11749360 DOI: 10.1021/cr9902998] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- X He
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712
| | | | | |
Collapse
|
12
|
Kalikin LM, Sims HL, Petty EM. Genomic and expression analyses of alternatively spliced transcripts of the MLL septin-like fusion gene (MSF) that map to a 17q25 region of loss in breast and ovarian tumors. Genomics 2000; 63:165-72. [PMID: 10673329 DOI: 10.1006/geno.1999.6077] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously defined a common region of 17q25 loss in breast and ovarian tumors, suggesting localization of at least one putative tumor suppressor gene. Genomic clones from the interval were used to isolate candidate transcripts. One novel transcript had strong homology to a septin family of GTPase genes involved in cytokinesis. This gene was recently identified as a myeloid/lymphoid leukemia (MLL) fusion protein partner in acute myeloid leukemia and was named MSF (MLL septin-like fusion). As this gene may play roles in both leukemogenesis and tumorigenesis, it is essential to understand its structure and normal expression. We cloned two human alternative transcripts and identified a third database variant of MSF. RNA expression studies with a probe common to the three novel sequences showed differential expression of 4.0- and 3.0-kb transcripts in all adult and fetal tissues tested. A probe spanning sequence unique to one MSF variant detected specific expression of the 4.0-kb transcript in all tissues. Another probe unique to a different MSF variant detected a 4.0-kb transcript only in skeletal muscle. Proteins of 422 and 586 amino acids were predicted from the novel alternate transcripts and included both a xylose isomerase 1 domain and a GTPase domain. Nine common exons, three alternatively spliced exons, and six polymorphisms were identified.
Collapse
Affiliation(s)
- L M Kalikin
- Department of Internal Medicine and Department of Human Genetics, The University of Michigan, Ann Arbor, Michigan 48109-0638, USA
| | | | | |
Collapse
|
13
|
Pastinen O, Visuri K, Schoemaker HE, Leisola M. Novel reactions of xylose isomerase from Streptomyces rubiginosus. Enzyme Microb Technol 1999. [DOI: 10.1016/s0141-0229(99)00100-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Bogumil R, Kappl R, Hüttermann J, Witzel H. Electron paramagnetic resonance of D-xylose isomerase: evidence for metal ion movement induced by binding of cyclic substrates and inhibitors. Biochemistry 1997; 36:2345-52. [PMID: 9054539 DOI: 10.1021/bi962406n] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The interactions of substrates and inhibitors with the Mn2+ ions in the binuclear active center of D-xylose isomerase (XylI) were investigated by EPR spectroscopy at X- and Q-band frequencies. The metal binding site 1 (A site) was specifically occupied with Mn2+ ions by blocking the high-affinity metal binding site 2 (B-site) either with Co2+ ions, resulting in a catalytically active enzyme, or with Cd2+ or Pb2+ ions yielding an inactive enzyme species. Incubation of both the Co2+/Mn2+- and the Cd2+/Mn2+-XylI with the acyclic inhibitor xylitol revealed EPR spectra with well-resolved hyperfine patterns, but with increased zero field splitting (zfs) parameter D compared to the spectra without inhibitor. D was estimated by spectral simulation of the central --1/2<-->1/2 fine structure transition. D values of 33 and 50 mT were obtained for the Co2+/Mn2+-XylI and the Cd2+/Mn2+-XylI samples, respectively. These results indicate direct interaction of the xylitol with the Mn2+ in the A-site. More drastic changes are observed with the substrates D-xylose and D-glucose and with the cyclic inhibitors 5-thio-alpha-D-glucose and 2-desoxy-D-glucose. For Cd2+/Mn2+-XylI, the EPR spectra with substrates and cyclic inhibitors are similar to each other but different from the spectra with the acylic inhibitor xylitol. They exhibit well-resolved line patterns with a relative large zero field splitting, which was estimated to be in the range of D = 65-85 mT in the various complexes. Binding of substrates or of cyclic inhibitors to the Co2+/ Mn2+-XylI yields EPR spectra without resolved hyperfine interactions, indicative of dipolar interaction between the two paramagnetic metal ions. This can be explained with a decrease in the metal-metal distance. Furthermore, the EPR data strongly suggest that the corresponding metal ion movement is induced by binding of the cyclic conformation of either substrates or cyclic inhibitors and not by binding of the extended form of the sugars.
Collapse
Affiliation(s)
- R Bogumil
- Institut für Biochemie, Universität Münster, Germany
| | | | | | | |
Collapse
|
15
|
Hood DA, Balaban A, Connor MK, Craig EE, Nishio ML, Rezvani M, Takahashi M. Mitochondrial biogenesis in striated muscle. CANADIAN JOURNAL OF APPLIED PHYSIOLOGY = REVUE CANADIENNE DE PHYSIOLOGIE APPLIQUEE 1994; 19:12-48. [PMID: 7832830 DOI: 10.1139/h94-002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mitochondrial biogenesis (synthesis) has been observed to occur in skeletal muscle in response to chronic use. It also occurs in cardiac muscle during growth and hypertrophy, and it may be impaired during the aging process. This review summarizes the literature on the processes of mitochondrial biogenesis at the biochemical and molecular levels, with particular reference to striated muscles. Mitochondrial biogenesis involves the expression of nuclear and mitochondrial genes and the coordination of these two genomes, the synthesis of proteins and phospholipids and their import into the organelle, and the incorporation of these lipids and proteins into their appropriate locations within the matrix, inner or outer membranes. The emphasis is on the regulation of these events, with information derived in part from other cellular systems. Although descriptions of mitochondrial content changes in heart and skeletal muscle during altered physiological states are plentiful, much work is needed at the molecular level to investigate the regulatory processes involved. A knowledge of biochemical and molecular biology techniques is essential for continued progress in the field. This is a promising area, and potential new avenues for future research are suggested.
Collapse
Affiliation(s)
- D A Hood
- Department of Physical Education, York University, Ontario
| | | | | | | | | | | | | |
Collapse
|
16
|
Bogumil R, Kappl R, Hüttermann J, Sudfeldt C, Witzel H. X- and Q-band EPR studies on the two Mn(2+)-substituted metal-binding sites of D-xylose isomerase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:1185-92. [PMID: 8389296 DOI: 10.1111/j.1432-1033.1993.tb17869.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The two metal-binding sites (A and B)/subunit of the homotetrameric D-xylose isomerase (Xyl isomerase) from Streptomyces rubiginosus have been studied with Mn(2+)-EPR spectroscopy at X-band and Q-band frequencies and with electronic spectroscopy. Displacement studies in the visible absorbance range showed that Mn2+ have a higher affinity for the B site. With the low-affinity A site unoccupied, the coordination sphere of Mn2+ in the B site is quite distorted giving rise to a highly anisotropic X-band EPR spectrum. Simulation of the Q-band spectrum reveals a zero field splitting (zfs) D of about 45-48 mT and a rhombicity parameter E/D between 0.2 and 0.3. Occupation of both binding sites with Mn2+ induces a significant shift towards a higher symmetry in the coordination sphere of the B site resulting in similar zfs parameters for both binding sites. The change in A-site environment caused by B-site occupation was analysed in mixed Xyl isomerase derivatives, in which the B site is loaded with Co2+, Cd2+ or Pb2+ and the A site with Mn2+. In the Co2+/Mn2+ Xyl isomerase the Mn2+ has a relatively symmetric ligand environment with small zfs parameters (D = 12 mT, E/D < 0.15). Substituting Co2+ with Cd2+ or Pb2+ in the B site leads to a drastic increase in the zfs parameters of Mn2+ in the A site. The distortions are directly linked to the ionic radii of the ions bound to the B site and may be mediated by the carboxylate group of Glu216 that bridges the metal-binding sites. The EPR spectra also reflect the catalytic activity of the mixed metal samples. With the larger Cd2+ or Pb2+ in the B site, which are strongly influencing the stereochemistry of the A site, the catalytic activity is lost, whereas Co2+ and Mn2+ render the enzyme in an active state, so that the mutual influence on catalysis depends on the complex geometry of both metal-binding sites.
Collapse
Affiliation(s)
- R Bogumil
- Institut für Biochemie, Universität Münster, Germany
| | | | | | | | | |
Collapse
|
17
|
Jenkins J, Janin J, Rey F, Chiadmi M, van Tilbeurgh H, Lasters I, De Maeyer M, Van Belle D, Wodak SJ, Lauwereys M. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 1. Crystallography and site-directed mutagenesis of metal binding sites. Biochemistry 1992; 31:5449-58. [PMID: 1610791 DOI: 10.1021/bi00139a005] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The structure and function of the xylose (glucose) isomerase from Actinoplanes missouriensis have been analyzed by X-ray crystallography and site-directed mutagenesis after cloning and overexpression in Escherichia coli. The crystal structure of wild-type enzyme has been refined to an R factor of 15.2% against diffraction data to 2.2-A resolution. The structures of a number of binary and ternary complexes involving wild-type and mutant enzymes, the divalent cations Mg2+, Co2+, or Mn2+, and either the substrate xylose or substrate analogs have also been determined and refined to comparable R factors. Two metal sites are identified. Metal site 1 is four-coordinated and tetrahedral in the absence of substrate and is six-coordinated and octahedral in its presence; the O2 and O4 atoms of linear inhibitors and substrate bind to metal 1. Metal site 2 is octahedral in all cases; its position changes by 0.7 A when it binds O1 of the substrate and by more than 1 A when it also binds O2; these bonds replace bonds to carboxylate ligands from the protein. Side chains involved in metal binding have been substituted by site-directed mutagenesis. The biochemical properties of the mutant enzymes are presented. Together with structural data, they demonstrate that the two metal ions play an essential part in binding substrates, in stabilizing their open form, and in catalyzing hydride transfer between the C1 and C2 positions.
Collapse
Affiliation(s)
- J Jenkins
- Laboratoire de Biologie Physicochimique, CNRS UA1131, Université Paris-Sud, Orsay, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Smart OS, Akins J, Blow DM. Molecular mechanics simulations of a conformational rearrangement of D-xylose in the active site of D-xylose isomerase. Proteins 1992; 13:100-11. [PMID: 1620692 DOI: 10.1002/prot.340130203] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A proposed reaction mechanism for the enzyme D-xylose isomerase involves the ring opening of the cyclic substrate with a subsequent conformational rearrangement to an extended open-chain form. Restrained energy minimization was used to simulate the rearrangement. In the ring-opening step, the substrate energy function was gradually altered from a cyclic to an open-chain form, with energy minimization after each change. The protein/sugar contact energy did not increase significantly during the process, showing that there was no steric hindrance to ring opening. The conformational rearrangement involves an alteration in the coordination of the substrate to metal ion [1], which was induced by gradually changing restraints on metal/ligand distances. By allowing varying amounts of flexibility in the protein and examining a simplified model system, the interactions of the sugar with metal ion [1] and its immediate ligands were found to be the most important contributors to the energy barrier for the change. Only small changes in the positions of protein atoms were required. The energy barrier to the rearrangement was estimated to be less than the Arrhenius activation energy for the enzymatic reaction. This is in accordance with experimental indications that the isomerization step is rate determining.
Collapse
Affiliation(s)
- O S Smart
- Blackett Laboratory, Imperial College, London, England
| | | | | |
Collapse
|
19
|
Bogumil R, Hüttermann J, Kappl R, Stabler R, Sudfeldt C, Witzel H. Visible, EPR and electron nuclear double-resonance spectroscopic studies on the two metal-binding sites of oxovanadium (IV)-substituted D-xylose isomerase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 196:305-12. [PMID: 1848816 DOI: 10.1111/j.1432-1033.1991.tb15818.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The two metal-binding sites of the D-xylose isomerase from Streptomyces rubiginosus were studied using VO2+ as a sensor for the ligand environment. Titration of the tetrameric enzyme with VO2+, followed by EPR spectroscopy and inhibition studies, show that the first four VO2+ equivalents occupy, in analogy to Co2+, Cd2+ and Pb2+, the binding site B. The visible absorption data and the EPR parameters indicate that a nitrogen ligand is involved in the ligand sphere of the high-affinity B site. The low-affinity A site could be studied selectively by blocking the B site with visible and EPR-silent Cd2+. The visible data and EPR parameters for this site are consistent with a ligand environment composed of oxygen donors without nitrogen ligation. The nitrogen coordination in the high-affinity site could be demonstrated by electron nuclear double-resonance (ENDOR) studies of the 4VO2+ enzyme, and was assigned to a histidine ligand. The 14N resonances are interpreted in terms of a quartet with a coupling value of 13.2 MHz. 1H-ENDOR coupling of 1.7 MHz, exchangeable in D2O, has been assigned to the N-H proton of the histidine. Additional proton ENDOR couplings, which are not exchangeable, are due to protons bound to the carbon atoms of the histidine. For the low-affinity binding site, a nitrogen coordination could be definitely excluded by the ENDOR measurements. Exchangeable 1H-ENDOR couplings observed in this sample were assigned to H2O ligands in the vicinity of VO2+. The results closely relate to what is known from X-ray structure. However, the relative affinities for the two binding sites seem not to be the same for different bivalent cations. In mixed metal samples with four VO2+ and four Co2+ equivalents, the VO2+ is distributed between both binding sites. Small changes in the complex geometry of the A site, indicated by different EPR features, seem to occur if the B site is occupied by Co2+ or by Cd2+.
Collapse
Affiliation(s)
- R Bogumil
- Institut für Biochemie, Universität Münster, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
20
|
Sicard PJ, Leleu JB, Duflot P, Drocourt D, Martin F, Tiraby G, Petsko G, Glasfeld A. Site-directed mutagenesis applied to glucose isomerase from Streptomyces violaceoniger and Streptomyces olivochromogenes. Ann N Y Acad Sci 1990; 613:371-5. [PMID: 2075982 DOI: 10.1111/j.1749-6632.1990.tb18181.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Sudfeldt C, Schäffer A, Kägi JH, Bogumil R, Schulz HP, Wulff S, Witzel H. Spectroscopic studies on the metal-ion-binding sites of Co2(+)-substituted D-xylose isomerase from Streptomyces rubiginosus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 193:863-71. [PMID: 2249698 DOI: 10.1111/j.1432-1033.1990.tb19410.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The coordination sphere of the two metal-binding sites/subunit of the homotetrameric D-xylose isomerase from Streptomyces rubiginosus has been probed by the investigation of the Co2(+)-substituted enzyme using electronic absorption, CD and magnetic circular dichroic spectroscopies in the visible region. The spectrum of the high-affinity site (B site) has an absorption coefficient, epsilon 545, of 18 M-1 cm-1, indicating a distorted octahedral complex geometry. The spectrum of the low-affinity site (A site) shows two absorption maxima at 505 nm and 586 nm with epsilon values of 170 M-1 cm-1 and 240 M-1 cm-1, respectively, which indicates a distorted tetrahedral or pentacoordinated complex structure as also observed for the enzyme from Streptomyces violaceoruber [Callens et al. (1988) Biochem. J. 250, 285-290] having the same feature but lower epsilon values. The first 4 mol Co2+ added/mol apoenzyme occupy both sites nearly equally. Subsequently the Co2+ located in the A site slowly moves into the B site. After equilibrium is reached, the next 4 mol Co2+/mol again occupy the A site with its typical spectrum, restoring full activity. Addition of 4 mol Cd2+ or Pb2+/mol Co4-loaded derivative displaces the Co2+ from the B site to form the Pb4/Co4 derivative containing Co2+ in the A site, reducing activity fourfold while the Pb4/Pb4 species is completely inactive. In contrast, Eu3+ displaces Co2+ preferentially from the A site. Thus, the high- and low-affinity sites may be different for different cations. After addition of the substrates D-xylose, D-glucose and D-fructose and the inhibitor xylitol the intense Co2+ A-site spectrum of both the active Co4/Co4 derivative and the less active Pb4/PCo4 derivative decreases, indicating that these compounds are bound to the A site, changing the distorted tetrahedral or pentacoordinated symmetry there to a distorted octahedral complex geometry.
Collapse
Affiliation(s)
- C Sudfeldt
- Institute of Biochemistry, University of Münster, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Collyer CA, Henrick K, Blow DM. Mechanism for aldose-ketose interconversion by D-xylose isomerase involving ring opening followed by a 1,2-hydride shift. J Mol Biol 1990; 212:211-35. [PMID: 2319597 DOI: 10.1016/0022-2836(90)90316-e] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The active site and mechanism of D-xylose isomerase have been probed by determination of the crystal structures of the enzyme bound to various substrates, inhibitors and cations. Ring-opening is an obligatory first step of the reaction and is believed to be the rate-determining step for the aldose to ketose conversion. The structure of a complex with a cyclic thio-glucose has been determined and it is concluded that this is an analogue of the Michaelis complex. At -10 degrees C substrates in crystals are observed in the extended chain form. The absence of an appropriately situated base for either the cyclic or extended chain forms from the substrate binding site indicates that the isomerisation does not take place by an enediol or enediolate mechanism. Binding of a trivalent cation places an additional charge at the active site, producing a substrate complex that is analogous to a possible transition state. Of the two binding sites for divalent cations, [1] is permanently occupied under catalytic conditions and is co-ordinated to four carboxylate groups. In the absence of substrate it is exposed to solvent, and in the Michaelis complex analogue, site [1] is octahedrally coordinated, with ligands to O-3 and O-4 of the thiopyranose. In the complex with an open-chain substrate it remains octahedrally co-ordinated, with ligands to O-2 and O-4. Binding at a second cation site [2] is also necessary for catalysis and this site is believed to bind Co2+ more strongly than site [1]. This site is octahedrally co-ordinated to three carboxylate groups (bidentate co-ordination to one of them), an imidazole and a solvent molecule. It is proposed that during the hydride shift the C-O-1 and C-O-2 bonds of the substrate are polarized by the close approach of the site [2] cation. In the transition-state analogue this cation is observed at a site [2'], 1.0 A from site [2] and about 2.7 A from O-1 and O-2 of the substrate. It is likely that co-ordination of the cation to O-1 and O-2 would be concomitant with ionisation of the sugar hydroxyl group. The polarisation of C-O-1 and C-O-2 is assisted by the co-ordination of O-2 to cation [1] and O-1 to a lysine side-chain.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C A Collyer
- Blackett Laboratory, Imperial College, London, England
| | | | | |
Collapse
|
23
|
Collyer CA, Blow DM. Observations of reaction intermediates and the mechanism of aldose-ketose interconversion by D-xylose isomerase. Proc Natl Acad Sci U S A 1990; 87:1362-6. [PMID: 2304904 PMCID: PMC53475 DOI: 10.1073/pnas.87.4.1362] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Crystallographic studies of D-xylose isomerase (D-xylose ketol-isomerase, EC 5.3.1.5) incubated to equilibrium with substrate/product mixtures of xylose and xylulose show electron density for a bound intermediate. The accumulation of this bound intermediate shows that the mechanism is a non-Michaelis type. Carrell et al. [Carrell, H. L., Glusker, J. P., Burger, V., Manfre, F., Tritsch, D. & Biellmann, J.-F. (1989) Proc. Natl. Acad. Sci. USA 86, 4440-4444] and the present authors studied crystals of the enzyme-substrate complex under different conditions and made different interpretations of the substrate density, leading to different conclusions about the enzyme mechanism. All authors agree that the bound intermediate of the sugar is in an open-chain form. It is suggested that the higher-temperature study of Carrell et al. may have produced an equilibrium of multiple states, whose density fits poorly to the open-chain substrate, and led to incorrect interpretation. The two groups also bound different closed-ring sugar analogues to the enzyme, but these analogues bind differently. A possible explanation consistent with all the data is that the enzyme operates by a hydride shift mechanism.
Collapse
Affiliation(s)
- C A Collyer
- Blackett Laboratory, Imperial College, London, United Kingdom
| | | |
Collapse
|
24
|
Vangrysperre W, Van Damme J, Vandekerckhove J, De Bruyne CK, Cornelis R, Kersters-Hilderson H. Localization of the essential histidine and carboxylate group in D-xylose isomerases. Biochem J 1990; 265:699-705. [PMID: 2306209 PMCID: PMC1133690 DOI: 10.1042/bj2650699] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
D-Xylose isomerases from different bacterial strains were chemically modified with histidine and carboxylate-specific reagents. The active-site residues were identified by amino acid sequence analysis of peptides recognized by differential peptide mapping on ligand-protected and unprotected derivatized enzyme. Both types of modified residues were found to cluster in a region with consensus sequence: Phe-His-Asp-Xaa-Asp-Xaa-Xaa-Pro-Xaa-Gly, conserved in all D-xylose isomerases studied so far. These results are consistent with the recently published X-ray data of the enzyme active centre from Streptomyces rubiginosus showing hydrogen bond formation between Asp-57 and His-54 which locks the latter in one tautomeric form. A study of the pH-dependence of the kinetic parameters suggests the participation of a histidine group in the substrate-binding but not in the isomerization process. Comparison of the N-terminal amino acid sequences of several D-xylose isomerases further revealed a striking homology among the Actinomycetaceae enzymes and identifies them as a specific class of D-xylose isomerases.
Collapse
Affiliation(s)
- W Vangrysperre
- Laboratory of Biochemistry, State University of Ghent, Belgium
| | | | | | | | | | | |
Collapse
|