1
|
Patterson AJ, Colangeli R, Spigaglia P, Scott KP. Distribution of specific tetracycline and erythromycin resistance genes in environmental samples assessed by macroarray detection. Environ Microbiol 2007; 9:703-15. [PMID: 17298370 DOI: 10.1111/j.1462-2920.2006.01190.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A macroarray system was developed to screen environmental samples for the presence of specific tetracycline (Tc(R)) and erythromycin (erm(R)) resistance genes. The macroarray was loaded with polymerase chain reaction (PCR) amplicons of 23 Tc(R) genes and 10 erm(R) genes. Total bacterial genomic DNA was extracted from soil and animal faecal samples collected from different European countries. Macroarray hybridization was performed under stringent conditions and the results were analysed by fluorescence scanning. Pig herds in Norway, reared without antibiotic use, had a significantly lower incidence of antibiotic resistant bacteria than those reared in other European countries, and organic herds contained lower numbers of resistant bacteria than intensively farmed animals. The relative proportions of the different genes were constant across the different countries. Ribosome protection type Tc(R) genes were the most common resistance genes in animal faecal samples, with the tet(W) gene the most abundant, followed by tet(O) and tet(Q). Different resistance genes were present in soil samples, where erm(V) and erm(E) were the most prevalent followed by the efflux type Tc(R) genes. The macroarray proved a powerful tool to screen DNA extracted from environmental samples to identify the most abundant Tc(R) and erm(R) genes within those tested, avoiding the need for culturing and biased PCR amplification steps.
Collapse
Affiliation(s)
- Andrea J Patterson
- Gut Health Division, Rowett Research Institute, Bucksburn, Aberdeen AB21 9SB, UK
| | | | | | | |
Collapse
|
2
|
Brikun IA, Reeves AR, Cernota WH, Luu MB, Weber JM. The erythromycin biosynthetic gene cluster of Aeromicrobium erythreum. J Ind Microbiol Biotechnol 2004; 31:335-44. [PMID: 15257441 DOI: 10.1007/s10295-004-0154-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 06/11/2004] [Indexed: 11/25/2022]
Abstract
The erythromycin-biosynthetic (ery) gene cluster of Aeromicrobium erythreum was cloned and characterized. The 55.4-kb cluster contains 25 ery genes. Homologues were found for each gene in the previously characterized ery gene cluster from Saccharopolyspora erythraea. In addition, four new predicted ery genes were identified. Two of the new predicted genes, coding for a phosphopantetheinyl transferase (eryP) and a type II thioesterase (eryTII), were internal to the ery cluster. The other two new genes, coding for a thymidine 5'-diphosphate-glucose synthase (eryDI) and a MarR-family transcriptional repressor (ery-ORF25), were found at the two ends of the ery cluster. A knockout in eryDI showed it to be essential for erythromycin biosynthesis. The gene order of the two ery clusters was conserved within a core region of 15 contiguous genes, with the exception of IS1136 which was not found in the A. erythreum cluster. Beyond the core region, gene shuffling had occurred between the two sides of the cluster. The flanking regions of the two ery clusters were not alike in the type of genes found.
Collapse
Affiliation(s)
- Igor A Brikun
- Fermalogic Inc., 2201 W. Campbell Park Drive, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
3
|
Pernodet JL, Gourmelen A, Blondelet-Rouault MH, Cundliffe E. Dispensable ribosomal resistance to spiramycin conferred by srmA in the spiramycin producer Streptomyces ambofaciens. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 9):2355-2364. [PMID: 10517588 DOI: 10.1099/00221287-145-9-2355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptomyces ambofaciens produces the macrolide antibiotic spiramycin, an inhibitor of protein synthesis, and possesses multiple resistance mechanisms to the produced antibiotic. Several resistance determinants have been isolated from S. ambofaciens and studies with one of them, srmA, which hybridized with ermE (the erythromycin-resistance gene from Saccharopolyspora erythraea), are detailed here. The nucleotide sequence of srmA was determined and the mechanism by which its product confers resistance was characterized. The SrmA protein is a methyltransferase which introduces a single methyl group into A-2058 (Escherichia coli numbering scheme) in the large rRNA, thereby conferring an MLS (macrolide-lincosamide-streptogramin type B) type I resistance phenotype. A mutant of S. ambofaciens in which srmA was inactivated was viable and still produced spiramycin, indicating that srmA is dispensable, at least in the presence of the other resistance determinants.
Collapse
Affiliation(s)
- Jean-Luc Pernodet
- Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 400, Université Paris-Sud XI, F-91405 Orsay Cedex, France1
| | - Anne Gourmelen
- Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 400, Université Paris-Sud XI, F-91405 Orsay Cedex, France1
| | | | - Eric Cundliffe
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK2
| |
Collapse
|
4
|
Ingham CJ, Hunter IS, Smith MC. Isolation and sequencing of the rho gene from Streptomyces lividans ZX7 and characterization of the RNA-dependent NTPase activity of the overexpressed protein. J Biol Chem 1996; 271:21803-7. [PMID: 8702978 DOI: 10.1074/jbc.271.36.21803] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The gene for transcription termination factor Rho was isolated from Streptomyces lividans ZX7. It encoded a 77-kDa polypeptide (Rho 77) with considerable homology to known Rho factors. An atypical hydrophilic region of 228 residues was found within the N-terminal RNA-binding domain. Only Rho from Micrococcus luteus and Mycobacterium leprae (closely related GC-rich Gram-positive bacteria) had an analogous sequence. Rho 77 was overexpressed in Escherichia coli and purified using an N-terminal hexahistidine-tag. Rho 77 displayed a broad RNA-dependent ATPase activity, with poly(C) RNA being no more than 4-fold more effective than poly(A). This contrasts with the ATPase activity of Rho from E. coli which is stimulated primarily by poly(C) RNA. Rho 77 was a general RNA-dependent NTPase, apparent Km values for NTPs were: GTP 0.13 mM, ATP 0.17 mM, UTP 1.1 mM, and CTP >2 mM. Rho 77 poly(C)-dependent ATPase activity was inhibited by heparin, unlike the E. coli Rho. The antibiotic bicyclomycin inhibited the in vitro RNA-dependent ATPase activity of Rho 77, did not inhibit growth of streptomycetes but delayed the development of aerial mycelia. N-terminal deletion analysis to express a truncated form of Rho (Rho 72, 72 kDa) indicated that the first 42 residues of Rho 77 were not essential for RNA-dependent NTPase activity and were not the targets of inhibition by heparin or bicyclomycin.
Collapse
Affiliation(s)
- C J Ingham
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12, United Kingdom
| | | | | |
Collapse
|
5
|
Bibb MJ, White J, Ward JM, Janssen GR. The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol Microbiol 1994; 14:533-45. [PMID: 7533884 DOI: 10.1111/j.1365-2958.1994.tb02187.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transcriptional analysis of the ermE gene of Saccharopolyspora erythraea, which confers resistance to erythromycin by N6-dimethylation of 23S rRNA and which is expressed from two promoters, ermEp1 and ermEp2, revealed a complex regulatory region in which transcription is initiated in a divergent and overlapping manner. Two promoters (eryC1p1 and eryC1p2) were identified for the divergently transcribed erythromycin biosynthetic gene eryC1, which plays a role in the formation of desosamine or its attachment to the macrolide ring. Transcription from eryC1p2 starts at the same position as that of ermEp1, but on the opposite strand of the DNA helix, suggesting co-ordinate regulation of genes for erythromycin production and resistance. ermEp1 initiates transcription at, and one nucleotide before, the ermE translational start codon. Site-directed and deletion mutagenesis, combined with immunochemical analysis, demonstrated that the ermEp1 transcript is translated in the absence of a conventional ribosome-binding site to give rise to the full-length 23S rRNA methylase. Deletion of the -35 region of ermEp1 reduced, but did not abolish, promoter activity, reminiscent of the 'extended -10' class of bacterial promoters which, like ermEp1, possess TGN motifs immediately upstream of their -10 regions and which initiate transcription seven nucleotides downstream of the -10 region.
Collapse
Affiliation(s)
- M J Bibb
- John Innes Centre, Colney, Norwich, UK
| | | | | | | |
Collapse
|
6
|
Leskiw BK, Mah R, Lawlor EJ, Chater KF. Accumulation of bldA-specified tRNA is temporally regulated in Streptomyces coelicolor A3(2). J Bacteriol 1993; 175:1995-2005. [PMID: 8458842 PMCID: PMC204286 DOI: 10.1128/jb.175.7.1995-2005.1993] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Deletion of the bldA gene of Streptomyces coelicolor A3(2), which encodes the only tRNA for the rare UUA codon, had no obvious effects on primary growth but interfered with aerial mycelium formation and antibiotic production. To investigate the possible regulatory role of bldA, its transcription start point was identified, and time courses were determined for the appearance of its primary transcript, the processing of the primary transcript to give a mature 5' end, and the apparent efficiency of translation of ampC mRNA, which contains multiple UUA codons. The bldA promoter was active at all times, but processing of the 5' end of the primary transcript was comparatively inefficient in young cultures. This may perhaps involve an antisense RNA, evidence of which was provided by promoter probing and in vitro transcription. The presence of low levels of the processed form of the tRNA in young cultures followed by increased abundance in older cultures contrasted with the pattern observed for accumulation of a different, presumably typical tRNA which was approximately equally abundant throughout growth. The increased accumulation of the 5' processed form of bldA tRNA coincided with more-efficient translation of ampC mRNA in older cultures, supporting the hypothesis that in at least some physiological conditions, bldA may have a regulatory influence on events late in growth, such as morphological differentiation and antibiotic production.
Collapse
MESH Headings
- Anti-Bacterial Agents/biosynthesis
- Base Sequence
- Codon/genetics
- Culture Media/metabolism
- Gene Deletion
- Gene Expression
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Molecular Sequence Data
- Morphogenesis/genetics
- Promoter Regions, Genetic/genetics
- Protein Biosynthesis
- RNA Precursors/genetics
- RNA, Messenger/genetics
- RNA, Transfer, Leu/biosynthesis
- RNA, Transfer, Leu/genetics
- RNA, Transfer, Lys/biosynthesis
- Streptomyces/genetics
- Time Factors
Collapse
Affiliation(s)
- B K Leskiw
- Department of Microbiology, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
7
|
Gramajo HC, Takano E, Bibb MJ. Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol Microbiol 1993; 7:837-45. [PMID: 7683365 DOI: 10.1111/j.1365-2958.1993.tb01174.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Production of actinorhodin, a polyketide antibiotic made by Streptomyces coelicolor A3(2), normally occurs only in stationary-phase cultures. S1 nuclease protection experiments showed that transcription of actII-ORF4, the activator gene required for expression of the biosynthetic structural genes, increased dramatically during the transition from exponential to stationary phase. The increase in actII-ORF4 expression was followed by transcription of the biosynthetic structural genes actIII and actVI-ORF1, and by the production of actinorhodin. The presence of actII-ORF4 on a multicopy plasmid resulted in enhanced levels of actII-ORF4 mRNA, and transcription of actIII and actinorhodin production during exponential growth, suggesting that actinorhodin synthesis in rapidly growing cultures is normally limited only by the availability of enough of the activator protein. bldA, which encodes a tRNA(Leu)UUA that is required for the efficient translation of a single UUA codon in the actII-ORF4 mRNA, was transcribed throughout growth. Moreover, translational fusions of the 5' end of actII-ORF4 that included the UUA codon to the ermE reporter gene demonstrated the presence of functional bldA tRNA in young, exponentially growing cultures and no increase in the efficiency of translation of UUA codons, relative to UUG codons, was observed during growth. The normal growth-phase-dependent production of actinorhodin in the liquid culture conditions used in these experiments appears to be mediated at the transcriptional level through activation of the actII-ORF4 promoter.
Collapse
Affiliation(s)
- H C Gramajo
- John Innes Institute, John Innes Centre, Norwich, UK
| | | | | |
Collapse
|
8
|
Lacalle RA, Ruiz D, Jiménez A. Molecular analysis of the dmpM gene encoding an O-demethyl puromycin O-methyltransferase from Streptomyces alboniger. Gene 1991; 109:55-61. [PMID: 1756982 DOI: 10.1016/0378-1119(91)90588-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nucleotide (nt) sequence of a 1332-bp fragment of Streptomyces alboniger DNA containing the gene (dmpM), which encodes an O-demethyl puromycin O-methyltransferase (DMPM), has been determined. The dmpM gene contains a 1131-nt open reading frame which encodes a polypeptide of Mr 40,303; this is consistent with the 44 +/- 2.5- and 160-kDa sizes of the DMPM monomer and its native form, respectively. The ATG start codon of dmpM is 50 bp downstream from the coding sequence of the gene (pac), which determines a puromycin N-acetyltransferase. S1 mapping experiments indicate that pac and dmpM are transcribed on a single transcript, which ends at least 500 nt downstream from the dmpM stop codon. The deduced amino acid sequence of DMPM shows significant similarities to those of a hydroxyindole O-methyltransferase, which is involved in the biosynthesis of melatonin by bovine pineal glands [Ishida et al., J. Biol. Chem. 262 (1987) 2895-2899], a hydroxyneurosporene methyltransferase, which is involved in carotenoid biosynthesis in the purple nonsulfur bacterium, Rhodobacter capsulatus [Armstrong et al., Mol. Gen. Genet. 216 (1989) 254-268] and two O-methyltransferases of the tetracenomycin biosynthesis pathway from Streptomyces glaucescens.
Collapse
Affiliation(s)
- R A Lacalle
- Centro de Biología Molecular (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | | | | |
Collapse
|