1
|
Hernandez EP, Kusakisako K, Talactac MR, Galay RL, Hatta T, Fujisaki K, Tsuji N, Tanaka T. Glutathione S-transferases play a role in the detoxification of flumethrin and chlorpyrifos in Haemaphysalis longicornis. Parasit Vectors 2018; 11:460. [PMID: 30092823 PMCID: PMC6085608 DOI: 10.1186/s13071-018-3044-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/31/2018] [Indexed: 01/26/2023] Open
Abstract
Background Haemaphysalis longicornis is a tick of importance to health, as it serves as a vector of several pathogens, including Theileria orientalis, Babesia ovata, Rickettsia japonica and the severe fever with thrombocytopenia syndrome virus (SFTSV). Presently, the major method of control for this tick is the use of chemical acaricides. The glutathione S-transferase (GST) system is one mechanism through which the tick metabolizes these acaricides. Two GSTs from H. longicornis (HlGST and HlGST2) have been previously identified. Results Enzyme kinetic studies were performed to determine the interaction of acaricides with recombinant H. longicornis GSTs. Recombinant HlGST activity was inhibited by flumethrin and cypermethrin, while recombinant HlGST2 activity was inhibited by chlorpyrifos and cypermethrin. Using real-time RT-PCR, the upregulation of the HlGST gene was observed upon exposure to sublethal doses of flumethrin, while the HlGST2 gene was upregulated when exposed to sublethal doses of chlorpyrifos. Sex and strain dependencies in the induction of GST gene expression by flumethrin were also observed. Knockdown of the HlGST gene resulted in the increased susceptibility of larvae and adult male ticks to sublethal doses of flumethrin and the susceptibility of larvae against sublethal doses of chlorpyrifos was increased upon knockdown of HlGST2. Conclusions HlGST could be vital for the metabolism of flumethrin in larvae and adult male ticks, while HlGST2 is important in the detoxification of chlorpyrifos in larval ticks. Electronic supplementary material The online version of this article (10.1186/s13071-018-3044-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emmanuel Pacia Hernandez
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan.,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan
| | - Kodai Kusakisako
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan.,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan
| | - Melbourne Rio Talactac
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan.,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.,Department of Clinical and Population Health, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, 4122, Cavite, Philippines
| | - Remil Linggatong Galay
- Department of Veterinary Paraclinical Sciences, University of the Philippines Los Baños, College, 3004, Laguna, Philippines
| | - Takeshi Hatta
- Department of Parasitology, Kitasato University School of Medicine, Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kozo Fujisaki
- National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Naotoshi Tsuji
- Department of Parasitology, Kitasato University School of Medicine, Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan. .,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
2
|
Coecke S, Rogiers V, Bayliss M, Castell J, Doehmer J, Fabre G, Fry J, Kern A, Westmoreland C. The Use of Long-term Hepatocyte Cultures for Detecting Induction of Drug Metabolising Enzymes: The Current Status. Altern Lab Anim 2014; 27:579-638. [PMID: 25487865 DOI: 10.1177/026119299902700408] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this report, metabolically competent in vitro systems have been reviewed, in the context of drug metabolising enzyme induction. Based on the experience of the scientists involved, a thorough survey of the literature on metabolically competent long-term culture models was performed. Following this, a prevalidation proposal for the use of the collagen gel sandwich hepatocyte culture system for drug metabolising enzyme induction was designed, focusing on the induction of the cytochrome P450 enzymes as the principal enzymes of interest. The ultimate goal of this prevalidation proposal is to provide industry and academia with a metabolically competent in vitro alternative for long-term studies. In an initial phase, the prevalidation study will be limited to the investigation of induction. However, proposals for other long-term applications of these systems should be forwarded to the European Centre for the Validation of Alternative Methods for consideration. The prevalidation proposal deals with several issues, including: a) species; b) practical prevalidation methodology; c) enzyme inducers; and d) advantages of working with independent expert laboratories. Since it is preferable to include other alternative tests for drug metabolising enzyme induction, when such tests arise, it is recommended that they meet the same level of development as for the collagen gel sandwich long-term hepatocyte system. Those tests which do so should begin the prevalidation and validation process.
Collapse
Affiliation(s)
- S Coecke
- ECVAM, Institute for Health and Consumer Protection, European Commission Joint Research Centre, 21020 Ispra, Italy
| | - V Rogiers
- Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - M Bayliss
- GlaxoWellcome Research and Development, Park Road, Ware, Hertfordshire SG12 ODP, UK
| | - J Castell
- Unidad de Hepatologia Experimental, Hospital Universitario La Fe, Avda de Campanar 21, 46009 Valencia, Spain
| | - J Doehmer
- Institut für Toxikologie und Umwelthygiene, Technische Universität München, Lazarettstrasse 62, 80636 Munich, Germany
| | - G Fabre
- Preclinical Metabolism and Pharmacokinetics, Sanofi Recherche, 34184 Montpellier, France
| | - J Fry
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH
| | - A Kern
- Drug Metabolism and Isotope Chemistry, Bayer, Aprather Weg 18a, 42096 Wuppertal, Germany
| | - C Westmoreland
- GlaxoWellcome Research and Development, Park Road, Ware, Hertfordshire SG12 ODP, UK
| |
Collapse
|
3
|
Abstract
Despite the tremendous hurdles presented by the complexity of the liver's structure and function, advances in liver physiology, stem cell biology and reprogramming, and the engineering of tissues and devices are accelerating the development of cell-based therapies for treating liver disease and liver failure. This State of the Art Review discusses both the near- and long-term prospects for such cell-based therapies and the unique challenges for clinical translation.
Collapse
Affiliation(s)
- Sangeeta N Bhatia
- Institute for Medical Engineering & Science at MIT, Department of Electrical Engineering and Computer Science, David H. Koch Institute at MIT, and the Howard Hughes Medical Institute, Cambridge, MA 02139, USA. Division of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Gregory H Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ira J Fox
- Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, and McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|
4
|
Fraczek J, Bolleyn J, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures for pharmaco-toxicological studies: at the busy crossroad of various anti-dedifferentiation strategies. Arch Toxicol 2012; 87:577-610. [PMID: 23242478 DOI: 10.1007/s00204-012-0983-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/19/2012] [Indexed: 01/24/2023]
Abstract
Continuously increasing understanding of the molecular triggers responsible for the onset of diseases, paralleled by an equally dynamic evolution of chemical synthesis and screening methods, offers an abundance of pharmacological agents with a potential to become new successful drugs. However, before patients can benefit of newly developed pharmaceuticals, stringent safety filters need to be applied to weed out unfavourable drug candidates. Cost effectiveness and the need to identify compound liabilities, without exposing humans to unnecessary risks, has stimulated the shift of the safety studies to the earliest stages of drug discovery and development. In this regard, in vivo relevant organotypic in vitro models have high potential to revolutionize the preclinical safety testing. They can enable automation of the process, to match the requirements of high-throughput screening approaches, while satisfying ethical considerations. Cultures of primary hepatocytes became already an inherent part of the preclinical pharmaco-toxicological testing battery, yet their routine use, particularly for long-term assays, is limited by the progressive deterioration of liver-specific features. The availability of suitable hepatic and other organ-specific in vitro models is, however, of paramount importance in the light of changing European legal regulations in the field of chemical compounds of different origin, which gradually restrict the use of animal studies for safety assessment, as currently witnessed in cosmetic industry. Fortunately, research groups worldwide spare no effort to establish hepatic in vitro systems. In the present review, both classical and innovative methodologies to stabilize the in vivo-like hepatocyte phenotype in culture of primary hepatocytes are presented and discussed.
Collapse
Affiliation(s)
- J Fraczek
- Department of Toxicology, Faculty of Medicine and Pharmacy, Centre for Pharmaceutical Research, Vrije Universiteit Brussel, Belgium.
| | | | | | | | | |
Collapse
|
5
|
Poyck PPC, Hoekstra R, Chhatta A, Bloemendaal LT, van Wijk ACWA, Galavotti D, van Gulik TM, Chamuleau RAFM. Time-related analysis of metabolic liver functions, cellular morphology, and gene expression of hepatocytes cultured in the bioartificial liver of the Academic Medical Center in Amsterdam (AMC-BAL). ACTA ACUST UNITED AC 2007; 13:1235-46. [PMID: 17518723 DOI: 10.1089/ten.2006.0343] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A comprehensive understanding of the mechanisms that underlie hepatic differentiation inside a bioartificial liver (BAL) device is obtained when functional, histological, and gene expression analyses can be combined. We therefore developed a novel cell-sampling technique that enabled us to analyze adherent hepatocytes inside a BAL device during a 5-day culture period, without the necessity of terminating the culture. Biochemical data showed that hepatocyte-specific functions were relatively stable, despite an increase in glycolytic activity. Quantitative reverse transcriptase polymerase chain reaction analysis of hepatic genes cytochrome p450 3A29, albumin, glutamine synthetase, alpha-1 antitrypsin, and carbamoyl-phosphate synthetase, but also de-differentiation marker pi-class glutathione S transferase showed stable messenger ribonucleic acid (mRNA) levels from day 1 to 5. In contrast, mRNA levels of alpha-fetoprotein, pro- and anti-apoptotic genes Bax-alpha and Bcl-X(L), metabolic genes lactate dehydrogenase and uncoupling protein 2, and cytoskeleton genes alpha- and beta-tubulin and beta-actin increased in 5 days. Histological analysis revealed viable tissue-like structures with adaptation to the in vitro environment. We conclude that hepatocytes show a tendency for de-differentiation shortly after seeding but thereafter remain acceptably differentiated during 5 days of culture. Furthermore, partly impaired mitochondrial function is suggestive for local hypoxic regions and may trigger the observed metabolic changes. Anti-apoptotic activity seems to balance pro-apoptotic activity. This new cell-sampling technique facilitates the analysis of dynamic processes of hepatocyte culture inside a BAL.
Collapse
Affiliation(s)
- Paul P C Poyck
- Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Grant MH, Morgan C, Henderson C, Malsch G, Seifert B, Albrecht W, Groth T. The viability and function of primary rat hepatocytes cultured on polymeric membranes developed for hybrid artificial liver devices. J Biomed Mater Res A 2005; 73:367-75. [PMID: 15834932 DOI: 10.1002/jbm.a.30306] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bioartificial liver devices require membranes to support the function and viability of hepatocytes because they are anchorage-dependent cells. This study investigated the ability of several polymeric membranes to support the functions of primary hepatocyte cultures. Tailor-made membranes were sought by synthesizing acrylonitrile copolymers with different comonomers resulting in ionic, hydrophilic, or reactive functional groups on the polymer surface. Hepatocyte morphology and viability were assessed by confocal microscopy, and function by the content and activities of cytochrome P450, and the expression of glutathione S-transferases. Hydrophilic membranes (polyacrylonitrile and acrylonitrile copolymerized with 2-acrylamino-2-methyl-propane sulfonic acid) were more biocompatible than hydrophobic membranes such as polysulfone. The chemistry of the hydrophilic group was important; amine groups had a deleterious effect on maintenance of the primary hepatocytes. The biocompatibility of hydrophobic membranes was improved by collagen coating. Improving the chemistry of membranes for artificial liver devices will enhance the phenotypic stability of the cells, enabling us to prolong treatment times for patients.
Collapse
Affiliation(s)
- M Helen Grant
- Bioengineering Unit, Strathclyde University, Wolfson Centre, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
7
|
Bennaceur-Griscelli A, Bosq J, Koscielny S, Lefrère F, Turhan A, Brousse N, Hermine O, Ribrag V. High Level of Glutathione-S-Transferase π Expression in Mantle Cell Lymphomas. Clin Cancer Res 2004; 10:3029-34. [PMID: 15131039 DOI: 10.1158/1078-0432.ccr-03-0554] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Prognosis of mantle cell lymphoma (MCL) remains poor. Patients who achieve a response to first line therapy usually relapse, and the probability of cure remains low. Glutathione-S-transferase pi (GST-pi) overexpression has been associated with alkylating agents and anthracycline resistance. GST-pi gene is located in 11q13 and is coamplified along with CCND1 gene in some human solid tumors. EXPERIMENTAL DESIGN We performed immunohistochemical analysis of GST-pi expression in 24 consecutive MCLs, 12 follicular lymphomas (FLs), and 69 diffuse large B-cell lymphomas (DLBCLs). Cases were classified in three groups: high GST-pi expression (> 50% of cells were stained), moderate (5 to 50% cells were stained), or absent (< 5% cells were stained). GST-pi and CCND1 mRNA levels were also assessed by real-time reverse transcription-PCR analysis. RESULTS All MCLs exhibit high GST-pi protein expression, compared with 29% of the DLBCLs and none of the FLs. MCLs expressed high levels of GST-pi and CCND1 mRNAs compared with DLBCLs and FLs. There was a strong relation between GST-pi and CCND1 mRNAs transcript levels in MCLs but not in DLBCLs. In conclusion, protein and mRNA GST-pi expression is high in MCL compared with FL and DLBCL. CONCLUSIONS Overexpression of CCND1 in MCL is associated with a transcriptional up-regulation of the GST-pi gene. Our results suggest that the glutathione system could play a role in drug resistance in MCL.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Cyclin D1/biosynthesis
- Cyclin D1/genetics
- Female
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Glutathione S-Transferase pi
- Glutathione Transferase/biosynthesis
- Glutathione Transferase/genetics
- Humans
- Immunohistochemistry
- Isoenzymes/biosynthesis
- Isoenzymes/genetics
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/metabolism
- Lymphoma, Follicular/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/metabolism
- Lymphoma, Mantle-Cell/pathology
- Male
- Middle Aged
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
Collapse
|
8
|
Grant MH, Anderson K, McKay G, Wills M, Henderson C, MacDonald C. Manipulation of the phenotype of immortalised rat hepatocytes by different culture configurations and by dimethyl sulphoxide. Hum Exp Toxicol 2000; 19:309-17. [PMID: 10918525 DOI: 10.1191/096032700678815936] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The liver-specific phenotype of immortalised rat hepatocytes is not irretrievably lost as they age in culture but can be manipulated by modifying the culture environment. Testosterone metabolism was used to investigate the profile of cytochrome P450 isoenzymes present in two immortalised cell lines, P9 and LQC, and in primary cultures of rat hepatocytes, cultured on collagen films, gels and double gel cultures (sandwich configuration). The extent of testosterone metabolism, and the range of metabolites produced, was increased in immortalised cells by the presence of collagen as a substratum film or gel but survival was poorer and the range of metabolites was reduced in sandwich culture. In contrast, testosterone metabolism was retained in primary hepatocytes in sandwich cultures at a higher level than in collagen film or gel cultures. Expression of alpha class glutathione-S-transferases (GSTs) increased and that of GSTP1 decreased (changes which indicate a recovery of normal liver GST phenotype) when the medium of immortalised cell cultures was supplemented with dimethyl sulphoxide (DMSO). DMSO also improved ethoxyresorufin O-deethylation (EROD) and testosterone metabolism in immortalised cells. It also markedly inhibited proliferation, DNA, RNA and protein synthesis. Maximal testosterone metabolism was observed in immortalised cells cultured on collagen gels in the presence of 1% (v/v) DMSO. Development of a protocol for treating immortalised liver cells cultured on collagen gels with DMSO to switch between proliferation and differentiation may provide a convenient system expressing the xenobiotic metabolising enzymes required for in vitro toxicity testing.
Collapse
Affiliation(s)
- M H Grant
- Bioengineering Unit, Strathclyde University, Wolfson Centre, 106 Rottenrow, Glasgow G4 0NW, UK
| | | | | | | | | | | |
Collapse
|
9
|
LeCluyse EL, Ahlgren-Beckendorf JA, Carroll K, Parkinson A, Johnson J. Regulation of glutathione S-transferase enzymes in primary cultures of rat hepatocytes maintained under various matrix configurations. Toxicol In Vitro 2000; 14:101-15. [PMID: 10793289 DOI: 10.1016/s0887-2333(00)00007-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Primary rat hepatocytes were cultured under various matrix and media conditions and examined after 1 week for the expression and regulation of cytosolic glutathione S-transferase (GST) enzymes. Striking effects on cell morphology were observed in relation to the different matrix conditions, whereas media effects were less prominent. Hepatocytes cultured in serum-free Dulbecco's modified Eagle's medium (DMEM) or modified Chee's medium (MCM) maintained similar levels of total GST protein regardless of the matrix configuration or corresponding cell integrity. However, HPLC analysis showed a differential expression pattern of individual GST subunits in both a time- and medium-dependent fashion. A variable, but pronounced, matrix and medium effect was observed on the induction of total GST expression by various prototypical inducers. Dexamethasone (10 microM) induced subunits A2, M1 and M2 in a medium- and matrix-dependent fashion, whereas phenobarbital (100 microM) induced significantly only subunit A2. beta-Naphthoflavone (50 microM) suppressed all GST subunit expression except subunit P1, which was induced in a matrix- and medium-dependent fashion. These studies show that total basal level expression of GSTs in vitro is reflective of a concomitant increase in mu and pi class subunits and a decrease in alpha class subunits. Moreover, the matrix and medium conditions influence both the basal and inducible expression of GST subunits in cultured rat hepatocytes.
Collapse
Affiliation(s)
- E L LeCluyse
- Department of Pharmacology, Toxicology, and Therapeutics, Center for Environmental and Occupational Health, Kansas University Medical Center, Kansas City, Kansas, USA
| | | | | | | | | |
Collapse
|
10
|
Bhatia SN, Balis UJ, Yarmush ML, Toner M. Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J 1999; 13:1883-900. [PMID: 10544172 DOI: 10.1096/fasebj.13.14.1883] [Citation(s) in RCA: 732] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heterotypic cell interaction between parenchymal cells and nonparenchymal neighbors has been reported to modulate cell growth, migration, and/or differentiation. In both the developing and adult liver, cell-cell interactions are imperative for coordinated organ function. In vitro, cocultivation of hepatocytes and nonparenchymal cells has been used to preserve and modulate the hepatocyte phenotype. We summarize previous studies in this area as well as recent advances in microfabrication that have allowed for more precise control over cell-cell interactions through 'cellular patterning' or 'micropatterning'. Although the precise mechanisms by which nonparenchymal cells modulate the hepatocyte phenotype remain unelucidated, some new insights on the modes of cell signaling, the extent of cell-cell interaction, and the ratio of cell populations are noted. Proposed clinical applications of hepatocyte cocultures, typically extracorporeal bioartificial liver support systems, are reviewed in the context of these new findings. Continued advances in microfabrication and cell culture will allow further study of the role of cell communication in physiological and pathophysiological processes as well as in the development of functional tissue constructs for medical applications.
Collapse
Affiliation(s)
- S N Bhatia
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
11
|
Wang ST, Chen HW, Sheen LY, Lii CK. Methionine and cysteine affect glutathione level, glutathione-related enzyme activities and the expression of glutathione S-transferase isozymes in rat hepatocytes. J Nutr 1997; 127:2135-41. [PMID: 9372907 DOI: 10.1093/jn/127.11.2135] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Methionine and cysteine are constituents of glutathione. To understand the effects of these two sulfur amino acids on the glutathione (GSH)-dependent detoxification defense system, intracellular GSH and GSH-related enzyme activities, including GSH peroxidase, GSH reductase, GSH S-transferase (GST) and gamma-glutamylcysteine synthetase, were determined. In addition, the expression of three GST isozymes and carbonic anhydrase III (CA III) was examined. Hepatocytes isolated from male Sprague-Dawley rats were cultured with 0.1, 0.3, 0.5 or 1.0 mmol/L each of L-methionine and L-cysteine, for up to 7 d. Cells incubated with 0.5 or 1.0 mmol/L methionine and cysteine had increased intracellular GSH. A twofold increase was observed on d 6 compared with freshly isolated hepatocytes (P < 0.05). However, intracellular GSH was lower in cells treated with 0.3 or 0.1 mmol/L each of methionine and cysteine than in cells tested with 0.5 or 1.0 mmol/L. Although the GSH level differed significantly between cells cultured with 0.3 or 1.0 mmol/L of methionine and cysteine, GSH-related enzymes did not differ at these two concentrations. The activity generally remained constant for the first 24 h, then increased up to d 4. Immunodetection analysis revealed no difference in the level of CA III and GST isoforms, Ya, Yb and Yp, with amino acids each at a concentration of at least 0.3 mmol/L. Yp expression steadily increased up to d 7. Most proteins decreased rapidly after 48 h when cultured with 0.1 mmol/L of methionine and cysteine; however, the Yp level increased up to d 6. In conclusion, results indicate that a twofold increase of intracellular GSH is reached by adding methionine and cysteine at a concentration >0.5 mmol/L to the culture medium. The concentrations of methionine and cysteine for maintaining hepatic GSH are higher than for GSH-related enzyme activity and for GST isoform expression.
Collapse
Affiliation(s)
- S T Wang
- Department of Nutrition, Chung Shan Medical College, Taichung, Taiwan 40203, Republic of China
| | | | | | | |
Collapse
|
12
|
Lerche C, Fautrel A, Shaw PM, Glaise D, Ballet F, Guillouzo A, Corcos L. Regulation of the major detoxication functions by phenobarbital and 3-methylcholanthrene in co-cultures of rat hepatocytes and liver epithelial cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:98-106. [PMID: 9063451 DOI: 10.1111/j.1432-1033.1997.00098.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the present study, we analysed the expression of monooxygenase activities and mRNAs associated with cytochrome P-450 (CYP), including CYP1A1/2, CYP2B1/2, CYP2C6, CYP2E1, CYP3A1/2, glutathione transferase alpha (GST alpha), aldehyde dehydrogenase and epoxide hydrolase in co-cultures of primary rat hepatocytes and rat liver epithelial cells. We observed that pentoxyresorufin O-deethylation activity was well maintained and ethoxyresorufin O-deethylation activity gradually decreased during co-culture time. In addition, we showed that phenobarbital and 3-methylcholanthrene treatments resulted in a significant increase of these activities. Two general patterns of accumulation of liver-specific mRNAs were observed. CYP1A1/2, CYP2B1/2, CYP3A1/2, GST alpha, aldehyde dehydrogenase and epoxide hydrolase mRNAs were maintained at a stable level, whereas CYP2C6 and CYP2E1 mRNAs showed a continuous decline. In addition, we observed a strong increase of CYP1A1/2 (13.6-fold) and GST alpha (3.9-fold) mRNA expression in 3-methylcholanthrene-treated co-cultures and induction of CYP2B1/2 (19-fold), CYP2C6 (10-fold), CYP3A1/2 (11.2-fold), GST alpha (9-fold), aldehyde dehydrogenase (6-fold) and epoxide hydrolase (5-fold) mRNA expression in phenobarbital-treated co-cultures. Furthermore, we demonstrated that liver-specific gene expression was restricted to hepatocytes, with the notable exception of epoxide hydrolase and CYP2E1 which were expressed in both cell types during the co-culture, as shown by the selective recovery of both hepatocytes and rat liver epithelial cells. Finally, to investigate whether co-cultures could be used to study the molecular mechanisms regulating CYP transcription, we performed transfection of hepatocytes, before the establishment of the co-culture, with large CYP2B1 (3.9 kb) or CYP2B2 (4.5 kb) promoter chloramphenicol acetyltransferase constructs or with a construct containing a 163-bp DNA sequence element reported to confer phenobarbital responsiveness. A 2-3-fold increase over the basal level of chloramphenicol acetyltransferase activity was observed in phenobarbital-treated co-cultures transfected with the phenobarbital-responsive element construct, although phenobarbital had no effect on large CYP2B1 or CYP2B2 promoter fragments. Our results demonstrate that the co-culture system provides a good tool for studying drug metabolism, and shows promise as a new tool for analysing transcriptional regulation under the influence of xenobiotics within primary hepatocytes.
Collapse
Affiliation(s)
- C Lerche
- INSERM U456, Faculté des Sciences Pharmaceutiques et Biologiques, Université de Rennes I, France
| | | | | | | | | | | | | |
Collapse
|
13
|
LeCluyse EL, Bullock PL, Parkinson A. Strategies for restoration and maintenance of normal hepatic structure and function in long-term cultures of rat hepatocytes. Adv Drug Deliv Rev 1996. [DOI: 10.1016/s0169-409x(96)00418-8] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
LeCluyse EL, Bullock PL, Parkinson A, Hochman JH. Cultured rat hepatocytes. PHARMACEUTICAL BIOTECHNOLOGY 1996; 8:121-59. [PMID: 8791809 DOI: 10.1007/978-1-4899-1863-5_9] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- E L LeCluyse
- INTERx Research/Merck Research Laboratories, Lawrence, Kansas 66047, USA
| | | | | | | |
Collapse
|
15
|
Brill S, Zvibel I, Reid LM. Maturation-dependent changes in the regulation of liver-specific gene expression in embryonal versus adult primary liver cultures. Differentiation 1995; 59:95-102. [PMID: 8522072 DOI: 10.1046/j.1432-0436.1995.5920095.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During rat liver development, which starts on day 10 of embryogenesis (E10), and until E15, all parenchymal cells are thought to be a homogeneous population of bipotential progenitors, able to give rise to both hepatocytes and bile duct epithelial cells. We established primary liver cultures from embryonic livers at various developmental stages, from E14 to neonates, as well as adult rats. Gene expression and regulation by three known differentiating agents, heparin, dimethylsulfoxide (DMSO), and sodium butyrate, were examined in these primary cultures. Alpha-fetoprotein (alpha-FP), albumin, gamma-glutamyltranspeptidase (GGT), and glutathione-S-transferase-P (Yp) were expressed by cultured liver cells through fetal development, whereas insulin-like growth factor-II (IGF II) receptor, expressed in fetal parenchymal cells, was not present in cultured neonatal cells. Heparin increased alpha-FP levels in fetal liver cells, but not in cells obtained after birth. The expression of GGT and Yp was coordinately regulated. The two genes were up-regulated by sodium butyrate and down-regulated by DMSO in cultured liver cells from all embryonal ages tested. However, the regulation of these two genes by sodium butyrate and DMSO was not apparent in neonatal and adult liver cultures. Sodium butyrate increased alpha-FP and albumin mRNA expression in E14 and E15 cells, but not in E16, neonatal or adult cultures, and its addition caused heterogenous expression of albumin. We conclude that the regulation of gene expression in primary liver cultures by the three agents tested is altered after birth.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Brill
- Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
16
|
Traiser M, Diener B, Utesch D, Oesch F. The gap junctional intercellular communication is no prerequisite for the stabilization of xenobiotic metabolizing enzyme activities in primary rat liver parenchymal cells in vitro. In Vitro Cell Dev Biol Anim 1995; 31:266-73. [PMID: 7795845 DOI: 10.1007/bf02634000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In primary monocultures of adult rat liver parenchymal cells (PC), the activities of the xenobiotic metabolizing enzymes microsomal epoxide hydrolase (mEHb), soluble epoxide hydrolase (sEH), glutathione S-transferases (GST), and phenolsulfotransferase (ST) were reduced after 7 d to values below 33% of the initial activities. Furthermore, the gap junctional intercellular communication (GJIC), measured after microinjection by dye transfer, decreased from 90% on Day 1 to undetectable values after 5 d in monoculture. Co-culture of PC with nonparenchymal rat liver epithelial cells (NEC) increased (98% on Day 1) and stabilized (82% on Day 7) the homotypic GJIC of PC. Additionally, most of the measured xenobiotic metabolizing enzyme activities were well stabilized over 1 wk in co-culture. Because GJIC is one of several mechanisms playing an important role in cell differentiation, the importance of GJIC for the stabilization of xenobiotic metabolizing enzymes in PC was investigated. PC in monoculture were, therefore, treated with 2% dimethyl sulfoxide (DMSO), a differentiation promoting factor, and 1,1,1-trichloro-2,2,-bis (p-chlorophenyl) ethane (DDT) (10 micrograms/ml), a liver tumor promotor and inhibitor of GJIC, was given to co-cultures of PC with NEC. DMSO significantly stabilized (68% on Day 7), while DDT significantly inhibited (8% on Day 7) homotypic GJIC of PC in the respective culture systems. In contrast, the activities of mEHb, sEH, GST, and ST were not affected in the presence of DMSO or DDT. These results lead to the assumption that the differentiation parameters measured in this study (i.e., homotypic GJIC and the activities of xenobiotic metabolizing enzymes) are independently regulated in adult rat liver PC.
Collapse
Affiliation(s)
- M Traiser
- Institute of Toxicology, University of Mainz, Germany
| | | | | | | |
Collapse
|
17
|
Berglund T. Nicotinamide, a missing link in the early stress response in eukaryotic cells: a hypothesis with special reference to oxidative stress in plants. FEBS Lett 1994; 351:145-9. [PMID: 8082753 DOI: 10.1016/0014-5793(94)00850-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A hypothesis is presented suggesting that nicotinamide (NIC) is an initial signal substance in the response of eukaryotic cells to conditions which cause DNA-strand breakage, especially in connection with oxidative stress. In the stressed cell, NIC is released as a result of the activity of poly(ADP-ribose)polymerase (PADPRP). PADPRP is known to be activated by DNA-strand breakage, caused by e.g. oxidative stress or mutagens. NIC and its metabolite trigonelline (N-methylnicotinic acid) can induce defensive metabolism at the gene level. Connections between NIC and DNA-methylation are also considered. This hypothesis is discussed in the light of own observations and literature reports.
Collapse
Affiliation(s)
- T Berglund
- Department of Biochemistry and Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
18
|
Skett P. Problems in using isolated and cultured hepatocytes for xenobiotic metabolism/metabolism-based toxicity testing—Solutions? Toxicol In Vitro 1994; 8:491-504. [DOI: 10.1016/0887-2333(94)90174-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/1993] [Revised: 12/22/1993] [Indexed: 01/15/2023]
|