1
|
Comparative analysis of complete chloroplast genome sequences of four major Amorphophallus species. Sci Rep 2019; 9:809. [PMID: 30692573 PMCID: PMC6349887 DOI: 10.1038/s41598-018-37456-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/28/2018] [Indexed: 12/23/2022] Open
Abstract
Amorphophallus (Araceae) contains more than 170 species that are mainly distributed in Asia and Africa. Because the bulbs of Amorphophallus are rich in glucomannan, they have been widely used in food, medicine, the chemical industry and so on. To better understand the evolutionary relationships and mutation patterns in the chloroplast genome of Amorphophallus, the complete chloroplast genomes of four species were sequenced. The chloroplast genome sequences of A. albus, A. bulbifer, A. konjac and A. muelleri ranged from 162,853 bp to 167,424 bp. The A. albus chloroplast (cp) genome contains 113 genes, including 79 protein-coding genes, 30 tRNA genes and 4 rRNA genes. The A. bulbifer cp genome contains 111 genes, including 78 protein-coding genes, 29 tRNA genes and 4 rRNA genes. A. muelleri contains 111 and 113 genes, comprising 78 and 80 protein-coding genes, respectively, 29 tRNA genes and 4 rRNA genes. The IR (inverted repeat) region/LSC (long single copy) region and IR/SSC (short single copy) region borders of the four Amorphophallus cp genomes were compared. In addition to some genes being deleted, variations in the copy numbers and intron numbers existed in some genes in the four cp genomes. One hundred thirty-four to 164 SSRs (simple sequence repeats) were detected in the four cp genomes. In addition, the highest mononucleotide SSRs were composed of A and T repeat units, and the majority of dinucleotides were composed of AT and TA. SNPs (single nucleotide polymorphisms) and indels (insertion-deletions) were calculated from coding genes and noncoding genes, respectively. These divergences comprising SSRs, SNPs and indel markers will be useful in testing the maternal inheritance of the chloroplast genome, identifying species differentiation and even in breeding programs. Furthermore, the regression of ndhK was detected from four Amorphophallus cp genomes in our study. Complete cp genome sequences of four Amorphophallus species and other plants were used to perform phylogenetic analyses. The results showed that Amorphophallus was clustered in Araceae, and Amorphophallus was divided into two clades; A. albus and A. konjac were clustered in one clade, and A. bulbifer and A. muelleri were clustered in another clade. Phylogenetic analysis among the Amorphophallus genus was conducted based on matK and rbcL. The phylogenetic trees showed that the relationships among the Amorphophallus species were consistent with their geographical locations. The complete chloroplast genome sequence information for the four Amorphophallus species will be helpful for elucidating Amorphophallus phylogenetic relationships.
Collapse
|
2
|
Khandelwal PJ, Herman AM, Moussa CEH. Inflammation in the early stages of neurodegenerative pathology. J Neuroimmunol 2011; 238:1-11. [PMID: 21820744 DOI: 10.1016/j.jneuroim.2011.07.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 07/09/2011] [Accepted: 07/12/2011] [Indexed: 12/12/2022]
Abstract
Inflammation is secondary to protein accumulation in neurodegenerative diseases, including Alzheimer's, Parkinson's and Amyotrophic Lateral Sclerosis. Emerging evidence indicate sustained inflammatory responses, involving microglia and astrocytes in animal models of neurodegeneration. It is unknown whether inflammation is beneficial or detrimental to disease progression and how inflammatory responses are induced within the CNS. Persistence of an inflammatory stimulus or failure to resolve sustained inflammation can result in pathology, thus, mechanisms that counteract inflammation are indispensable. Here we review studies on inflammation mediated by innate and adaptive immunity in the early stages of neurodegeneration and highlight important areas for future investigation.
Collapse
Affiliation(s)
- Preeti J Khandelwal
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | |
Collapse
|
3
|
Long M, Liu J, Chen Z, Bleijlevens B, Roseboom W, Albracht SPJ. Characterization of a HoxEFUYH type of [NiFe] hydrogenase from Allochromatium vinosum and some EPR and IR properties of the hydrogenase module. J Biol Inorg Chem 2006; 12:62-78. [PMID: 16969669 DOI: 10.1007/s00775-006-0162-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Abstract
A soluble hydrogenase from Allochromatium vinosum was purified. It consisted of a large (M (r) = 52 kDa) and a small (M (r) = 23 kDa) subunit. The genes encoding for both subunits were identified. They belong to an open reading frame where they are preceded by three more genes. A DNA fragment containing all five genes was cloned and sequenced. The deduced amino acid sequences of the products characterized the complex as a member of the HoxEFUYH type of [NiFe] hydrogenases. Detailed sequence analyses revealed binding sites for eight Fe-S clusters, three [2Fe-2S] clusters and five [4Fe-4S] clusters, six of which are also present in homologous subunits of [FeFe] hydrogenases and NADH:ubiquione oxidoreductases (complex I). This makes the HoxEFUYH type of hydrogenases the one that is evolutionary closest to complex I. The relative positions of six of the potential Fe-S clusters are predicted on the basis of the X-ray structures of the Clostridium pasteurianum [FeFe] hydrogenase I and the hydrophilic domain of complex I from Thermus thermophilus. Although the HoxF subunit contains binding sites for flavin mononucleotide and NAD(H), cell-free extracts of A. vinosum did not catalyse a H(2)-dependent reduction of NAD(+). Only the hydrogenase module (HoxYH) could be purified. Its electron paramagnetic resonance (EPR) and IR spectral properties showed the presence of a Ni-Fe active site and a [4Fe-4S] cluster. Its activity was sensitive to carbon monoxide. No EPR signals from a light-sensitive Ni(a)-C* state could be observed. This study presents the first IR spectroscopic data on the HoxYH module of a HoxEFUYH type of [NiFe] hydrogenase.
Collapse
Affiliation(s)
- Minnan Long
- School of Life Sciences, Bio-energy Center, Xiamen University, Xiamen, 361005, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
4
|
Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE. Bovine complex I is a complex of 45 different subunits. J Biol Chem 2006; 281:32724-7. [PMID: 16950771 DOI: 10.1074/jbc.m607135200] [Citation(s) in RCA: 360] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian mitochondrial complex I is a multisubunit membrane-bound assembly with a molecular mass approaching 1 MDa. By comprehensive analyses of the bovine complex and its constituent subcomplexes, 45 different subunits have been characterized previously. The presence of a 46th subunit was suspected from the consistent detection of a molecular mass of 10,566 by electrospray ionization mass spectrometry of subunits fractionated by reverse-phase high pressure liquid chromatography. The component was found associated with both the intact complex and subcomplex Ibeta, which represents most of the membrane arm of the complex, and it could not be resolved chromatographically from subunit SGDH (the subunit of bovine complex I with the N-terminal sequence Ser-Gly-Asp-His). It has now been characterized by tandem mass spectrometry of intact protein ions and shown to be a C-terminal fragment of subunit SGDH arising from a specific peptide bond cleavage between Ile-55 and Pro-56 during the electrospray ionization process. Thus, the subunit composition of bovine complex I has been established. It is a complex of 45 different proteins plus non-covalently bound FMN and eight iron-sulfur clusters.
Collapse
Affiliation(s)
- Joe Carroll
- Dunn Human Nutrition Unit, The Medical Research Council, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | |
Collapse
|
5
|
Abe M, Kenmochi A, Ichimaru N, Hamada T, Nishioka T, Miyoshi H. Essential structural features of acetogenins: role of hydroxy groups adjacent to the bis-THF rings. Bioorg Med Chem Lett 2004; 14:779-82. [PMID: 14741288 DOI: 10.1016/j.bmcl.2003.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The presence of two hydroxy groups adjacent to the THF ring(s) is a common structural feature of natural acetogenins. To elucidate the role of each hydroxy group in the inhibitory action of acetogenins, we synthesized three acetogenin analogues which lack either or both of the hydroxy groups, and investigated their inhibitory activities with bovine heart mitochondrial complex I. Our results indicate that the presence of either of the two hydroxy groups sufficiently sustains a potent inhibitory effect.
Collapse
Affiliation(s)
- Masato Abe
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Hirst J, Carroll J, Fearnley IM, Shannon RJ, Walker JE. The nuclear encoded subunits of complex I from bovine heart mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1604:135-50. [PMID: 12837546 DOI: 10.1016/s0005-2728(03)00059-8] [Citation(s) in RCA: 292] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria is a complicated, multi-subunit, membrane-bound assembly. Recently, the subunit compositions of complex I and three of its subcomplexes have been reevaluated comprehensively. The subunits were fractionated by three independent methods, each based on a different property of the subunits. Forty-six different subunits, with a combined molecular mass of 980 kDa, were identified. The three subcomplexes, I alpha, I beta and I lambda, correlate with parts of the membrane extrinsic and membrane-bound domains of the complex. Therefore, the partitioning of subunits amongst these subcomplexes has provided information about their arrangement within the L-shaped structure. The sequences of 45 subunits of complex I have been determined. Seven of them are encoded by mitochondrial DNA, and 38 are products of the nuclear genome, imported into the mitochondrion from the cytoplasm. Post-translational modifications of many of the nuclear encoded subunits of complex I have been identified. The seven mitochondrially encoded subunits, and seven of the nuclear encoded subunits, are homologues of the 14 subunits found in prokaryotic complexes I. They are considered to be sufficient for energy transduction by complex I, and they are known as the core subunits. The core subunits bind a flavin mononucleotide (FMN) at the active site for NADH oxidation, up to eight iron-sulfur clusters, and one or more ubiquinone molecules. The locations of some of the cofactors can be inferred from the sequences of the core subunits. The remaining 31 subunits of bovine complex I are the supernumerary subunits, which may be important either for the stability of the complex, or for its assembly. Sequence relationships suggest that some of them carry out reactions unrelated to the NADH:ubiquinone oxidoreductase activity of the complex.
Collapse
Affiliation(s)
- Judy Hirst
- Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK.
| | | | | | | | | |
Collapse
|
7
|
Abstract
The energy-transducing NADH: quinone (Q) oxidoreductase (complex I) is the largest and most complicated enzyme complex in the oxidative phosphorylation system. Complex I is a redox pump that uses the redox energy to translocate H(+) (or Na(+)) ions across the membrane, resulting in a significant contribution to energy production. The need to elucidate the molecular mechanisms of complex I has greatly increased. Many devastating neurodegenerative disorders have been associated with complex I deficiency. The structural and functional complexities of complex I have already been established. However, intricate biogenesis and activity regulation functions of complex I have just been identified. Based upon these recent developments, it is apparent that complex I research is entering a new era. The advancement of our knowledge of the molecular mechanism of complex I will not only surface from bioenergetics, but also from many other fields as well, including medicine. This review summarizes the current status of our understanding of complex I and sheds light on new theories and the future direction of complex I studies.
Collapse
Affiliation(s)
- Takahiro Yano
- Department of Biochemistry and Biophysics, School of Medicine, Johnson Research Foundation, University of Pennsylvania, Philadelphia, PA 19104-6059, USA.
| |
Collapse
|
8
|
Miyoshi H. Probing the ubiquinone reduction site in bovine mitochondrial complex I using a series of synthetic ubiquinones and inhibitors. J Bioenerg Biomembr 2001; 33:223-31. [PMID: 11695832 DOI: 10.1023/a:1010735019982] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Studies of the structure-activity relationships of ubiquinones and specific inhibitors are helpful to probe the structural and functional features of the ubiquinone reduction site of bovine heart mitochondrial complex I. Bulky exogenous short-chain ubiquinones serve as sufficient electron acceptors from the physiological ubiquinone reduction site of bovine complex I. This feature is in marked contrast to other respiratory enzymes such as mitochondrial complexes II and III. For various complex I inhibitors, including the most potent inhibitors, acetogenins, the essential structural factors that markedly affect the inhibitory potency are not necessarily obvious. Thus, the loose recognition by the enzyme of substrate and inhibitor structures may reflect the large cavity like structure of the ubiquinone (or inhibitor) binding domain in the enzyme. On the other hand, several phenomena are difficult to explain by a simple one-catalytic site model for ubiquinone.
Collapse
Affiliation(s)
- H Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan.
| |
Collapse
|
9
|
Takada M, Kuwabara K, Nakato H, Tanaka A, Iwamura H, Miyoshi H. Definition of crucial structural factors of acetogenins, potent inhibitors of mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1460:302-10. [PMID: 11106771 DOI: 10.1016/s0005-2728(00)00156-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Some natural acetogenins are the most potent inhibitors of bovine heart mitochondrial complex I. These compounds are characterized by two functional units (i.e. hydroxylated tetrahydrofuran (THF) and alpha,beta-unsaturated gamma-lactone ring moieties) separated by a long alkyl spacer. To elucidate which structural factors of acetogenins including their active conformation are crucial for the potent inhibitory effect, we synthesized a series of novel acetogenin analogues possessing bis-THF rings. The present study clearly demonstrated that the natural gamma-lactone ring is not crucial for the potent inhibition, although this moiety is the most common structural unit among a large number of natural acetogenins and has been suggested to be the only reactive species that directly interacts with the enzyme (Shimada et al., Biochemistry 37 (1998) 854-866). The presence of free hydroxy group(s) in the adjacent bis-THF rings was favorable, but not essential, for the potent activity. This was probably because high polarity (or hydrophilicity), rather than hydrogen bond-donating ability, around the bis-THF rings is required to retain the inhibitor in the active conformation. Interestingly, length of the alkyl spacer proved to be a very important structural factor for the potent activity, the optimal length being approximately 13 carbon atoms. The present study provided further strong evidence for the previous proposal (Kuwabara et al., Eur. J. Biochem. 267 (2000) 2538-2546) that the gamma-lactone and THF ring moieties act in a cooperative manner on complex I with the support of some specific conformation of the spacer.
Collapse
Affiliation(s)
- M Takada
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kita-shirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Yano T, Magnitsky S, Ohnishi T. Characterization of the complex I-associated ubisemiquinone species: toward the understanding of their functional roles in the electron/proton transfer reaction. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:299-304. [PMID: 11004443 DOI: 10.1016/s0005-2728(00)00164-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
NADH-ubiquinone oxidoreductase (called complex I for mitochondrial enzyme and NDH-1 for bacterial counterparts) is an energy transducer, which utilizes the redox energy derived from the oxidation of NADH with ubiquinone to generate an electrochemical proton gradient (Deltamu(H(+))) across the membrane. The complex I/NDH-1 contain one non-covalently bound flavin mononucleotide and as many as eight iron-sulfur clusters as electron transfer components in common. In addition, electron paramagnetic resonance (EPR) spectroscopic studies have revealed that three ubisemiquinone (SQ) species with distinct spectroscopic and thermodynamic properties are detectable in complex I and function as electron/proton translocators. Thus, the understanding of molecular properties of the individual quinone species is prerequisite to elucidate the energy-coupling mechanism of complex I. We have investigated these SQ species using EPR spectroscopy and found that the three SQ species have strikingly different properties. We will report characteristics of these SQ species and discuss possible functional roles of individual quinone species in the electron/proton transfer reaction of complex I/NDH-1.
Collapse
Affiliation(s)
- T Yano
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia 19104-6059, USA
| | | | | |
Collapse
|
11
|
Sousa R, Barquera B, Duarte M, Finel M, Videira A. Characterisation of the last Fe-S cluster-binding subunit of Neurospora crassa complex I. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:142-6. [PMID: 10216160 DOI: 10.1016/s0005-2728(99)00014-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have cloned cDNAs encoding the last iron-sulphur protein of complex I from Neurospora crassa. The cDNA sequence contains an open reading frame that codes for a precursor polypeptide of 226 amino acid residues with a molecular mass of 24972 Da. Our results indicate that the mature protein belongs probably to the peripheral arm of complex I and is rather unstable when not assembled into the enzyme. The protein is highly homologous to the PSST subunit of bovine complex I, the most likely candidate to bind iron-sulphur cluster N-2. All the amino acid residues proposed to bind such a cluster are conserved in the fungal protein.
Collapse
Affiliation(s)
- R Sousa
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
12
|
Schuler F, Yano T, Di Bernardo S, Yagi T, Yankovskaya V, Singer TP, Casida JE. NADH-quinone oxidoreductase: PSST subunit couples electron transfer from iron-sulfur cluster N2 to quinone. Proc Natl Acad Sci U S A 1999; 96:4149-53. [PMID: 10097178 PMCID: PMC22435 DOI: 10.1073/pnas.96.7.4149] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proton-translocating NADH-quinone oxidoreductase (EC 1.6.99.3) is the largest and least understood enzyme complex of the respiratory chain. The mammalian mitochondrial enzyme (also called complex I) contains more than 40 subunits, whereas its structurally simpler bacterial counterpart (NDH-1) in Paracoccus denitrificans and Thermus thermophilus HB-8 consists of 14 subunits. A major unsolved question is the location and mechanism of the terminal electron transfer step from iron-sulfur cluster N2 to quinone. Potent inhibitors acting at this key region are candidate photoaffinity probes to dissect NADH-quinone oxidoreductases. Complex I and NDH-1 are very sensitive to inhibition by a variety of structurally diverse toxicants, including rotenone, piericidin A, bullatacin, and pyridaben. We designed (trifluoromethyl)diazirinyl[3H]pyridaben ([3H]TDP) as our photoaffinity ligand because it combines outstanding inhibitor potency, a suitable photoreactive group, and tritium at high specific activity. Photoaffinity labeling of mitochondrial electron transport particles was specific and saturable. Isolation, protein sequencing, and immunoprecipitation identified the high-affinity specifically labeled 23-kDa subunit as PSST of complex I. Immunoprecipitation of labeled membranes of P. denitrificans and T. thermophilus established photoaffinity labeling of the equivalent bacterial NQO6. Competitive binding and enzyme inhibition studies showed that photoaffinity labeling of the specific high-affinity binding site of PSST is exceptionally sensitive to each of the high-potency inhibitors mentioned above. These findings establish that the homologous PSST of mitochondria and NQO6 of bacteria have a conserved inhibitor-binding site and that this subunit plays a key role in electron transfer by functionally coupling iron-sulfur cluster N2 to quinone.
Collapse
Affiliation(s)
- F Schuler
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3112, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Loeffen JL, Triepels RH, van den Heuvel LP, Schuelke M, Buskens CA, Smeets RJ, Trijbels JM, Smeitink JA. cDNA of eight nuclear encoded subunits of NADH:ubiquinone oxidoreductase: human complex I cDNA characterization completed. Biochem Biophys Res Commun 1998; 253:415-22. [PMID: 9878551 DOI: 10.1006/bbrc.1998.9786] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
NADH:ubiquinone oxidoreductase (complex I) is an extremely complicated multiprotein complex located in the inner mitochondrial membrane. Its main function is the transport of electrons from NADH to ubiquinone, which is accompanied by translocation of protons from the mitochondrial matrix to the intermembrane space. Human complex I appears to consist of 41 subunits of which 34 are encoded by nDNA. Here we report the cDNA sequences of the hitherto uncharacterized 8 nuclear encoded subunits, all located within the hydrophobic protein (HP) fraction of complex I. Now all currently known 41 proteins of human NADH:ubiquinone oxidoreductase have been characterized and reported in literature, which enables more complete mutational analysis studies of isolated complex I-deficient patients.
Collapse
Affiliation(s)
- J L Loeffen
- University Hospital Nijmegen, Nijmegen Center for Mitochondrial Disorders, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Robinson BH. Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1364:271-86. [PMID: 9593934 DOI: 10.1016/s0005-2728(98)00033-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- B H Robinson
- Departments of Biochemistry and Paediatrics, The University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Duarte M, Schulte U, Videira A. Identification of the TYKY homologous subunit of complex I from Neurospora crassa. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1322:237-41. [PMID: 9452770 DOI: 10.1016/s0005-2728(97)00084-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A polypeptide subunit of complex I from Neurospora crassa, homologous to bovine TYKY, was expressed in Escherichia coli, purified and used for the production of rabbit antiserum. The mature mitochondrial protein displays a molecular mass of 21280 Da and results from cleavage of a presequence consisting of the first 34 N-terminal amino acids of the precursor. This protein was found closely associated with the peripheral arm of complex I.
Collapse
Affiliation(s)
- M Duarte
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Portugal
| | | | | |
Collapse
|
16
|
Albracht SP, Mariette A, de Jong P. Bovine-heart NADH:ubiquinone oxidoreductase is a monomer with 8 Fe-S clusters and 2 FMN groups. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1318:92-106. [PMID: 9030258 DOI: 10.1016/s0005-2728(96)00153-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The availability of the amino-acid sequences of a number of mitochondrial and bacterial NADH:ubiquinone oxidoreductases (Complex I), the sequence similarities of five of the essential subunits of Complex I with subunits of [NiFe]hydrogenases and [Fe]hydrogenases, as well as some long-standing controversies about the precise EPR properties and stoichiometries of the iron-sulfur clusters in Complex I have led us to propose a new structural and functional model for this complicated enzyme. The functional unit is a monomer comprising 8 different Fe-S clusters and 2 FMN molecules as prosthetic groups. The electron-input pathway, as well as part of the electron-transfer components, seem largely inherited from bacterial NAD(+)-reducing hydrogenases. The essential electron-transfer components of the electron-output pathway are located in the TYKY subunit. This subunit is proposed to hold both iron-sulfur clusters 2 and to render the enzyme the ability to perform coupled electron transfer. Based on earlier observed similarities (Albracht. S.P.J. (1993) Biochim. Biophys. Acta 1144, 221-224) of the 49 kDa subunit and the PSST subunit with, respectively, the large and small subunits of [NiFe]hydrogenases, it is proposed that the 49 kDa/PSST subunit couple provides Complex I with an ancient proton-transfer pathway.
Collapse
Affiliation(s)
- S P Albracht
- E.C. Slater Institute, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
17
|
Fox JD, He Y, Shelver D, Roberts GP, Ludden PW. Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum. J Bacteriol 1996; 178:6200-8. [PMID: 8892819 PMCID: PMC178490 DOI: 10.1128/jb.178.21.6200-6208.1996] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In the photosynthetic bacterium Rhodospirillum rubrum, the presence of carbon monoxide (CO) induces expression of several proteins. These include carbon monoxide dehydrogenase (CODH) and a CO-tolerant hydrogenase. Together these enzymes catalyze the following conversion: CO + H2O --> CO2 + H2. This system enables R. rubrum to grow in the dark on CO as the sole energy source. Expression of this system has been shown previously to be regulated at the transcriptional level by CO. We have now identified the remainder of the CO-regulated genes encoded in a contiguous region of the R. rubrum genome. These genes, cooMKLXU, apparently encode proteins related to the function of the CO-induced hydrogenase. As seen before with the gene for the large subunit of the CO-induced hydrogenase (cooH), most of the proteins predicted by these additional genes show significant sequence similarity to subunits of Escherichia coli hydrogenase 3. In addition, all of the newly identified coo gene products show similarity to subunits of NADH-quinone oxidoreductase (energy-conserving NADH dehydrogenase I) from various eukaryotic and prokaryotic organisms. We have found that dicyclohexylcarbodiimide, an inhibitor of mitochondrial NADH dehydrogenase I (also called complex I), inhibits the CO-induced hydrogenase as well. We also show that expression of the cooMKLXUH operon is regulated by CO and the transcriptional activator CooA in a manner similar to that of the cooFSCTJ operon that encodes the subunits of CODH and related proteins.
Collapse
Affiliation(s)
- J D Fox
- Department of Biochemistry, University of Wisconsin-Madison, 53706, USA
| | | | | | | | | |
Collapse
|
18
|
Heiser V, Brennicke A, Grohmann L. The plant mitochondrial 22 kDa (PSST) subunit of respiratory chain complex I is encoded by a nuclear gene with enhanced transcript levels in flowers. PLANT MOLECULAR BIOLOGY 1996; 31:1195-1204. [PMID: 8914535 DOI: 10.1007/bf00040836] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Genes for subunits of respiratory chain complex I are found in mitochondrial, plastid and/or nuclear genomes with varying distributions in the diverse eukaryotic species. The intrinsic PSST subunit of complex I is a mitochondrially encoded protein in Paramecium but is specified by a nuclear gene in animals. In plants to date only the homologous plastid encoded NDH-K gene product has been described. The analogous plant mitochondrial protein is now identified as the 22 kDa complex I subunit and found to be encoded in the nuclear genome of Arabidopsis and potato. The cDNA sequences of clones isolated from both plants are 79% identical in the conserved coding region, while the 5' parts of the reading frames specifying the N-terminal presequences for mitochondrial import differ significantly. The expression of the genes examined in different organs of both plants by Northern blot analysis shows elevated steady-state mRNA levels in flowers. Hence, expression of the gene appears to be organ-specifically regulated by its transcription rate and/or mRNA stability. A 1.6 kb long genomic DNA sequence of Arabidopsis upstream of the transcribed gene region encoding the PSST subunit in Arabidopsis contains several putative promoter sequence motifs. The results are discussed with regard to the appearance of a nuclearly integrated, former mitochondrial gene.
Collapse
Affiliation(s)
- V Heiser
- Institut für Genbiologische Forschung, Berlin
| | | | | |
Collapse
|
19
|
Howitt CA, Whelan J, Price GD, Day DA. Cloning, analysis and inactivation of the ndhK gene encoding a subunit of NADH quinone oxidoreductase from Anabaena PCC 7120. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:173-80. [PMID: 8797851 DOI: 10.1111/j.1432-1033.1996.0173h.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The function of the type-1 pyridine nucleotide dehydrogenase (NDH-1) in the cyanobacterium Anabaena PCC 7120 was investigated. Immunological analysis with antibodies raised against NdhK from Synechocystis PCC 6803, a subunit of NDH-1, showed that NdhK in Anabaena PCC 7120 is only present on the plasma membrane, which confirms the results of previous studies [Howitt, C.A., Smith, G.D. & Day, D. A. (1993) Biochim. Biophys. Acta 114], 313-320]. Southern analysis with probes from the operon encoding ndhC-K-J from Synechocystis PCC 6803 showed that this operon is also conserved in Anabaena PCC 7120. Part of the operon was amplified using PCR with degenerate primers designed against two sequences encoding regions of NdhC and NdhJ that are conserved between cyanobacteria and chloroplasts. The nucleotide sequence of ndhK encodes a protein of 245 amino acids with a predicted molecular mass of 27.5 kDa. The coding regions of ndhC and ndhK overlap by 7 bp, as found in the chloroplasts of liverwort, maize, and rice. This is markedly different from the case in Synechocystis PCC 6803 where a 71-bp non-coding, intergenic spacer region lies between ndhC and ndhK. The ndhK clone was interrupted by the insertion of a kanamycin-resistance gene and used to transform Anabaena PCC 7120.20 unsegregated transformants were produced, all of which died during attempts to segregate them. This indicates that under the selection conditions used, ndhK is an essential gene in Anabaena PCC 7120.
Collapse
Affiliation(s)
- C A Howitt
- Division of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|
20
|
Seidel-Guyenot W, Schwabe C, Büchel C. Kinetic and functional characterization of a membrane-bound NAD(P)H dehydrogenase located in the chloroplasts of Pleurochloris meiringensis (Xanthophyceae). PHOTOSYNTHESIS RESEARCH 1996; 49:183-93. [PMID: 24271615 DOI: 10.1007/bf00117668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/1995] [Accepted: 07/23/1996] [Indexed: 05/16/2023]
Abstract
Using isolated chloroplasts or purified thylakoids from photoautotrophically grown cells of the chromophytic alga Pleurochloris meiringensis (Xanthophyceae) we were able to demonstrate a membrane bound NAD(P)H dehydrogenase activity. NAD(P)H oxidation was detectable with menadione, coenzyme Q0, decylplastoquinone and decylubiquinone as acceptors in an in vitro assay. K m-values for both pyridine nucleotides were in the μmolar range (K m[NADH]=9.8 μM, K m[NADPH]=3.2 μM calculated according to Lineweaver-Burk). NADH oxidation was optimal at pH 9 while pH dependence of NADPH oxidation showed a main peak at 9.8 and a smaller optimum at pH 7.5-8. NADH oxidation could be completely inhibited with rotenone, an inhibitor of mitochondrial complex I dehydrogenase, while NADPH oxidation revealed the typical inhibition pattern upon addition of oxidized pyridine nucleotides reported for ferredoxin: NADP(+) reductase. Partly-denaturing gel electrophoresis followed by NAD(P)H dehydrogenase activity staining showed that NADPH and NADH oxidizing proteins had different electrophoretic mobilities. As revealed by denaturing electrophoresis, the NADH oxidizing enzyme had one main subunit of 22 kDa and two further polypeptides of 29 and 44 kDa, whereas separation of the NADPH depending protein yielded five bands of different molecular weight. Measurement of oxygen consumption due to PS I mediated methylviologen reduction upon complete inhibition of PS II showed that the NAD(P)H dehydrogenase is able to catalyze an input of electrons from NADH to the photosynthetic electron transport chain in case of an oxidized plastoquinone-pool. We suggest ferredoxin: NADP(+) reductase to be the main NADPH oxidizing activity while a thylakoidal NAD(P)H: plastoquinone oxidoreductase involved in the chlororespiratory pathway in the dark acts mainly as an NADH oxidizing enzyme.
Collapse
Affiliation(s)
- W Seidel-Guyenot
- Institute of General Botany, University of Mainz, 55099, Mainz, Germany
| | | | | |
Collapse
|
21
|
van der Spek TM, Arendsen AF, Happe RP, Yun S, Bagley KA, Stufkens DJ, Hagen WR, Albracht SP. Similarities in the architecture of the active sites of Ni-hydrogenases and Fe-hydrogenases detected by means of infrared spectroscopy. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:629-34. [PMID: 8647106 DOI: 10.1111/j.1432-1033.1996.0629p.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Three groups that absorb in the 2100-1800-cm-1 infrared spectral region have recently been detected in Ni-hydrogenase from Chromatium vinosum [Bagley, K.A., Duin, E.C., Roseboom, W., Albracht, S. P.J. & Woodruff, W.H. (1995) Biochemistry 34, 5527-5535]. To assess the significance and generality of this observation, we have carried out an infrared-spectroscopic study of eight hydrogenases of three different types (nickel, iron and metal-free) and of 11 other iron-sulfur and/or nickel proteins. Infrared bands in the 2100-1800-cm-1 spectral region were found in spectra of all Ni-hydrogenases and Fe-hydrogenases and were absent from spectra of any of the other proteins, including a metal-free hydrogenase. The positions of these bands are dependent on the redox state of the hydrogenase. The three groups in Ni-hydrogenases that are detected by infrared spectroscopy are assigned to the three unidentified small non-protein ligands that coordinate iron in the dinuclear Ni/Fe active site as observed in the X-ray structure of the enzyme from Desulfovibrio gigas [Volbeda, A., Charon, M.-H., Piras, C., Hatchikian, E.C., Frey, M. & Fontecilla-Camps, J.C. (1995) Nature 373, 580-587]. It is concluded that these groups occur exclusively in metal-containing H2-activating enzymes. It is proposed that the active sites of Ni-hydrogenases and of Fe-hydrogenases have a similar architecture, that is required for the activation of molecular hydrogen.
Collapse
Affiliation(s)
- T M van der Spek
- E. C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bendall DS, Manasse RS. Cyclic photophosphorylation and electron transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995. [DOI: 10.1016/0005-2728(94)00195-b] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Walker JE, Skehel JM, Buchanan SK. Structural analysis of NADH: ubiquinone oxidoreductase from bovine heart mitochondria. Methods Enzymol 1995; 260:14-34. [PMID: 8592442 DOI: 10.1016/0076-6879(95)60127-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- J E Walker
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|
24
|
Albracht SP. Nickel hydrogenases: in search of the active site. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1188:167-204. [PMID: 7803444 DOI: 10.1016/0005-2728(94)90036-1] [Citation(s) in RCA: 341] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- S P Albracht
- E.C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands
| |
Collapse
|
25
|
Abstract
Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles in protein synthesis. This review is concerned primarily with the RNAs and proteins that constitute the chloroplast ribosome, the genes that encode these components, and their expression. It begins with an overview of chloroplast genome structure in land plants and algae and then presents a brief comparison of chloroplast and prokaryotic protein-synthesizing systems and a more detailed analysis of chloroplast rRNAs and ribosomal proteins. A description of the synthesis and assembly of chloroplast ribosomes follows. The review concludes with discussion of whether chloroplast protein synthesis is essential for cell survival.
Collapse
Affiliation(s)
- E H Harris
- DCMB Group, Department of Botany, Duke University, Durham, North Carolina 27708-1000
| | | | | |
Collapse
|
26
|
de Jong AM, Kotlyar AB, Albracht SP. Energy-induced structural changes in NADH:Q oxidoreductase of the mitochondrial respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1186:163-71. [PMID: 8043590 DOI: 10.1016/0005-2728(94)90175-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The reaction of coupled submitochondrial particles (SMP) with NADH was studied in the absence and presence of the uncoupler gramicidin, both in pre-steady-state and steady-state experiments. It was shown that the formation of ubisemiquinones associated with NADH:Q oxidoreductase is insensitive to uncouplers. It was found, however, that in the absence of gramicidin the ubisemiquinone showed a noticeably faster relaxation than in the presence of this uncoupler. During steady-state oxidation of NADH by coupled submitochondrial particles, the EPR signal of iron-sulphur cluster 2 of complex I, the cluster that is generally believed to be the electron donor for ubiquinone, showed some remarkable changes. Its gz line seemed to disappear from the spectrum, although the gxy line remained clearly present. Detailed EPR analysis indicated that (a component of) the gz line shifted to higher field. The temperature dependence of the EPR signal of cluster 2 was affected as well. In the presence of uncoupler the EPR properties of cluster 2 were indistinguishable from those in particles that showed no intrinsic coupling. These experiments strongly indicate that the coordination of cluster 2 is different in energized and non-energized SMP. The pre-steady-state reaction between these submitochondrial particles and NADH showed that the uncoupler-sensitive changes in both the ubisemiquinone and cluster 2 became effective between 9 ms and 30 ms. Similar changes were observed during succinate-driven reverse electron transfer. This report shows, for the first time, energy-induced structural changes in NADH:Q oxidoreductase.
Collapse
Affiliation(s)
- A M de Jong
- E.C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
27
|
Bonen L, Williams K, Bird S, Wood C. The NADH dehydrogenase subunit 7 gene is interrupted by four group II introns in the wheat mitochondrial genome. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:81-9. [PMID: 8041365 DOI: 10.1007/bf00280190] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have characterized a wheat mitochondrial gene, designated nad7, capable of encoding a 394-amino acid subunit of the respiratory chain NADH dehydrogenase complex. It contains four introns possessing group II features and their positions differ from those in both the liverwort mitochondrial nad7 pseudogene and the nuclear gene encoding the homologous 49 kDa subunit of complex I in Neurospora. The derived amino acid sequence of the wheat nad7 gene is strongly conserved relative to its nuclear or organellar counterparts in other organisms. C-to-U type RNA editing, which is observed at 32 positions within the coding region of wheat nad7 transcripts, strengthens protein sequence similarity. RNA editing is also predicted to improve base-pairing within the domain V/VI regions of all four introns.
Collapse
Affiliation(s)
- L Bonen
- Department of Biology, University of Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
28
|
Boudreau E, Otis C, Turmel M. Conserved gene clusters in the highly rearranged chloroplast genomes of Chlamydomonas moewusii and Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 1994; 24:585-602. [PMID: 8155879 DOI: 10.1007/bf00023556] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We have extended to about 75 the number of genes mapped on the Chlamydomonas moewusii and Chlamydomonas reinhardtii chloroplast DNAs (cpDNAs) by partial sequencing of the very closely related C. eugametos and C. moewusii cpDNAs and by hybridizations with Chlamydomonas chloroplast gene-specific sequences. Only four of these genes (tscA and three reading frames) have not been identified in any other algal cpDNAs and thus may be specific to Chlamydomonas. Although the C. moewusii and C. reinhardtii cpDNAs differ by complex sequence rearrangements, 38 genes scattered throughout the genome define 12 conserved clusters of closely linked loci. Aside from the rRNA operon, four of these gene clusters share similarity to evolutionarily primitive operons found in other cpDNAs, representing in fact remnants of these operons. Our results thus indicate that most of the ancestral bacterial operons that characterize the chloroplast genome organization of land plants and early-diverging photosynthetic eukaryotes have been disrupted before the emergence of the polyphyletic genus Chlamydomonas. All gene rearrangements between the C. moewusii and C. reinhardtii cpDNAs, with the exception of those accounting for the relocations of atpA, psbI and rbcL, occurred within corresponding regions of the genome. One of these rearrangements seems to have led to disruption of the ancestral region containing rpl23, rpl2, rps19, rpl16, rpl14, rpl5, rps8 and the psaA exon 1. This gene cluster, which bears striking similarity to the Escherichia coli S10 and spc operons, spans a continuous DNA segment in C. reinhardtii, while it maps to two separate fragments in C. moewusii.
Collapse
Affiliation(s)
- E Boudreau
- Département de biochimie, Faculté des sciences et de génie, Université Laval, Québec, Canada
| | | | | |
Collapse
|
29
|
Affiliation(s)
- B H Robinson
- Department of Biochemistry, University of Toronto, Ontario, Canada
| |
Collapse
|
30
|
Albracht SP. Intimate relationships of the large and the small subunits of all nickel hydrogenases with two nuclear-encoded subunits of mitochondrial NADH: ubiquinone oxidoreductase. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1144:221-4. [PMID: 8369340 DOI: 10.1016/0005-2728(93)90176-g] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The sequence pattern CxxCxnGxCxxxGxmGCPP, thus far found in the small subunits from 21 different nickel hydrogenases, appears also to be present in the PSST polypeptide from NADH:ubiquinone oxidoreductase (Complex I) of beef-heart mitochondria. There is only one difference: the first cysteine residue is a leucine in the PSST subunit. The large nickel-binding subunit of nickel hydrogenases shows a surprising homology with the 49 kDa subunit of mitochondrial Complex I.
Collapse
Affiliation(s)
- S P Albracht
- E.C. Slater Institute, BioCentrum, University of Amsterdam, The Netherlands
| |
Collapse
|
31
|
Friedrich T, Weidner U, Nehls U, Fecke W, Schneider R, Weiss H. Attempts to define distinct parts of NADH:ubiquinone oxidoreductase (complex I). J Bioenerg Biomembr 1993; 25:331-7. [PMID: 8226714 DOI: 10.1007/bf00762458] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The NADH:ubiquinone oxidoreductase (complex I) is made up of a peripheral part and a membrane part. The two parts are arranged perpendicular to each other and give the complex an unusual L-shaped structure. The peripheral part protrudes into the matrix space and constitutes the proximal segment of the electron pathway with the NADH-binding site, the FMN and at least three iron-sulfur clusters. The membrane part constitutes the distal segment of the electron pathway with at least one iron-sulfur cluster and the ubiquinone-binding site. Both parts are assembled separately and relationships of the major structural modules of the two parts with different bacterial enzymes suggest, that both parts also emerged independently in evolution. This assumption is further supported by the conserved order of bacterial complex I genes, which correlates with the topological arrangement of the corresponding subunits in the two parts of complex I.
Collapse
Affiliation(s)
- T Friedrich
- Heinrich-Heine-Universität Düsseldorf, Institut für Biochemie, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Sled VD, Friedrich T, Leif H, Weiss H, Meinhardt SW, Fukumori Y, Calhoun MW, Gennis RB, Ohnishi T. Bacterial NADH-quinone oxidoreductases: iron-sulfur clusters and related problems. J Bioenerg Biomembr 1993; 25:347-56. [PMID: 8226716 DOI: 10.1007/bf00762460] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Many bacteria contain proton-translocating membrane-bound NADH-quinone oxidoreductases (NDH-1), which demonstrate significant genetic, spectral, and kinetic similarity with their mitochondrial counterparts. This review is devoted to the comparative aspects of the iron-sulfur cluster composition of NDH-1 from the most well-studied bacterial systems to date.: Paracoccus denitrificans, Rhodobacter sphaeroides, Escherichia coli, and Thermus thermophilus. These bacterial systems provide useful models for the study of coupling Site I and contain all the essential parts of the electron-transfer and proton-translocating machinery of their eukaryotic counterparts.
Collapse
Affiliation(s)
- V D Sled
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia 19104
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Berger S, Ellersiek U, Kinzelt D, Steinmüller K. Immunopurification of a subcomplex of the NAD(P)H-plastoquinone-oxidoreductase from the cyanobacterium Synechocystis sp. PCC6803. FEBS Lett 1993; 326:246-50. [PMID: 8325373 DOI: 10.1016/0014-5793(93)81800-f] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An antibody against the NDH-K subunit of the NAD(P)H-dehydrogenase from the cyanobacterium Synechocystis sp. PCC6803 was used to isolate a subcomplex of the enzyme from Triton X-100 solubilized total membranes by immunoaffinity chromatography. The isolated subcomplex consisted of seven major polypeptides with molecular masses of 43, 27, 24, 21, 18, 14 and 7 kDa. The amino-terminal amino acid sequences of the polypeptides were determined. By comparing the sequences with the amino acid sequences deduced from DNA, three proteins were identified as NDH-H (43 kDa), NDH-K (27 kDa) and NDH-I (24 kDa). A fourth subunit (NDH-J, 21 kDa) was identified by Western blot analysis with an NDH-J antibody.
Collapse
Affiliation(s)
- S Berger
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Germany
| | | | | | | |
Collapse
|
34
|
Schluchter WM, Zhao J, Bryant DA. Isolation and characterization of the ndhF gene of Synechococcus sp. strain PCC 7002 and initial characterization of an interposon mutant. J Bacteriol 1993; 175:3343-52. [PMID: 8501038 PMCID: PMC204731 DOI: 10.1128/jb.175.11.3343-3352.1993] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The ndhF gene of the unicellular marine cyanobacterium Synechococcus sp. strain PCC 7002 was cloned and characterized. NdhF is a subunit of the type 1, multisubunit NADH:plastoquinone oxidoreductase (NADH dehydrogenase). The nucleotide sequence of the gene predicts an extremely hydrophobic protein of 664 amino acids with a calculated mass of 72.9 kDa. The ndhF gene was shown to be single copy and transcribed into a monocistronic mRNA of 2,300 nucleotides. An ndhF null mutation was successfully constructed by interposon mutagenesis, demonstrating that NdhF is not required for cell viability under photoautotrophic growth conditions. The mutant strain exhibited a negligible rate of oxygen uptake in the dark, but its photosynthetic properties (oxygen evolution, chlorophyll/P700 ratio, and chlorophyll/P680 ratio) were generally similar to those of the wild type. Although the ndhF mutant strain grew as rapidly as the wild-type strain at high light intensity, the mutant grew more slowly than the wild type at lower light intensities and did not grow at all under photoheterotrophic conditions. The roles of the NADH:plastoquinone oxidoreductase in photosynthetic and respiratory electron transport are discussed.
Collapse
Affiliation(s)
- W M Schluchter
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | |
Collapse
|
35
|
Yamaguchi M, Hatefi Y. Mitochondrial NADH:ubiquinone oxidoreductase (complex I): proximity of the subunits of the flavoprotein and the iron-sulfur protein subcomplexes. Biochemistry 1993; 32:1935-9. [PMID: 8448151 DOI: 10.1021/bi00059a008] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The proximities of the three subunits (51, 24, and 9 kDa) of the flavoprotein subcomplex (FP) and five subunits (75, 49, 30, 18, and 13) of the iron-sulfur protein subcomplex (IP) of the bovine NADH: ubiquinone oxidoreductase (complex I) were investigated by cross-linking studies. The cross-linking reagents used were disuccinimidyl tartrate and ethylene glycol bis(succinimidyl succinate). The cross-linked products were identified by sodium dodecyl sulfate gel electrophoresis and immunoblotting with antibodies specific for each subunit. Results showed that the three FP subunits are juxtaposed to one another, and only the 51 kDa subunit of FP is in close proximity to only the 75-kDa subunit of IP. The 75-kDa subunit cross-linked to the 30- and the 13-kDa subunits, the 49-kDa subunit cross-linked to the 30-, 18-, and 13-kDa subunits, and the 30-kDa subunit cross-linked to the 18- and the 13-kDa subunits. No cross-linked products of 75+49-, 75+18-, or 18+13-kDa subunits were detected. These results are consistent with the occurrence of potential electron carriers in FP and IP subunits. These electron carriers are FMN and one iron-sulfur cluster in the 51-kDa subunit, one iron-sulfur cluster in the 24-kDa subunit, and apparently two iron-sulfur clusters in the 75-kDa subunit.
Collapse
Affiliation(s)
- M Yamaguchi
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037
| | | |
Collapse
|
36
|
Peterson GC, Souza AE, Parsons M. Characterization of a Trypanosoma brucei nuclear gene encoding a protein homologous to a subunit of bovine NADH:ubiquinone oxidoreductase (complex I). Mol Biochem Parasitol 1993; 58:63-70. [PMID: 8459836 DOI: 10.1016/0166-6851(93)90091-b] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A Trypanosoma brucei gene has been identified that encodes a protein predicted to be a component of the trypanosome homologue of mitochondrial NADH:ubiquinone oxidoreductase (complex I). High homology was found to a 20-kDa component of the iron-sulfur protein fraction of bovine mitochondrial NADH:ubiquinone oxidoreductase and the products of the ndhK locus of Paramecium tetraurelia mitochondria and the NQO6 locus of Paracoccus denitrificans. The homology extends to several other proteins predicted to function as part of electron transport systems, including the psbG/ndhK gene products of chloroplast and cyanobacterial genomes which are thought to be subunits of a NADH:plastoquinone oxidoreductase involved in chlororespiration. The T. brucei ndhK counterpart is nuclearly encoded. An extended amino terminus of the T. brucei ndhK with structural similarity to mitochondrial presequences indicates that its transfer into mitochondria is likely. Stumpy and slender bloodforms and procyclic forms all possess similar levels of ndhK transcripts despite previous reports of stage-regulated expression of complex I-like activity.
Collapse
Affiliation(s)
- G C Peterson
- Seattle Biomedical Research Institute, WA 98109-1651
| | | | | |
Collapse
|
37
|
Yagi T. The bacterial energy-transducing NADH-quinone oxidoreductases. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1141:1-17. [PMID: 8435434 DOI: 10.1016/0005-2728(93)90182-f] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- T Yagi
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
38
|
Fearnley IM, Walker JE. Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1140:105-34. [PMID: 1445936 DOI: 10.1016/0005-2728(92)90001-i] [Citation(s) in RCA: 260] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- I M Fearnley
- M.R.C. Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
39
|
Whelan J, Young S, Day DA. Cloning of ndhK from soybean chloroplasts using antibodies raised to mitochondrial complex I. PLANT MOLECULAR BIOLOGY 1992; 20:887-95. [PMID: 1463827 DOI: 10.1007/bf00027160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
A soybean shoot cDNA expression library was screened with polyclonal antibodies raised against red beet complex I and several clones were identified. One clone, consisting of a 1 kb insert, was fully sequenced. The sequence of 1025 bp was found to contain two extended open reading frames and the proteins encoded were identified as the ndhK and ndhJ products of the chloroplast genome. Nuclear, mitochondrial and chloroplast DNA was isolated and probed with a ndhK-specific probe. The chloroplast DNA contained a single copy of the cloned insert. With nuclear DNA, positively hybridising bands of 1.2, 2.7 and 3.2 kb were observed indicating that at least one gene homologous to ndhK of the chloroplast genome, is also present in the nucleus. The mitochondrial DNA did not hybridise with the ndhK probe. Western analysis of thylakoid proteins with the mitochondrial complex I antibodies revealed several bands. It is suggested that soybean contains two copies of the ndhK gene, one, on the plastid genome, coding for a subunit of a chloroplast NAD(P)H dehydrogenase, and the other, in the nucleus, coding for a subunit of mitochondrial complex I.
Collapse
Affiliation(s)
- J Whelan
- Division of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra
| | | | | |
Collapse
|
40
|
Arizmendi JM, Skehel JM, Runswick MJ, Fearnley IM, Walker JE. Complementary DNA sequences of two 14.5 kDa subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria. Completion of the primary structure of the complex? FEBS Lett 1992; 313:80-4. [PMID: 1426273 DOI: 10.1016/0014-5793(92)81189-s] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The amino acid sequences of two nuclear-encoded subunits of complex I from bovine heart mitochondria have been determined. Both proteins have an apparent molecular weight of 14.5 kDa and their N-alpha-amino groups are acetylated. They are known as subunits B14.5a and B14.5b. Neither protein is evidently related to any known protein and their functions are obscure. A total of 34 nuclear-encoded subunits of bovine complex I have now been sequenced and it is thought that the primary structure of the complex is now complete, although with such a complicated structure it is difficult to be certain that there are no other subunits remaining to be sequenced. Seven additional hydrophobic subunits of the enzyme are encoded in mitochondrial DNA, and therefore bovine heart complex I is an assembly of about 41 different proteins. If it is assumed that there is one copy of each protein in the assembly, these polypeptides contain 7,955 amino acids in their sequences, more than are found in the Escherichia coli ribosome, which contains 7,336 amino acids in its 32 polypeptides.
Collapse
Affiliation(s)
- J M Arizmendi
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | |
Collapse
|
41
|
van Belzen R, de Jong AM, Albracht SP. On the stoichiometry of the iron-sulphur clusters in mitochondrial NADH: ubiquinone oxidoreductase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 209:1019-22. [PMID: 1330559 DOI: 10.1111/j.1432-1033.1992.tb17377.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The concentration of the iron-sulphur (Fe-S) cluster 1b, present in complex I or soluble high-molecular-mass NADH dehydrogenase, was determined using different methods. It was found that direct double integration of the EPR signal at temperatures higher than 40 K, as is commonly used in this field of research, results in a considerable overestimation of the concentration of cluster 1b. It is demonstrated that this is caused by contributions from the relaxation-broadened signals of the Fe-S clusters 2-4 in the enzyme. The correct way for determining the intensity of the EPR signal of cluster 1b is by comparison with a simulated line shape. It is concluded that the concentration of cluster 1b is half that of cluster 2. This corroborates our proposal based on presteady-state kinetic and inhibitor-titration studies [Van Belzen, R., Van Gaalen, M. C. M., Cuypers, P. A. & Albracht S. P. J. (1990) Biochim. Biophys Acta 1017, 152-159] that the minimal functional unit of mitochondrial NADH:ubiquinone oxidoreductase must be a heterodimer.
Collapse
Affiliation(s)
- R van Belzen
- E. C. Slater Institute for Biochemical Research, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
42
|
Walker JE, Arizmendi JM, Dupuis A, Fearnley IM, Finel M, Medd SM, Pilkington SJ, Runswick MJ, Skehel JM. Sequences of 20 subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria. Application of a novel strategy for sequencing proteins using the polymerase chain reaction. J Mol Biol 1992; 226:1051-72. [PMID: 1518044 DOI: 10.1016/0022-2836(92)91052-q] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
NADH:ubiquinone oxidoreductase, the first enzyme in the respiratory electron transport chain of mitochondria, is a membrane-bound multi-subunit assembly, and the bovine heart enzyme is now known to contain about 40 different polypeptides. Seven of them are encoded in the mitochondrial DNA; the remainder are the products of nuclear genes and are imported into the organelle. The primary structures of 12 of the nuclear coded subunits have been described and those of a further 20 are described here. The subunits have been sequenced by following a strategy based on the polymerase chain reaction. This strategy has been tailored from existing methods with the twofold aim of avoiding the use of cDNA libraries, and of obtaining a cDNA sequence rapidly with minimal knowledge of protein sequence, such as can be determined in a single N-terminal sequence experiment on a polypeptide spot on a two-dimensional gel. The utility and speed of this strategy have been demonstrated by sequencing cDNAs encoding 32 nuclear-coded-membrane associated proteins found in bovine heart mitochondria, and the procedures employed are illustrated with reference to the cDNA sequence of the 20 subunits of NADH:ubiquinone oxidoreductase that are presented. Extensive use has also been made of electrospray mass spectrometry to measure molecular masses of the purified subunits. This has corroborated the protein sequences of subunits with unmodified N terminals, and their measured molecular masses agree closely with those calculated from the protein sequences. Nine of the subunits, B8, B9, B12, B13, B14, B15, B17, B18 and B22 have modified alpha-amino groups. The measured molecular masses of subunits B8, B13, B14 and B17 are consistent with the post-translational removal of the initiator methionine and N-acetylation of the adjacent amino acid. The initiator methionine of subunit B18 has been removed and the N-terminal glycine modified by myristoylation. Subunits B9 and B12 appear to have N-terminal and other modifications of a hitherto unknown nature. The sequences of the subunits of bovine complex I provide important clues about the location of iron-sulphur clusters and substrate and cofactor binding sites, and give valuable information about the topology of the complex. No function has been ascribed to many of the subunits, but some of the sequences indicate the presence of hitherto unsuspected biochemical functions. Most notably the identification of an acyl carrier protein in both the bovine and Neurospora crassa complexes provides evidence that part of the complex may play a role in fatty acid biosynthesis in the organelle, possibly in the formation of cardiolipin.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J E Walker
- Medical Research Council Laboratory of Molecular Biology, Cambridge, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The inner membranes of mitochondria contain three multi-subunit enzyme complexes that act successively to transfer electrons from NADH to oxygen, which is reduced to water (Fig. I). The first enzyme in the electron transfer chain, NADH:ubiquinone oxidoreductase (or complex I), is the subject of this review. It removes electrons from NADH and passes them via a series of enzyme-bound redox centres (FMN and Fe-S clusters) to the electron acceptor ubiquinone. For each pair of electrons transferred from NADH to ubiquinone it is usually considered that four protons are removed from the matrix (see section 4.1 for further discussion of this point).
Collapse
Affiliation(s)
- J E Walker
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
44
|
Affiliation(s)
- M W Gray
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|