1
|
Coleman T, Shin J, Silberg JJ, Shamoo Y, Atkinson JT. The Biochemical Impact of Extracting an Embedded Adenylate Kinase Domain Using Circular Permutation. Biochemistry 2024; 63:599-609. [PMID: 38357768 DOI: 10.1021/acs.biochem.3c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Adenylate kinases (AKs) have evolved AMP-binding and lid domains that are encoded as continuous polypeptides embedded at different locations within the discontinuous polypeptide encoding the core domain. A prior study showed that AK homologues of different stabilities consistently retain cellular activity following circular permutation that splits a region with high energetic frustration within the AMP-binding domain into discontinuous fragments. Herein, we show that mesophilic and thermophilic AKs having this topological restructuring retain activity and substrate-binding characteristics of the parental AK. While permutation decreased the activity of both AK homologues at physiological temperatures, the catalytic activity of the thermophilic AK increased upon permutation when assayed >30 °C below the melting temperature of the native AK. The thermostabilities of the permuted AKs were uniformly lower than those of native AKs, and they exhibited multiphasic unfolding transitions, unlike the native AKs, which presented cooperative thermal unfolding. In addition, proteolytic digestion revealed that permutation destabilized each AK in differing manners, and mass spectrometry suggested that the new termini within the AMP-binding domain were responsible for the increased proteolysis sensitivity. These findings illustrate how changes in contact order can be used to tune enzyme activity and alter folding dynamics in multidomain enzymes.
Collapse
Affiliation(s)
- Tom Coleman
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
| | - John Shin
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
| | - Jonathan J Silberg
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, MS-362, 6100 Main Street, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, Texas 77005, United States
| | - Yousif Shamoo
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
| | - Joshua T Atkinson
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90007, United States
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Van Rompay AR, Johansson M, Karlsson A. Phosphorylation of nucleosides and nucleoside analogs by mammalian nucleoside monophosphate kinases. Pharmacol Ther 2000; 87:189-98. [PMID: 11008000 DOI: 10.1016/s0163-7258(00)00048-6] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nucleoside monophosphate kinases catalyze the reversible phosphotransferase reaction between nucleoside triphosphates and monophosphates, i.e., monophosphates are converted to their corresponding diphosphate form. These enzymes play an important role in the synthesis of nucleotides that are required for a variety of cellular metabolic processes, as well as for RNA and DNA synthesis. Human tissues contain a thymidylate kinase, a uridylate-cytidylate kinase, five isozymes of adenylate kinase, and several guanylate kinases. Nucleoside monophosphate kinases are also required for the pharmacological activation of therapeutic nucleoside and nucleotide analogs. This overview is focused on the substrate specificity, tissue distribution, and subcellular location of the mammalian monophosphate kinases and their role in the activation of nucleoside and nucleotide analogs.
Collapse
Affiliation(s)
- A R Van Rompay
- Division of Clinical Virology, Karolinska Institute, Huddinge University Hospital, S-141 86, Stockholm, Sweden
| | | | | |
Collapse
|
3
|
Yan H, Tsai MD. Nucleoside monophosphate kinases: structure, mechanism, and substrate specificity. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1999; 73:103-34, x. [PMID: 10218107 DOI: 10.1002/9780470123195.ch4] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The catalytic mechanisms of adenylate kinase, guanylate kinase, uridylate kinase, and cytidylate kinase are reviewed in terms of kinetic and structural information that has been obtained in recent years. All four kinases share a highly related tertiary structure, characterized by a central five-stranded parallel beta-sheet with helices on both sides, as well as the three regions designated as the CORE, NMPbind, and LID domains. The catalytic mechanism continues to be refined to higher levels of resolution by iterative structure-function studies, and the strengths and limitations of site-directed mutagenesis are well illustrated in the case of adenylate kinase. The identity and roles of active site residues now appear to be resolved, and this review describes how specific site substitutions with unnatural amino acid side-chains have proven to be a major advance. Likewise, there is mounting evidence that phosphoryl transfer occurs by an associative transition state, based on (a) the stereochemical course of phosphoryl transfer, (b) geometric considerations, (c) examination of likely electronic distributions, (d) the orientation of the phosphoryl acceptor relative to the phosphoryl being transferred, (e) the most likely role of magnesium ion, (f) the lack of restricted access of solvent water, and (g) the results of oxygen-18 kinetic isotope. effect experiments.
Collapse
Affiliation(s)
- H Yan
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | |
Collapse
|
4
|
Van Rompay AR, Johansson M, Karlsson A. Identification of a novel human adenylate kinase. cDNA cloning, expression analysis, chromosome localization and characterization of the recombinant protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:509-17. [PMID: 10215863 DOI: 10.1046/j.1432-1327.1999.00294.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenylate kinases have an important role in the synthesis of adenine nucleotides that are required for cellular metabolism. We report the cDNA cloning of a novel 22-kDa human enzyme that is sequence related to the human adenylate kinases and to UMP/CMP kinase of several species. The enzyme was expressed in Escherichia coli and shown to catalyse phosphorylation of AMP and dAMP with ATP as phosphate donor. When GTP was used as phosphate donor, the enzyme phosphorylated AMP, CMP, and to a small extent dCMP. Expression as a fusion protein with the green fluorescent protein showed that the enzyme is located in the cytosol. Northern blot analysis with mRNA from eight different human tissues demonstrated that the enzyme was expressed exclusively in brain, with two mRNA isoforms of 2.4 and 4.0 kb. The gene that encoded the enzyme was localized to chromosome 1p31. Based on the substrate specificity and the sequence similarity with the previously identified human adenylate kinases, we have named this novel enzyme adenylate kinase 5.
Collapse
Affiliation(s)
- A R Van Rompay
- Division of Clinical Virology, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden
| | | | | |
Collapse
|
5
|
Yoneda T, Sato M, Maeda M, Takagi H. Identification of a novel adenylate kinase system in the brain: cloning of the fourth adenylate kinase. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 62:187-95. [PMID: 9813319 DOI: 10.1016/s0169-328x(98)00249-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We identify a novel subtype of adenylate kinase, which is the 4th adenylate kinase (AK4), in the vertebrate. AK4 mRNA is expressed in the mammalian central nervous system in a region-specific manner from the middle stage of embryogenesis to the adulthood in the rodent. The presence of three isozymes of adenylate kinase (AK1, AK2 and AK3) that maintains the homeostasis of adenine and guanine nucleotide composition has been reported in the vertebrate. Obtained mouse AK4 cDNA is 3667 bp in size. The predicted open reading frame consists of 223 amino acid residues. Rat AK4 cDNA is also obtained, and the predicted open reading frame is the same length as that of the mouse. The predicted rat AK4 molecule shows 97.8% homology with mouse AK4. Rat AK4 protein is distinct from rat AK3, 53.8% homologous with rat AK3, although the adenylate kinase signature and the mitochondrial energy transfer protein signature are found in both sequences. Interestingly, rat AK4 is 89.2% homologous with the human AK3 over 223 amino acid residues and rat AK3 is 53.7% homologous with the human AK3 indicating that the reported human AK3 actually belongs to the AK4 group (therefore, it should be referred to as human AK4). Although the sequence of AK4 is most similar to that of AK3 among the AK isozymes, its in vivo expression is completely different from AK3; AK4 mRNA is expressed in the pyramidal cells in the hippocampus (mainly in the subfield CA3), the granular cells in the cerebellum, nasal neuroepithelium and the liver while AK3 mRNA is expressed ubiquitously in the body. It is probable that AK4 acts on the specific mechanism of energy metabolism rather than control of the homeostasis of the ADP pool ubiquitously.
Collapse
Affiliation(s)
- T Yoneda
- First Department of Anatomy, Osaka City University Medical School, 1-4-3 Asahimachi, Abeno-ku, Osaka-shi, Osaka 545-8585, Japan
| | | | | | | |
Collapse
|
6
|
Kaneko S, Miyazaki Y, Yasuda T, Shishido K. Cloning, sequence analysis and expression of the basidiomycete Lentinus edodes gene uck1, encoding UMP-CMP kinase, the homologue of Saccharomyces cerevisae URA6 gene. Gene 1998; 211:259-66. [PMID: 9602145 DOI: 10.1016/s0378-1119(98)00099-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sequence analysis of the downstream region of the basidiomycete Lentinus edodes priB gene encoding a protein with a 'Zn(II)2Cys6 zinc cluster' DNA-binding motif (Endo, H., Kajiwara, S., Tunoka, O., Shishido, K., 1994. A novel cDNA, priBc, encoding a protein with a Zn(II)2Cys6 zinc cluster DNA-binding motif, derived from the basidiomycete Lentinus edodes. Gene 139, 117-121) suggested the presence of a Saccharomyces cerevisiae URA6 gene homologue encoding UMP kinase. We isolated a corresponding cDNA from a mature fruiting-body cDNA library of L. edodes. The nucleotide sequence of this was determined and compared with that of the genomic DNA, revealing that the URA6 gene homologue encodes 227 amino acids (aa) and is interrupted by four small introns. The deduced aa sequence showed an overall identity of 51.1% to that of the S. cerevisiae URA6 gene product. The URA6 homologue protein produced in Escherichia coli using the glutathione S-transferase gene fusion system was found to catalyze the phosphoryl transfer from ATP to UMP and CMP efficiently and also to AMP and dCMP with lower efficiencies. Thus, the URA6 gene homologue was designated uck1 and its product UMP-CMP kinase. Northern-blot analysis showed that the uck1 is actively transcribed in the gill tissue of mature fruiting bodies of L. edodes, implying that uck1 may play a role during the formation of basidiospores occurs in the gill tissue.
Collapse
Affiliation(s)
- S Kaneko
- Department of Life Science, Faculty of Bioscience, Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
7
|
Kalic M, Büsselmann G, Lauterwein J, Kamp G. Phosphorous metabolites in boar spermatozoa. Identification of AMP by multinuclear magnetic resonance. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1320:208-16. [PMID: 9210287 DOI: 10.1016/s0005-2728(97)00024-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Boar spermatozoa revealed three prominent resonances in the 31P-NMR spectrum of intact cells. Two of these are known to be GPC and Pi, the third is a phosphomononoester (PME), the identification of which was carried out by proton-detected 2D 1H,31P and 1H,13C chemical shift correlation experiments with gradient selection. The PME was unambiguously assigned to adenosine 5'-monophosphate (AMP). The identification was confirmed by an AMP consuming enzymatic assay. Other physiologically relevant PME's, in particular inosine 5-monophosphate (IMP) and sugar phosphates, were excluded. The intensity of the 31P signal of AMP in boar sperm extract was much higher than those of ADP and ATP, and in intact cells only AMP but no ATP was visible.
Collapse
Affiliation(s)
- M Kalic
- Organisch-Chemisches Institut der Universität, Münster, Germany
| | | | | | | |
Collapse
|
8
|
Ma N, Ikeda S, Guo S, Fieno A, Park I, Grimme S, Ikeda T, Ives DH. Deoxycytidine kinase and deoxyguanosine kinase of Lactobacillus acidophilus R-26 are colinear products of a single gene. Proc Natl Acad Sci U S A 1996; 93:14385-90. [PMID: 8962060 PMCID: PMC26141 DOI: 10.1073/pnas.93.25.14385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Three of the four deoxynucleoside kinases required for growth of Lactobacillus acidophilus R-26 exist as heterodimeric pairs specific for deoxyadenosine (dAK) and deoxycytidine (dCK) or dAK and deoxyguanosine (dGK). However, only two tandem genes, dak/dgk, are found, and are expressed only as dAK/dGK in transformed Escherichia coli. Sequencing peptides spanning 63% of the native dCK subunit revealed a sequence identical to that deduced from dgk (beginning MTVIVL...), except that dCK lacks residues 2 and 3 (dCK is M..IVL; dGK is .TVIVL). Also, mass spectrometry indicates that native dCK and dGK subunits are identical in mass adjusted for the first three residues. Furthermore, the native enzymes have identical isoelectric pH values, indicating an equal number of charged residues. To enable E. coli to express peptide having the native dCK sequence, codons 2 and 3 were deleted from the dgk portion of the tandem genes, resulting in expression of protein having the specificities and regulatory properties of native dAK/dCK, including heterotropic stimulation of dAK activity by deoxycytidine or dCTP (not deoxyguanosine or dGTP) and end-product inhibition of the respective activities by dATP and dCTP. Subcloning normal and mutant dgk yielded homodimeric dGK and dCK, respectively. The dCK homodimer strongly resembles human dCK, with a low K(m) for deoxycytidine, the ability to phosphorylate deoxyadenosine and deoxyguanosine at much higher K(m) values, and end-product inhibition by dCTP. Thus two distinct and specific enzymes evidently are derived from a single Lactobacillus gene. The mechanism by which this occurs in vivo has yet to be elucidated.
Collapse
Affiliation(s)
- N Ma
- Department of Biochemistry, Ohio State University, Columbus 43210-1292, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Scheffzek K, Kliche W, Wiesmüller L, Reinstein J. Crystal structure of the complex of UMP/CMP kinase from Dictyostelium discoideum and the bisubstrate inhibitor P1-(5'-adenosyl) P5-(5'-uridyl) pentaphosphate (UP5A) and Mg2+ at 2.2 A: implications for water-mediated specificity. Biochemistry 1996; 35:9716-27. [PMID: 8703943 DOI: 10.1021/bi960642s] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The three-dimensional structure of the UMP/CMP kinase (UK) from the slime mold Dictyostelium discoideum complexed with the specific and asymmetric bisubstrate inhibitor P1-(5'-adenosyl) P5-(5'-uridyl) pentaphosphate (UP5A) has been determined at a resolution of 2.2 A. The structure of the enzyme, which has up to 41% sequence homology with known adenylate kinases (AK), represents a closed conformation with the flexible monophosphate binding domain (NMP site) being closed over the uridyl moiety of the dinucleotide. Two water molecules were found within hydrogen-bonding distance to the uracil base. The key residue for the positioning and stabilization of those water molecules appears to be asparagine 97, a residue that is highly specific for AK-homologous UMP kinases, but is almost invariably a glutamine in adenylate kinases. Other residues in this region are highly conserved among AK-related NMP kinases. The catalytic Mg2+ ion is coordinated with octahedral geometry to four water molecules and two oxygens of the phosphate chain of UP5A but has no direct interactions with the protein. The comparison of the geometry of the UKdicty.UP5A.Mg2+ complex with the previously reported structure of the UKyeast.ADP.ADP complex [Müller-Dieckmann & Schulz (1994) J. Mol. Biol. 236, 361-367] suggests that UP5A in our structure mimics an ADP.Mg.UDP biproduct inhibitor rather than an ATP. MG.UMP bisubstrate inhibitor.
Collapse
Affiliation(s)
- K Scheffzek
- Max-Planck-Institut für Medizinische Forschung, Abteilung Biophysik, Heidelberg, Germany
| | | | | | | |
Collapse
|
10
|
Fukami-Kobayashi K, Nosaka M, Nakazawa A, Go M. Ancient divergence of long and short isoforms of adenylate kinase: molecular evolution of the nucleoside monophosphate kinase family. FEBS Lett 1996; 385:214-20. [PMID: 8647254 DOI: 10.1016/0014-5793(96)00367-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adenylate kinases (AK) from vertebrates are separated into three isoforms, AK1, AK2 and AK3, based on structure, subcellular localization and substrate specificity. AK1 is the short type with the amino acid sequence being 27 residues shorter than sequences of the long types, AK2 and AK3. A phylogenetic tree prepared for the AK isozymes and other members of the nucleoside monophosphate (NMP) kinase family shows that the divergence of long and short types occurred first and then differentiation in subcellular localization or substrate specificity took place. The first step involved a drastic change in the three-dimensional structure of the LID domain. The second step was caused mainly by smaller changes in amino acid sequences.
Collapse
|
11
|
Bucurenci N, Sakamoto H, Briozzo P, Palibroda N, Serina L, Sarfati RS, Labesse G, Briand G, Danchin A, Bărzu O, Gilles AM. CMP kinase from Escherichia coli is structurally related to other nucleoside monophosphate kinases. J Biol Chem 1996; 271:2856-62. [PMID: 8576266 DOI: 10.1074/jbc.271.5.2856] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
CMP kinase from Escherichia coli is a monomeric protein of 225 amino acid residues. The protein exhibits little overall sequence similarities with other known NMP kinases. However, residues involved in binding of substrates and/or in catalysis were found conserved, and sequence comparison suggested conservation of the global fold found in adenylate kinases or in several CMP/UMP kinases. The enzyme was purified to homogeneity, crystallized, and analyzed for its structural and catalytic properties. The crystals belong to the hexagonal space group P6(3), have unit cell parameters a = b = 82.3 A and c = 60.7 A, and diffract x-rays to a 1.9 A resolution. The bacterial enzyme exhibits a fluorescence emission spectrum with maximum at 328 nm upon excitation at 295 nm, which suggests that the single tryptophan residue (Trp30) is located in a hydrophobic environment. Substrate specificity studies showed that CMP kinase from E. coli is active with ATP, dATP, or GTP as donors and with CMP, dCMP, and arabinofuranosyl-CMP as acceptors. This is in contrast with CMP/UMP kinase from Dictyostelium discoideum, an enzyme active on CMP or UMP but much less active on the corresponding deoxynucleotides. Binding of CMP enhanced the affinity of E. coli CMP kinase for ATP or ADP, a particularity never described in this family of proteins that might explain inhibition of enzyme activity by excess of nucleoside monophosphate.
Collapse
Affiliation(s)
- N Bucurenci
- Unité de Biochimie des Régulations Cellulaires, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nyholm T, Andäng M, Hotchkiss G, Härd T, Baumann H, Larsson S, Ahrlund-Richter L. A method for production of 13C/15N double labelled RNA in E. coli, and subsequent in vitro synthesis of ribonucleotide 5' triphosphates. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1995; 30:59-68. [PMID: 7541814 DOI: 10.1016/0165-022x(94)00067-n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this paper we describe an enhanced method for the large scale production of high quality 13C/15N labelled NTPs. High amounts of labelled RNA was obtained from E. coli cells grown in 13C/15N enriched medium and treated with chloramphenicol. Total RNA was extracted from spheroplasted cells in the presence of SDS and proteinase K and subsequently degraded to NMPs by nuclease P1 and high concentrations of nuclease S1 in a low salt buffer. To avoid non-specific degradation of the RNA, nuclease digestion was performed in a short term reaction on native, not heat-denatured RNA. CMP, AMP, GMP and UMP were chromatographically separated and converted to the corresponding NTPs by a mixture of kinases in the presence of a coupled redox system based on thioredoxin and dithiothreitol. The quality of the 13C/15N labelled NTPs was tested by in vitro transcription.
Collapse
Affiliation(s)
- T Nyholm
- Unit for Molecular Genetics, Karolinska Institute, Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
13
|
Kern P, Rognan D, Folkers G. MD simulations in Pseudo-Particle Fluids: Applications to active-site Protein Complexes. ACTA ACUST UNITED AC 1995. [DOI: 10.1002/qsar.19950140302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Baubichon-Cortay H, Baggetto L, Dayan G, Di Pietro A. Overexpression and purification of the carboxyl-terminal nucleotide-binding domain from mouse P-glycoprotein. Strategic location of a tryptophan residue. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31607-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Schiltz E, Burger S, Grafmüller R, Deppert WR, Haehnel W, Wagner E. Primary structure of maize chloroplast adenylate kinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 222:949-54. [PMID: 8026505 DOI: 10.1111/j.1432-1033.1994.tb18944.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This paper describes the sequence of adenylate kinase (Mg-ATP+AMP<-->Mg-ADP+ADP) from maize chloroplasts. This light-inducible enzyme is important for efficient CO2 fixation in the C4 cycle, by removing and recycling AMP produced in the reversible pyruvate phosphate dikinase reaction. The complete sequence was determined by analyzing peptides from cleavages with trypsin, AspN protease and CNBr and subcleavage of a major CNBr peptide with chymotrypsin. N-terminal Edman degradation and carboxypeptidase digestion established the terminal residues. Electrospray mass spectrometry confirmed the final sequence of 222 residues (M(r) = 24867) including one cysteine and one tryptophan. The sequence shows this enzyme to be a long-variant-type adenylate kinase, the nearest relatives being adenylate kinases from Enterobacteriaceae. Alignment of the sequence with the adenylate kinase from Escherichia coli reveals 44% identical residues. Since the E. coli structure has been published recently at 0.19-nm resolution with the inhibitor adenosine(5')pentaphospho(5')adenosine (Ap5A) [Müller, C. W. & Schulz, G. E. (1992) J. Mol. Biol. 224, 159-177], catalytically essential residues could be compared and were found to be mostly conserved. Surprisingly, in the nucleotide-binding Gly-rich loop Gly-Xaa-Pro-Gly-Xaa-Gly-Lys the middle Gly is replaced by Ala. This is, however, compensated by an Ile-->Val exchange in the nearest spatial neighborhood. A Thr-->Ala exchange explains the unusual tolerance of the enzyme for pyrimidine nucleotides in the acceptor site.
Collapse
Affiliation(s)
- E Schiltz
- Institut für Organische Chemie und Biochemie, Universität Freiburg i. Br., Germany
| | | | | | | | | | | |
Collapse
|