Taddei N, Chiti F, Magherini F, Stefani M, Thunnissen MM, Nordlund P, Ramponi G. Structural and kinetic investigations on the 15-21 and 42-45 loops of muscle acylphosphatase: evidence for their involvement in enzyme catalysis and conformational stabilization.
Biochemistry 1997;
36:7217-24. [PMID:
9188723 DOI:
10.1021/bi970173+]
[Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The structural and catalytic importance of the 15-21 and 42-45 loop residues of the acylphosphatase muscular isoenzyme has been investigated by oligonucleotide-directed mutagenesis. Seven mutants involving conserved residues of the two loops have been prepared and characterized for structural, kinetic, and stability features by using different spectroscopic techniques and compared to the wild-type enzyme. The results are discussed in light of the crystal structure of the highly homologous common type acylphosphatase [Thunnissen et al. (1997) Structure 5, 69-79]. A differential role of the two loops has emerged: the 15-21 and the 42-45 loops appear mainly involved in active site formation and enzyme structural stabilization, respectively. These conclusions are supported by a strong impairment of the catalytic efficiency, in terms of enzymatic activity and substrate binding capability, for most of the 15-21 loop mutants. In particular, the Gly15Ala mutant is completely inactive and displays a native-like overall fold, indicating that the correct geometry of the 15-21 loop is an essential requisite for optimal enzymatic catalysis. Instead, the Gly45Ala mutant, though revealing unchanged catalytic properties, shows a considerably reduced conformational stability, as judged by circular dichroism and 1H NMR spectroscopy. This finding confirms previous results relative to Thr42 and Thr46 residues [Taddei et al. (1996) Biochemistry 35, 7077-7083] underlining the structural importance of the 42-45 loop as a linker for the two beta alpha beta units constituting the overall enzyme structure.
Collapse