Rodnina MV, Pape T, Fricke R, Kuhn L, Wintermeyer W. Initial binding of the elongation factor Tu.GTP.aminoacyl-tRNA complex preceding codon recognition on the ribosome.
J Biol Chem 1996;
271:646-52. [PMID:
8557669 DOI:
10.1074/jbc.271.2.646]
[Citation(s) in RCA: 121] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The first step in the sequence of interactions between the ribosome and the complex of elongation factor Tu (EF-Tu), GTP, and aminoacyl-tRNA, which eventually leads to A site-bound aminoacyl-tRNA, is the codon-independent formation of an initial complex. We have characterized the initial binding and the resulting complex by time-resolved (stopped-flow) and steady-state fluorescence measurements using several fluorescent tRNA derivatives. The complex is labile, with rate constants of 6 x 10(7) M-1 s-1 and 24 s-1 (20 degrees C, 10 mM Mg2+) for binding and dissociation, respectively. Both thermodynamic and activation parameters of initial binding were determined, and five Mg2+ ions were estimated to participate in the interaction. While a cognate ternary complex proceeds form initial binding through codon recognition to rapid GTP hydrolysis, the rate constant of GTP hydrolysis in the non-cognate complex is 4 orders of magnitude lower, despite the rapid formation of the initial complex in both cases. Hence, the ribosome-induced GTP hydrolysis by EF-Tu is strongly affected by the presence of the tRNA. This suggests that codon-anticodon recognition, which takes place after the formation of the initial binding complex, provides a specific signal that triggers fast GTP hydrolysis by EF-Tu on the ribosome.
Collapse