1
|
Kobayashi S, Kaji A, Kaji H. A novel function for eukaryotic elongation factor 3: Inhibition of stop codon readthrough in yeast. Arch Biochem Biophys 2023; 740:109580. [PMID: 36948349 DOI: 10.1016/j.abb.2023.109580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Eukaryotic elongation factor 3 (eEF3) is one of the essential yeast ribosome-associated ATP-binding cassette type F (ABCF) ATPases. Previously, we found that eEF3 stimulates release of mRNA from puromycin-treated polysomes. In this study, we used a cell-free cricket paralysis virus (CrPV) internal ribosome entry site (IRES)-mediated firefly luciferase bicistronic mRNA translation system with yeast S30 extract. When eEF3 was partially removed from the crude extract, the product from the downstream ORF was increased by the readthrough of a UAA stop codon in the upstream ORF. eEF3 enhanced the release of luciferase from the polysome by eukaryotic release factor (eRF)1 and eRF3. These results suggest that eEF3 is a factor that assists eRFs in performing normal protein synthesis termination in yeast.
Collapse
Affiliation(s)
- Soushi Kobayashi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA; Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| | - Akira Kaji
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| | - Hideko Kaji
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| |
Collapse
|
2
|
Influence of novel readthrough agents on myelin protein zero translation in the peripheral nervous system. Neuropharmacology 2022; 211:109059. [DOI: 10.1016/j.neuropharm.2022.109059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/24/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022]
|
3
|
Karki P, Carney TD, Maracci C, Yatsenko AS, Shcherbata HR, Rodnina MV. Tissue-specific regulation of translational readthrough tunes functions of the traffic jam transcription factor. Nucleic Acids Res 2021; 50:6001-6019. [PMID: 34897510 PMCID: PMC9226519 DOI: 10.1093/nar/gkab1189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Translational readthrough (TR) occurs when the ribosome decodes a stop codon as a sense codon, resulting in two protein isoforms synthesized from the same mRNA. TR has been identified in several eukaryotic organisms; however, its biological significance and mechanism remain unclear. Here, we quantify TR of several candidate genes in Drosophila melanogaster and characterize the regulation of TR in the large Maf transcription factor Traffic jam (Tj). Using CRISPR/Cas9-generated mutant flies, we show that the TR-generated Tj isoform is expressed in a subset of neural cells of the central nervous system and is excluded from the somatic cells of gonads. Control of TR in Tj is critical for preservation of neuronal integrity and maintenance of reproductive health. The tissue-specific distribution of a release factor splice variant, eRF1H, plays a critical role in modulating differential TR of leaky stop codon contexts. Fine-tuning of gene regulatory functions of transcription factors by TR provides a potential mechanism for cell-specific regulation of gene expression.
Collapse
Affiliation(s)
- Prajwal Karki
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Travis D Carney
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Andriy S Yatsenko
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Halyna R Shcherbata
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| |
Collapse
|
4
|
Bartoschek MD, Ugur E, Nguyen TA, Rodschinka G, Wierer M, Lang K, Bultmann S. Identification of permissive amber suppression sites for efficient non-canonical amino acid incorporation in mammalian cells. Nucleic Acids Res 2021; 49:e62. [PMID: 33684219 PMCID: PMC8216290 DOI: 10.1093/nar/gkab132] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
The genetic code of mammalian cells can be expanded to allow the incorporation of non-canonical amino acids (ncAAs) by suppressing in-frame amber stop codons (UAG) with an orthogonal pyrrolysyl-tRNA synthetase (PylRS)/tRNAPylCUA (PylT) pair. However, the feasibility of this approach is substantially hampered by unpredictable variations in incorporation efficiencies at different stop codon positions within target proteins. Here, we apply a proteomics-based approach to quantify ncAA incorporation rates at hundreds of endogenous amber stop codons in mammalian cells. With these data, we compute iPASS (Identification of Permissive Amber Sites for Suppression; available at www.bultmannlab.eu/tools/iPASS), a linear regression model to predict relative ncAA incorporation efficiencies depending on the surrounding sequence context. To verify iPASS, we develop a dual-fluorescence reporter for high-throughput flow-cytometry analysis that reproducibly yields context-specific ncAA incorporation efficiencies. We show that nucleotides up- and downstream of UAG synergistically influence ncAA incorporation efficiency independent of cell line and ncAA identity. Additionally, we demonstrate iPASS-guided optimization of ncAA incorporation rates by synonymous exchange of codons flanking the amber stop codon. This combination of in silico analysis followed by validation in living mammalian cells substantially simplifies identification as well as adaptation of sites within a target protein to confer high ncAA incorporation rates.
Collapse
Affiliation(s)
- Michael D Bartoschek
- Department of Biology II and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Enes Ugur
- Department of Biology II and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany.,Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Tuan-Anh Nguyen
- Department of Chemistry, Synthetic Biochemistry, Technical University of Munich, Garching 85748, Germany
| | - Geraldine Rodschinka
- Department of Biology II and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Kathrin Lang
- Department of Chemistry, Synthetic Biochemistry, Technical University of Munich, Garching 85748, Germany
| | - Sebastian Bultmann
- Department of Biology II and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| |
Collapse
|
5
|
Otani Y, Ohno N, Cui J, Yamaguchi Y, Baba H. Upregulation of large myelin protein zero leads to Charcot-Marie-Tooth disease-like neuropathy in mice. Commun Biol 2020; 3:121. [PMID: 32170207 PMCID: PMC7070019 DOI: 10.1038/s42003-020-0854-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 02/24/2020] [Indexed: 01/01/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a hereditary neuropathy mainly caused by gene mutation of peripheral myelin proteins including myelin protein zero (P0, MPZ). Large myelin protein zero (L-MPZ) is an isoform of P0 that contains an extended polypeptide synthesized by translational readthrough at the C-terminus in tetrapods, including humans. The physiological role of L-MPZ and consequences of an altered L-MPZ/P0 ratio in peripheral myelin are not known. To clarify this, we used genome editing to generate a mouse line (L-MPZ mice) that produced L-MPZ instead of P0. Motor tests and electrophysiological, immunohistological, and electron microscopy analyses show that homozygous L-MPZ mice exhibit CMT-like phenotypes including thin and/or loose myelin, increased small-caliber axons, and disorganized axo-glial interactions. Heterozygous mice show a milder phenotype. These results highlight the importance of an appropriate L-MPZ/P0 ratio and show that aberrant readthrough of a myelin protein causes neuropathy.
Collapse
Affiliation(s)
- Yoshinori Otani
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan
| | - Jingjing Cui
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Yoshihide Yamaguchi
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan.
| | - Hiroko Baba
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
6
|
Michorowska S, Giebułtowicz J, Wolinowska R, Konopka A, Wilkaniec A, Krajewski P, Bulska E, Wroczyński P. Detection of ALDH3B2 in Human Placenta. Int J Mol Sci 2019; 20:E6292. [PMID: 31847104 PMCID: PMC6941052 DOI: 10.3390/ijms20246292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 01/28/2023] Open
Abstract
Aldehyde dehydrogenase 3B2 (ALDH3B2) gene contains a premature termination codon, which can be skipped or suppressed resulting in full-length protein expression. Alternatively, the longest putative open reading frame starting with the second in-frame start codon would encode short isoform. No unequivocal evidence of ALDH3B2 expression in healthy human tissues is available. The aim of this study was to confirm its expression in human placenta characterized by the highest ALDH3B2 mRNA abundance. ALDH3B2 DNA and mRNA were sequenced. The expression was investigated using western blot. The identity of the protein was confirmed using mass spectrometry (MS). The predicted tertiary and quaternary structures, subcellular localization, and phosphorylation sites were assessed using bioinformatic analyses. All DNA and mRNA isolates contained the premature stop codon. In western blot analyses, bands corresponding to the mass of full-length protein were detected. MS analysis led to the identification of two unique peptides, one of which is encoded by the nucleotide sequence located upstream the second start codon. Bioinformatic analyses suggest cytoplasmic localization and several phosphorylation sites. Despite premature stop codon in DNA and mRNA sequences, full-length ALDH3B2 was found. It can be formed as a result of premature stop codon readthrough, complex phenomenon enabling stop codon circumvention.
Collapse
Affiliation(s)
- Sylwia Michorowska
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.G.); (P.W.)
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.G.); (P.W.)
| | - Renata Wolinowska
- Department of Pharmaceutical Microbiology, Centre for Preclinical Research and Technology (CePT), Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Anna Konopka
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (E.B.)
| | - Anna Wilkaniec
- Department of Cellular Signaling, Mossakowski Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Paweł Krajewski
- Forensic Medicine Department, First Faculty of Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Ewa Bulska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (E.B.)
| | - Piotr Wroczyński
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.G.); (P.W.)
| |
Collapse
|
7
|
Gao F, Liu X, Du Z, Hou H, Wang X, Wang F, Yang J. Bayesian phylodynamic analysis reveals the dispersal patterns of tobacco mosaic virus in China. Virology 2019; 528:110-117. [PMID: 30594790 DOI: 10.1016/j.virol.2018.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/19/2018] [Accepted: 12/01/2018] [Indexed: 01/18/2023]
Abstract
Tobacco mosaic virus (TMV) is widespread in China and causes considerable economic losses to tobacco production. The molecular epidemiology of this virus is, however, poorly understood. In this study, we sequenced the genomes of 51 TMV isolates from five tobacco-producing regions in China and investigated the dispersal patterns of this virus. Our phylogenetic analysis showed that TMV might have been introduced to China in the early 1900s, probably first to southwest China. However, TMV then moved to the north of the country, where it expanded. The north became the main seeding region for the subsequent movements of the virus within China. The north-to-south movement of TMV coincides with a shift of major tobacco-producing areas from north to south in this century, suggesting a link between human activities and the dispersal of TMV in China.
Collapse
Affiliation(s)
- Fangluan Gao
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Xiaowei Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Qingdao 266101, Shandong, PR China
| | - Zhenguo Du
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China
| | - Han Hou
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Qingdao 266101, Shandong, PR China
| | - Xiaoyan Wang
- Foxcroft School, Middleburg, VA 20118, United States
| | - Fenglong Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Qingdao 266101, Shandong, PR China.
| | - Jinguang Yang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Qingdao 266101, Shandong, PR China.
| |
Collapse
|
8
|
Phylogenetically Conserved Sequences Around Myelin P0 Stop Codon are Essential for Translational Readthrough to Produce L-MPZ. Neurochem Res 2017; 43:227-237. [PMID: 29081003 DOI: 10.1007/s11064-017-2423-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/14/2017] [Accepted: 10/19/2017] [Indexed: 02/02/2023]
Abstract
Myelin protein zero (P0, MPZ) is the main cell adhesion molecule in peripheral myelin, the sequence of which is evolutionarily highly conserved. Large myelin protein zero (L-MPZ) is a novel translational readthrough molecule in mammals in a physiological status and is encoded by the P0 mRNA with an extra domain. The sequence similarities in the L-MPZ-specific region are found in humans and frogs but not in fish P0 cDNA. Actual synthesis of L-MPZ has been detected in rat and mouse sciatic nerve but not yet evaluated in frogs and humans. The production mechanism and physiological functions of L-MPZ remain unknown. Additionally, the sequence context around the canonical stop codon is significant for readthrough in viruses and yeast, but the correlation between the sequence around P0 stop codon and L-MPZ synthesis is unclear. Here, we focused on the phylogenetic pathways in L-MPZ synthesis. We have shown that L-MPZ is widely produced from frogs to humans using western blotting against L-MPZ. Mutation analysis of the sequence around the stop codon for L-MPZ synthesis using a mammalian in vitro transcription/translation system revealed that the evolutionarily conserved sequence around P0 stop codon is susceptible to readthrough and is similar to the consensus motif in viruses and yeast UAG stop codon type molecules. Our results demonstrate that the phylogenetically conserved sequence around the canonical P0 stop codon is essential for L-MPZ synthesis, suggesting that phylogenetic emergence of L-MPZ in amphibians may be related to particular distribution and/or function in the PNS myelin.
Collapse
|
9
|
Yamaguchi Y, Hayashi A, Campagnoni CW, Kimura A, Inuzuka T, Baba H. L-MPZ, a novel isoform of myelin P0, is produced by stop codon readthrough. J Biol Chem 2012; 287:17765-17776. [PMID: 22457349 DOI: 10.1074/jbc.m111.314468] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Myelin protein zero (P0 or MPZ) is a major myelin protein (∼30 kDa) expressed in the peripheral nervous system (PNS) in terrestrial vertebrates. Several groups have detected a P0-related 36-kDa (or 35-kDa) protein that is expressed in the PNS as an antigen for the serum IgG of patients with neuropathy. The molecular structure and function of this 36-kDa protein are, however, still unknown. We hypothesized that the 36-kDa protein may be derived from P0 mRNA by stop codon readthrough. We found a highly conserved region after the regular stop codon in predicted sequences from the 3'-UTR of P0 in higher animals. MS of the 36-kDa protein revealed that both P0 peptides and peptides deduced from the P0 3'-UTR sequence were found among the tryptic fragments. In transfected cells and in an in vitro transcription/translation system, the 36-kDa molecule was also produced from the identical mRNA that produced P0. We designated this 36-kDa molecule as large myelin protein zero (L-MPZ), a novel isoform of P0 that contains an additional domain at the C terminus. In the PNS, L-MPZ was localized in compact myelin. In transfected cells, just like P0, L-MPZ was localized at cell-cell adhesion sites in the plasma membrane. These results suggest that L-MPZ produced by the stop codon readthrough mechanism is potentially involved in myelination. Since this is the first finding of stop codon readthrough in a common mammalian protein, detailed analysis of L-MPZ expression will help to understand the mechanism of stop codon readthrough in mammals.
Collapse
Affiliation(s)
- Yoshihide Yamaguchi
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| | - Akiko Hayashi
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Celia W Campagnoni
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, California 90095
| | - Akio Kimura
- Department of Neurology and Geriatrics, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
| | - Takashi Inuzuka
- Department of Neurology and Geriatrics, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
| | - Hiroko Baba
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
10
|
Shi BJ, Palukaitis P. The N-terminal 12 amino acids of tomato aspermy virus 2b protein function in infection and recombination. J Gen Virol 2011; 92:2706-2710. [PMID: 21880843 DOI: 10.1099/vir.0.035071-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The roles for various regions of the 2b protein in infection, hypervirulence and recombination were examined by introducing stop codons in a chimeric virus containing RNA 1 from the cucumber mosaic virus (CMV strain Q), RNA 3 from the tomato aspermy virus (TAV) and RNA 2 of CMV with a 2b gene from TAV. Chimeric virus expressing the intact 2b protein induced severe symptoms in inoculated Nicotiana clevelandii and Nicotiana glutinosa and facilitated CMV-TAV recombination, while chimeric viruses not expressing 2b protein did not infect plants systemically. Chimeric viruses expressing either the N-terminal 43 or 12 aa of the 2b protein infected both plant species systemically and facilitated CMV-TAV recombination, but induced mild symptoms and no symptoms in the infected plants, respectively. These data suggest that oligopeptides can have important functions in the biology of viruses and prompt a re-examination of existing small ORFs in sequenced virus genomes.
Collapse
Affiliation(s)
- Bu-Jun Shi
- Australian Centre for Plant Functional Genomics, and School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia
| | | |
Collapse
|
11
|
Abstract
Regulation of protein synthesis by viruses occurs at all levels of translation. Even prior to protein synthesis itself, the accessibility of the various open reading frames contained in the viral genome is precisely controlled. Eukaryotic viruses resort to a vast array of strategies to divert the translation machinery in their favor, in particular, at initiation of translation. These strategies are not only designed to circumvent strategies common to cell protein synthesis in eukaryotes, but as revealed more recently, they also aim at modifying or damaging cell factors, the virus having the capacity to multiply in the absence of these factors. In addition to unraveling mechanisms that may constitute new targets in view of controlling virus diseases, viruses constitute incomparably useful tools to gain in-depth knowledge on a multitude of cell pathways.
Collapse
|
12
|
von der Haar T, Tuite MF. Regulated translational bypass of stop codons in yeast. Trends Microbiol 2006; 15:78-86. [PMID: 17187982 DOI: 10.1016/j.tim.2006.12.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/13/2006] [Accepted: 12/07/2006] [Indexed: 10/23/2022]
Abstract
Stop codons are used to signal the ribosome to terminate the decoding of an mRNA template. Recent studies on translation termination in the yeast Saccharomyces cerevisiae have not only enabled the identification of the key components of the termination machinery, but have also revealed several regulatory mechanisms that might enable the controlled synthesis of C-terminally extended polypeptides via stop-codon readthrough. These include both genetic and epigenetic mechanisms. Rather than being a translation 'error', stop-codon readthrough can have important effects on other cellular processes such as mRNA degradation and, in some cases, can confer a beneficial phenotype to the cell.
Collapse
Affiliation(s)
- Tobias von der Haar
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
| | | |
Collapse
|
13
|
Harrell L, Melcher U, Atkins JF. Predominance of six different hexanucleotide recoding signals 3' of read-through stop codons. Nucleic Acids Res 2002; 30:2011-7. [PMID: 11972340 PMCID: PMC113845 DOI: 10.1093/nar/30.9.2011] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Redefinition of UAG, UAA and UGA to specify a standard amino acid occurs in response to recoding signals present in a minority of mRNAs. This 'read-through' is in competition with termination and is utilized for gene expression. One of the recoding signals known to stimulate read-through is a hexanucleotide sequence of the form CARYYA 3' adjacent to the stop codon. The present work finds that of the 91 unique viral sequences annotated as read-through, 90% had one of six of the 64 possible codons immediately 3' of the read-through stop codon. The relative efficiency of these read-through contexts in mammalian tissue culture cells has been determined using a dual luciferase fusion reporter. The relative importance of the identity of several individual nucleotides in the different hexanucleotides is complex.
Collapse
Affiliation(s)
- Lance Harrell
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
14
|
Beier H, Grimm M. Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res 2001; 29:4767-82. [PMID: 11726686 PMCID: PMC96686 DOI: 10.1093/nar/29.23.4767] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Translational stop codon readthrough provides a regulatory mechanism of gene expression that is extensively utilised by positive-sense ssRNA viruses. The misreading of termination codons is achieved by a variety of naturally occurring suppressor tRNAs whose structure and function is the subject of this survey. All of the nonsense suppressors characterised to date (with the exception of selenocysteine tRNA) are normal cellular tRNAs that are primarily needed for reading their cognate sense codons. As a consequence, recognition of stop codons by natural suppressor tRNAs necessitates unconventional base pairings in anticodon-codon interactions. A number of intrinsic features of the suppressor tRNA contributes to the ability to read non-cognate codons. Apart from anticodon-codon affinity, the extent of base modifications within or 3' of the anticodon may up- or down-regulate the efficiency of suppression. In order to out-compete the polypeptide chain release factor an absolute prerequisite for the action of natural suppressor tRNAs is a suitable nucleotide context, preferentially at the 3' side of the suppressed stop codon. Three major types of viral readthrough sites, based on similar sequences neighbouring the leaky stop codon, can be defined. It is discussed that not only RNA viruses, but also the eukaryotic host organism might gain some profit from cellular suppressor tRNAs.
Collapse
Affiliation(s)
- H Beier
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Am Hubland, D-97074 Würzburg, Germany.
| | | |
Collapse
|
15
|
Cassan M, Rousset JP. UAG readthrough in mammalian cells: effect of upstream and downstream stop codon contexts reveal different signals. BMC Mol Biol 2001; 2:3. [PMID: 11242562 PMCID: PMC29092 DOI: 10.1186/1471-2199-2-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2000] [Accepted: 02/27/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Translation termination is mediated through an interaction between the release factors eRF1 and eRF3 and the stop codon within its nucleotide context. Although it is well known that the nucleotide contexts both upstream and downstream of the stop codon, can modulate readthrough, little is known about the mechanisms involved. RESULTS We have performed an in vivo analysis of translational readthrough in mouse cells in culture using a reporter system that allows the measurement of readthrough levels as low as 10(-4). We first quantified readthrough frequencies obtained with constructs carrying different codons (two Gln, two His and four Gly) immediately upstream of the stop codon. There was no effect of amino acid identity or codon frequency. However, an adenine in the -1 position was always associated with the highest readthrough levels while an uracil was always associated with the lowest readthrough levels. This could be due to an effect mediated either by the nucleotide itself or by the P-site tRNA. We then examined the importance of the downstream context using eight other constructs. No direct correlation between the +6 nucleotide and readthrough efficiency was observed. CONCLUSIONS We conclude that, in mouse cells, the upstream and downstream stop codon contexts affect readthrough via different mechanisms, suggesting that complex interactions take place between the mRNA and the various components of the translation termination machinery. Comparison of our results with those previously obtained in plant cells and in yeast, strongly suggests that the mechanisms involved in stop codon recognition are conserved among eukaryotes.
Collapse
Affiliation(s)
- Michel Cassan
- Centre de Génétique Moléculaire, Bâtiment 26, Avenue de la Terrasse, Gif sur Yvette, France
| | - Jean-Pierre Rousset
- Institut de Génétique et Microbiologie, Bâtiment 400, Université Paris-Sud, France
| |
Collapse
|
16
|
Grimm M, Brünen-Nieweler C, Junker V, Heckmann K, Beier H. The hypotrichous ciliate Euplotes octocarinatus has only one type of tRNACys with GCA anticodon encoded on a single macronuclear DNA molecule. Nucleic Acids Res 1998; 26:4557-65. [PMID: 9753721 PMCID: PMC147889 DOI: 10.1093/nar/26.20.4557] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Deviations from the universal genetic code have evolved independently several times in ciliated protozoa. Thus, in some species UAA and UAG are no longer used as termination codons, but are read as glutamine, whereas in the genus Euplotes , UGA is translated as cysteine. We have investigated the nature of the tRNACys isoacceptor responsible for decoding UGA in Euplotes cells. Southern hybridization analyses indicated that a single DNA molecule of 630 bp encoding tRNACys exists in the macronucleus of Euplotes octocarinatus . Cloning and sequencing of this fragment revealed that it contains only one copy of a tRNACys gene, which codes for a normal tRNACys with GCA anticodon. This is the first report of the characterization of a tRNA gene in any hypotrichous ciliate. It contains putative signals for initiation and termination of transcription by RNA polymerase III and can be transcribed efficiently in vitro in HeLa cell nuclear extract. Intensive studies on the DNA and tRNA level involving PCR analyses have not disclosed the existence of any tRNA Cys isoacceptor with UCA or ICA anticodons. Translation of the UGA codon by tRNA sub GCA sup Cys necessitates a G:A mispairing in the first anticodon position. We discuss a number of aspects which might contribute to the finding that a near-cognate tRNA isoacceptor efficiently translates the UGA stop codon.
Collapse
MESH Headings
- Animals
- Anticodon/genetics
- Base Sequence
- Blotting, Southern
- Cell Nucleus/genetics
- Codon, Terminator
- DNA, Protozoan/genetics
- Escherichia coli/genetics
- Euplotes/genetics
- Genes, Protozoan
- Genetic Code
- Genomic Library
- HeLa Cells
- Humans
- Molecular Sequence Data
- RNA Polymerase III/metabolism
- RNA, Protozoan/genetics
- RNA, Transfer, Cys/genetics
- RNA, Transfer, Cys/isolation & purification
- Restriction Mapping
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- M Grimm
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | |
Collapse
|
17
|
Baum M, Beier H. Wheat cytoplasmic arginine tRNA isoacceptor with a U*CG anticodon is an efficient UGA suppressor in vitro. Nucleic Acids Res 1998; 26:1390-5. [PMID: 9490782 PMCID: PMC147420 DOI: 10.1093/nar/26.6.1390] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many RNA viruses express part of their genomic information by read-through over internal termination codons. We have recently characterized tobacco cytoplasmic (cyt) and chloroplast (chl) tRNACmCATrp and tRNAGCACys as natural suppressor tRNAs that are able to read the leaky UGA codon in RNA-1 of tobacco rattle virus, albeit with different efficiencies. Here we have identified a third natural UGA suppressor in plants. We have purified and sequenced four cyt tRNAArg isoacceptors with ICG, CCG, U*CG and CCU anticodons from wheat germ. With the exception of tRNAICGArg, these are the first sequences of plant tRNAsArg. In order to study the potential suppressor activity of wheat tRNAsArg we have used in vitro synthesized mRNA transcripts in which different viral read-through regions had been placed. In vitro translation was carried out in a homologous wheat germ extract. We found that tRNAU*CGArg is an efficient UGA suppressor in vitro, whereas the other three tRNAArg isoacceptors exhibit no or very low suppressor activity. Interaction of tRNAU*CGArg with the UGA codon requires a G:U base pair at the third anticodon position. This is the first time that an arginine-accepting tRNA has been characterized as a natural UGA suppressor. A remarkable feature of cyt tRNAU*CGArg is its ability to misread the UGA at the end of the coat protein cistron in RNA-1 of pea enation mosaic virus, which is not accomplished by cyt tRNACmCATrp or cyt tRNAGCACys, due to an unfavourable codon context.
Collapse
MESH Headings
- Anticodon/genetics
- Base Sequence
- Codon, Terminator/genetics
- Cytoplasm/metabolism
- DNA, Plant/genetics
- Molecular Sequence Data
- Mosaic Viruses/genetics
- Mosaic Viruses/metabolism
- Nucleic Acid Conformation
- Pisum sativum/virology
- Plant Viruses/genetics
- Plant Viruses/metabolism
- Plants, Toxic
- Protein Biosynthesis
- RNA Viruses/genetics
- RNA Viruses/metabolism
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Transfer, Arg/chemistry
- RNA, Transfer, Arg/genetics
- RNA, Viral/genetics
- Suppression, Genetic
- Nicotiana/virology
- Triticum/genetics
- Triticum/metabolism
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
Collapse
Affiliation(s)
- M Baum
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Am Hubland, D-97074 Würzburg, Germany.
| | | |
Collapse
|
18
|
Drugeon G, Jean-Jean O, Frolova L, Le Goff X, Philippe M, Kisselev L, Haenni AL. Eukaryotic release factor 1 (eRF1) abolishes readthrough and competes with suppressor tRNAs at all three termination codons in messenger RNA. Nucleic Acids Res 1997; 25:2254-8. [PMID: 9171074 PMCID: PMC146740 DOI: 10.1093/nar/25.12.2254] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It is known from experiments with bacteria and eukaryotic viruses that readthrough of termination codons located within the open reading frame (ORF) of mRNAs depends on the availability of suppressor tRNA(s) and the efficiency of termination in cells. Consequently, the yield of readthrough products can be used as a measure of the activity of polypeptide chain release factor(s) (RF), key components of the translation termination machinery. Readthrough of the UAG codon located at the end of the ORF encoding the coat protein of beet necrotic yellow vein furovirus is required for virus replication. Constructs harbouring this suppressible UAG codon and derivatives containing a UGA or UAA codon in place of the UAG codon have been used in translation experiments in vitro in the absence or presence of human suppressor tRNAs. Readthrough can be virtually abolished by addition of bacterially-expressed eukaryotic RF1 (eRF1). Thus, eRF1 is functional towards all three termination codons located in a natural mRNA and efficiently competes in vitro with endogenous and exogenous suppressor tRNA(s) at the ribosomal A site. These results are consistent with a crucial role of eRF1 in translation termination and forms the essence of an in vitro assay for RF activity based on the abolishment of readthrough by eRF1.
Collapse
Affiliation(s)
- G Drugeon
- Institut Jacques Monod, 2 Place Jussieu-Tour 43, 75251 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Translation processes in plants are very similar to those in other eukaryotic organisms and can in general be explained with the scanning model. Particularly among plant viruses, unconventional mRNAs are frequent, which use modulated translation processes for their expression: leaky scanning, translational stop codon readthrough or frameshifting, and transactivation by virus-encoded proteins are used to translate polycistronic mRNAs; leader and trailer sequences confer (cap-independent) efficient ribosome binding, usually in an end-dependent mechanism, but true internal ribosome entry may occur as well; in a ribosome shunt, sequences within an RNA can be bypassed by scanning ribosomes. Translation in plant cells is regulated under conditions of stress and during development, but the underlying molecular mechanisms have not yet been determined. Only a small number of plant mRNAs, whose structure suggests that they might require some unusual translation mechanisms, have been described.
Collapse
Affiliation(s)
- J Fütterer
- Institute of Plant Sciences, ETHZ, Zürich, Switzerland
| | | |
Collapse
|
20
|
Maia IG, Séron K, Haenni AL, Bernardi F. Gene expression from viral RNA genomes. PLANT MOLECULAR BIOLOGY 1996; 32:367-391. [PMID: 8980488 DOI: 10.1007/bf00039391] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This review is centered on the major strategies used by plant RNA viruses to produce the proteins required for virus multiplication. The strategies at the level of transcription presented here are synthesis of mRNA or subgenomic RNAs from viral RNA templates, and 'cap-snatching'. At the level of translation, several strategies have been evolved by viruses at the steps of initiation, elongation and termination. At the initiation step, the classical scanning mode is the most frequent strategy employed by viruses; however in a vast number of cases, leaky scanning of the initiation complex allows expression of more than one protein from the same RNA sequence. During elongation, frameshift allows the formation of two proteins differing in their carboxy terminus. At the termination step, suppression of termination produces a protein with an elongated carboxy terminus. The last strategy that will be described is co- and/or post-translational cleavage of a polyprotein precursor by virally encoded proteinases. Most (+)-stranded RNA viruses utilize a combination of various strategies.
Collapse
Affiliation(s)
- I G Maia
- Institut Jacques Monod, Paris, France
| | | | | | | |
Collapse
|
21
|
Urban C, Zerfass K, Fingerhut C, Beier H. UGA suppression by tRNACmCATrp occurs in diverse virus RNAs due to a limited influence of the codon context. Nucleic Acids Res 1996; 24:3424-30. [PMID: 8811098 PMCID: PMC146097 DOI: 10.1093/nar/24.17.3424] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have recently identified chloroplast and cytoplasmic tRNACmCATrp as the first natural UGA suppressor tRNAs in plants. The interaction of these tRNAs with UGA involves a Cm: A mismatch at the first anticodon position. We show here that tRNACmCATrp is incapable of misreading UAA and UAG codons in vitro, implying that unconventional base pairs are not tolerated in the middle anticodon position. Furthermore, we demonstrate that the ability of tRNACmCATrp to promote UGA read-through depends on a quite simple codon context. Part of the sequence surrounding the leaky UGA stop codon in tobacco rattle virus RNA-1 was subcloned into a zein reporter gene and read-through efficiency was measured by translation of RNA transcripts in wheat germ extract. A number of mutations in the codons adjacent to the UGA were introduced by site-directed mutagenesis. It was found that single nucleotide exchanges at either side of the UGA had little effect on read-through efficiency. A pronounced influence on suppression by tRNACmCATrp was seen only if 2 or 3 nt at the 3'-side of the UGA codon had been simultaneously replaced. As a consequence of the flexible codon context accepted by tRNACmCATrp, this tRNA is able to misread the UGA in a number of plant and animal viral RNAs that use translational read-through for expression of some of their genes.
Collapse
Affiliation(s)
- C Urban
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, Germany
| | | | | | | |
Collapse
|
22
|
Brown CM, Dinesh-Kumar SP, Miller WA. Local and distant sequences are required for efficient readthrough of the barley yellow dwarf virus PAV coat protein gene stop codon. J Virol 1996; 70:5884-92. [PMID: 8709208 PMCID: PMC190606 DOI: 10.1128/jvi.70.9.5884-5892.1996] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Many viruses use stop codon readthrough as a strategy to produce extended coat or replicase proteins. The stop codon of the barley yellow dwarf virus (PAV serotype) coat protein gene is read through at a low rate. This produces an extended polypeptide which becomes part of the virion. We have analyzed the cis-acting sequences in the barley yellow dwarf virus PAV genome required for this programmed readthrough in vitro in wheat germ extracts and reticulocyte lysates and in vivo in oat protoplasts. Two regions 3' to the stop codon were required. Deletion of sections containing the first 5 of the 16 CCN NNN repeats located 3' of the stop codon greatly reduced readthrough in vitro and in vivo. Surprisingly, readthrough also required a second, more distal element that is located 697 to 758 bases 3' of the stop codon within the readthrough open reading frame. This element also functioned in vivo in oat protoplasts when placed more than 2 kb from the coat protein gene stop in the untranslated region following a GUS reporter gene. This is the first report of a long-range readthrough signal in viruses.
Collapse
Affiliation(s)
- C M Brown
- Department of Plant Pathology, Iowa State University, Ames 50011, USA
| | | | | |
Collapse
|
23
|
Abstract
We have isolated and sequenced chloroplast (chl) and cytoplasmic (cyt) cysteine tRNAs from Nicotiana rustica. Both tRNAs carry a GCA anticodon but beyond that differ considerably in their nucleotide sequences. One obvious distinction resides in the presence of N6-isopentenyladenosine (i6A) and 1-methylguanosine (m1G) at position 37 in chl and cyt tRNA(Cys) respectively. In order to study the potential suppressor activity of tRNAs(Cys) we used in vitro synthesized zein mRNA transcripts in which an internal UGA stop codon had been placed in either the tobacco rattle virus (TRV)- or tobacco mosaic virus (TMV)-specific codon context. In vitro translation was carried out in a messenger- and tRNA-dependent wheat germ extract. Both tRNA(Cys) isoacceptors stimulate read-through over the UGA stop codon, however, chl tRNA(GCA)Cys is more efficient than the cytoplasmic counterpart. The UGA in the two viral codon contexts is suppressed to about the same extent by either of the two tRNAs(Cys), whereas UGA in the beta-globin context is not recognized at all. The interaction of tRNA(GCA)Cys with UGA requires an unconventional G:A base pair in the wobble position, as postulated earlier for plant tRNA(G psi A)Tyr misreading the UAA stop codon. This is the first case that a cysteine-accepting tRNA has been characterized as a natural UGA suppressor.
Collapse
MESH Headings
- Amino Acid Sequence
- Anticodon
- Base Composition
- Base Sequence
- Chloroplasts/metabolism
- Codon/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- Oligodeoxyribonucleotides
- Plant Viruses/genetics
- Plants, Toxic
- RNA, Messenger/biosynthesis
- RNA, Plant/biosynthesis
- RNA, Plant/chemistry
- RNA, Plant/metabolism
- RNA, Transfer, Cys/biosynthesis
- RNA, Transfer, Cys/chemistry
- RNA, Transfer, Cys/metabolism
- Suppression, Genetic
- Nicotiana/metabolism
- Tobacco Mosaic Virus/genetics
- Transcription, Genetic
- Zein/biosynthesis
Collapse
Affiliation(s)
- C Urban
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, Germany
| | | |
Collapse
|
24
|
Kujawa AB, Drugeon G, Hulanicka D, Haenni AL. Structural requirements for efficient translational frameshifting in the synthesis of the putative viral RNA-dependent RNA polymerase of potato leafroll virus. Nucleic Acids Res 1993; 21:2165-71. [PMID: 8502558 PMCID: PMC309480 DOI: 10.1093/nar/21.9.2165] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The putative RNA-dependent RNA polymerase of potato leafroll luteovirus (PLRV) is expressed by -1 ribosomal frameshifting in the region where the open reading frames (ORF) of proteins 2a and 2b overlap. The signal responsible for efficient frameshift is composed of the slippery site UUUAAAU followed by a sequence that has the potential to adopt two alternative folding patterns, either a structure involving a pseudoknot, or a simple stem-loop structure. To investigate the structure requirements for efficient frameshifting, mutants in the stem-loop or in the potential pseudoknot regions of a Polish isolate of PLRV (PLRV-P) have been analyzed. Mutations that are located in the second stem (S2) of the potential pseudoknot structure, but are located in unpaired regions of the alternative stem-loop structure, reduce frameshift efficiency. Deletion of the 3' end sequence of the alternative stem-loop structure does not reduce frameshift efficiency. Our results confirm that -1 frameshift in the overlap region depends on the slippery site and on the downstream positioned sequence, and propose that in PLRV-P a pseudoknot is required for efficient frameshifting. These results are in agreement with those recently published for the closely related beet western yellows luteovirus (BWYV).
Collapse
|