1
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Li B, Wang H, Zhang Y, Liu Y, Zhou T, Zhou B, Zhang Y, Chen R, Xing J, He L, Salinas JM, Koyama S, Meng F, Wan Y. Current Perspectives of Neuroendocrine Regulation in Liver Fibrosis. Cells 2022; 11:3783. [PMID: 36497043 PMCID: PMC9736734 DOI: 10.3390/cells11233783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/06/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Liver fibrosis is a complicated process that involves different cell types and pathological factors. The excessive accumulation of extracellular matrix (ECM) and the formation of fibrotic scar disrupt the tissue homeostasis of the liver, eventually leading to cirrhosis and even liver failure. Myofibroblasts derived from hepatic stellate cells (HSCs) contribute to the development of liver fibrosis by producing ECM in the area of injuries. It has been reported that the secretion of the neuroendocrine hormone in chronic liver injury is different from a healthy liver. Activated HSCs and cholangiocytes express specific receptors in response to these neuropeptides released from the neuroendocrine system and other neuroendocrine cells. Neuroendocrine hormones and their receptors form a complicated network that regulates hepatic inflammation, which controls the progression of liver fibrosis. This review summarizes neuroendocrine regulation in liver fibrosis from three aspects. The first part describes the mechanisms of liver fibrosis. The second part presents the neuroendocrine sources and neuroendocrine compartments in the liver. The third section discusses the effects of various neuroendocrine factors, such as substance P (SP), melatonin, as well as α-calcitonin gene-related peptide (α-CGRP), on liver fibrosis and the potential therapeutic interventions for liver fibrosis.
Collapse
Affiliation(s)
- Bowen Li
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Hui Wang
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Yudian Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ying Liu
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tiejun Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bingru Zhou
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ying Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Rong Chen
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Juan Xing
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Longfei He
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Jennifer Mata Salinas
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Sachiko Koyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Ying Wan
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
3
|
Laschinger M, Wang Y, Holzmann G, Wang B, Stöß C, Lu M, Brugger M, Schneider A, Knolle P, Wohlleber D, Schulze S, Steiger K, Tsujikawa K, Altmayr F, Friess H, Hartmann D, Hüser N, Holzmann B. The CGRP receptor component RAMP1 links sensory innervation with YAP activity in the regenerating liver. FASEB J 2020; 34:8125-8138. [PMID: 32329113 DOI: 10.1096/fj.201903200r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The effectiveness of liver regeneration limits surgical therapies of hepatic disorders and determines patient outcome. Here, we investigated the role of the neuropeptide calcitonin gene-related peptide (CGRP) for liver regeneration after acute or chronic injury. Mice deficient for the CGRP receptor component receptor activity-modifying protein 1 (RAMP1) were subjected to a 70% partial hepatectomy or repeated intraperitoneal injections of carbon tetrachloride. RAMP1 deficiency severely impaired recovery of organ mass and hepatocyte proliferation after both acute and chronic liver injury. Mechanistically, protein expression of the transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) was decreased in regenerating livers of RAMP1-deficient mice. Lack of RAMP1 was associated with hyperphosphorylation of YAP on Ser127 and Ser397, which regulates YAP functional activity and protein levels. Consequently, expression of various YAP-controlled cell cycle regulators and hepatocyte proliferation were severely reduced in the absence of RAMP1. In vitro, CGRP treatment caused increased YAP protein expression and a concomitant decline of YAP phosphorylation in liver tissue slice cultures of mouse and human origin and in primary human hepatocytes. Thus, our results indicate that sensory nerves represent a crucial control element of liver regeneration after acute and chronic injury acting through the CGRP-RAMP1 pathway, which stimulates YAP/TAZ expression and activity.
Collapse
Affiliation(s)
- Melanie Laschinger
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Yang Wang
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Gabriela Holzmann
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Baocai Wang
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Stöß
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Miao Lu
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcus Brugger
- School of Medicine, Institute of Molecular Immunology & Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Annika Schneider
- School of Medicine, Institute of Molecular Immunology & Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Percy Knolle
- School of Medicine, Institute of Molecular Immunology & Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Dirk Wohlleber
- School of Medicine, Institute of Molecular Immunology & Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Sarah Schulze
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- School of Medicine, Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Felicitas Altmayr
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Helmut Friess
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Daniel Hartmann
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Norbert Hüser
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Holzmann
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
4
|
Lima WG, Marques-Oliveira GH, da Silva TM, Chaves VE. Role of calcitonin gene-related peptide in energy metabolism. Endocrine 2017; 58:3-13. [PMID: 28884411 DOI: 10.1007/s12020-017-1404-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE Calcitonin gene-related peptide (CGRP) is a neuropeptide produced by alternative tissue-specific splicing of the primary transcript of the CALC genes. CGRP is widely distributed in the central and peripheral nervous system, as well as in several organs and tissues. The presence of CGRP in the liver and brown and white adipose tissue suggests an effect of this neuropeptide on regulation of energy homeostasis. METHODS In this review, we summarize the current knowledge of the effect of CGRP on the control of energy metabolism, primarily focusing on food intake, thermoregulation and lipid metabolism in adipose tissue, liver and muscle. RESULTS CGRP induces anorexia, stimulating anorexigenic neuropeptide and/or inhibiting orexigenic neuropeptide expression, through cAMP/PKA pathway activation. CGRP also induces energy expenditure, increasing the skin temperature and brown adipose tissue thermogenesis. It has been also suggested that information related to peripheral lipid stores may be conveyed to the brain via CGRP-sensory innervation from adipose tissue. More recently, it was demonstrated that mice lacking αCGRP are protected from obesity induced by high-fat diet and that CGRP regulates the content of lipid in liver, muscle and adipose tissue. CONCLUSIONS It is unclear the receptor responsible by CGRP effects, as well as whether this neuropeptide acts directly or indirectly in liver, muscle and adipose tissue.
Collapse
Affiliation(s)
- William Gustavo Lima
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | | | - Thaís Marques da Silva
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Valéria Ernestânia Chaves
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil.
| |
Collapse
|
5
|
In search of lost hepatocytes: sensory innervation, calcitonin gene-related peptide, and regeneration in the liver. J Surg Res 2013; 185:526-7. [DOI: 10.1016/j.jss.2013.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 01/02/2013] [Accepted: 01/11/2013] [Indexed: 11/24/2022]
|
6
|
Mizutani T, Yokoyama Y, Kokuryo T, Kawai K, Miyake T, Nagino M. Calcitonin gene-related peptide regulates the early phase of liver regeneration. J Surg Res 2012; 183:138-45. [PMID: 23218524 DOI: 10.1016/j.jss.2012.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 09/24/2012] [Accepted: 11/15/2012] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the expression of calcitonin gene-related peptide (CGRP) and its role in the liver regeneration process after 70% hepatectomy (Hx). MATERIALS AND METHODS Wistar rats were divided into eight groups based on time after Hx. Remnant liver samples were collected serially 0 h, 1 h, 6 h, 12 h, 1 d, 2 d, 7 d, and 14 d after Hx (n = 6 for each time point). The expression level of the calcitonin/CGRP gene in the remnant liver was measured. Western bolts and immunohistochemistry were performed to determine the levels of CGRP in the regenerating liver. Furthermore, CGRP8-37 (a CGRP receptor antagonist) was used to examine the role of CGRP during liver regeneration. RESULTS A marked upregulation of the calcitonin/CGRP gene was observed immediately after Hx, and the protein levels of CGRP in the liver, which were measured by western blot and immunohistochemistry, also rapidly increased after Hx. The liver regeneration rate was significantly attenuated by an administration of CGRP8-37 2 d after Hx. The mitotic index was evaluated by histologic examination 1 and 2 d after Hx and was also significantly lower in the CGRP8-37 group. In addition, CGRP8-37 treatment inhibited the phosphorylation of extracellular-signal regulated kinase 1/2. The levels of early response genes, such as c-fos, c-jun, and c-myc, were also downregulated by CGRP8-37. CONCLUSION The calcitonin/CGRP gene may have an important role in the early phase of liver regeneration after Hx.
Collapse
Affiliation(s)
- Tetsushi Mizutani
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Kroeger I, Erhardt A, Abt D, Fischer M, Biburger M, Rau T, Neuhuber WL, Tiegs G. The neuropeptide calcitonin gene-related peptide (CGRP) prevents inflammatory liver injury in mice. J Hepatol 2009; 51:342-53. [PMID: 19464067 DOI: 10.1016/j.jhep.2009.03.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 03/11/2009] [Accepted: 03/26/2009] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS Calcitonin gene-related peptide (CGRP) is a potent vasodilator and supposed to be responsible for neurogenic inflammation involved in migraine. Its role in inflammatory diseases of other organs is controversial and poorly investigated regarding liver inflammation, although the organ is innervated by CGRP containing primary sensory nerve fibers. METHODS Male Balb/c and IL-10(-/-) mice were pretreated with either alphaCGRP or the CGRP receptor antagonists CGRP(8-37) or BIBN4096BS. Immune-mediated liver injury was induced by administration of lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNFalpha) to galactosamine (GalN)-sensitized mice and evaluated by serum transaminase activities and cytokine levels. Furthermore, intrahepatic CGRP receptor expression and hepatic CGRP concentrations were examined. RESULTS CGRP receptor 1 was expressed by immune cells and hepatocytes in human and murine liver. During liver injury CGRP receptor expression was increased whereas hepatic CGRP concentrations concomitantly decreased. While CGRP receptor antagonists failed to affect liver damage, pretreatment with alphaCGRP protected mice from GalN/LPS-induced liver injury by suppression of the pro-inflammatory cytokine response independently from IL-10 but related to the induction of the transcriptional repressor inducible cAMP early repressor (ICER). In contrast, alphaCGRP failed to protect against GalN/TNFalpha-induced liver failure. CONCLUSION In the liver, CGRP exerts anti-inflammatory properties, which are characterized by a reduced production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Irena Kroeger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kamiyoshi A, Sakurai T, Ichikawa-Shindo Y, Iinuma N, Kawate H, Yoshizawa T, Koyama T, Muto SI, Shindo T. Endogenous alpha-calcitonin gene-related peptide mitigates liver fibrosis in chronic hepatitis induced by repeated administration of concanavalin A. Liver Int 2009; 29:642-9. [PMID: 18673438 DOI: 10.1111/j.1478-3231.2008.01841.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
BACKGROUND Alpha-calcitonin gene-related peptide (alphaCGRP) is a 37-amino acid pleiotropic peptide that we previously showed to exert a hepatoprotective effect during concanavalin A (Con A)-induced acute hepatitis. In the present study, we used alphaCGRP(-/-) mice to further investigate the antifibrogenic and hepatoprotective effects of endogenous alphaCGRP in Con A-induced chronic hepatitis. METHODS Chronic hepatitis was induced in alphaCGRP(-/-) and wild-type mice by repeated administration of Con A. Serum transaminases were measured to assess hepatic injury. The severity of fibrosis and the activation of hepatic stellate cells (HSCs) were analysed by Masson trichrome staining and immunohistochemical staining of alpha-smooth muscle actin (alpha-SMA) respectively. Altered expression of fibrosis- and inflammation-related genes was evaluated using a quantitative real-time polymerase chain reaction. Activation and proliferation of HSCs were analysed using both primary cultured HSCs from the mice and the LI90 HSC cell line. RESULTS alphaCGRP(-/-) mice showed more severe liver fibrosis than wild-type mice in a Con A-induced chronic hepatitis model. In histological and gene expression analyses, alphaCGRP(-/-) mice showed greater inflammatory and fibrotic changes, greater HSC activation and a higher incidence of apoptosis among nonparenchymal cells than wild-type mice. CONCLUSIONS Endogenous alphaCGRP mitigates liver fibrosis in chronic hepatitis induced by repeated administration of Con A. alphaCGRP could be a useful therapeutic target for the treatment of chronic hepatitis.
Collapse
Affiliation(s)
- Akiko Kamiyoshi
- Department of Organ Regeneration, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kamiyoshi A, Sakurai T, Ichikawa-Shindo Y, Fukuchi J, Kawate H, Muto SI, Tagawa YI, Shindo T. Endogenous αCGRP protects against concanavalin A-induced hepatitis in mice. Biochem Biophys Res Commun 2006; 343:152-8. [PMID: 16530166 DOI: 10.1016/j.bbrc.2006.02.132] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2006] [Accepted: 02/22/2006] [Indexed: 10/25/2022]
Abstract
To evaluate hepatoprotective effect of alpha-calcitonin gene-related peptide (alphaCGRP), we compared the susceptibilities of alphaCGRP-/- and wild-type mice to concanavalin A (Con A)-induced hepatitis. Twelve hours after Con A administration, serum transaminases were markedly higher in alphaCGRP-/- than wild-type mice, and much more extensive TUNEL-positive lesions and DNA fragmentation were detected in the livers of alphaCGRP-/- mice. Notably, expression of IL-6 was selectively diminished in alphaCGRP-/- mice, suggesting that induction of IL-6 during acute inflammatory responses is blunted in alphaCGRP-/- mice. In addition, primary cultured alphaCGRP-/- hepatocytes were more susceptible to IFN-gamma-induced cell death than hepatocytes from wild-type mice. Administration of exogenous alphaCGRP reduced the incidence of apoptosis among hepatocytes and endothelial cells. It thus appears that alphaCGRP exerts a hepatoprotective effect by modulating cytokine expression and preventing apoptosis.
Collapse
Affiliation(s)
- Akiko Kamiyoshi
- Department of Organ Regeneration, Shinshu University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Cooper GJS. Amylin and Related Proteins: Physiology and Pathophysiology. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Abstract
Multiple mediators have been implicated in the interactions between the liver and the lungs in various disease states. The best characterized mediator of liver-lung interaction is alpha 1-antitrypsin. Several cytokines and mediators may be involved in the pathogenesis of the hepatopulmonary syndrome and in the cytokine cascades that are activated in systemic inflammatory states such as acute respiratory distress syndrome. Hepatocyte growth factor or scatter factor is a recently described peptide with a broad range of biologic effects that may mediate lung-liver interactions.
Collapse
Affiliation(s)
- R J Panos
- Veterans Administration Lakeside Medical Center, Chicago, Illinois, USA
| | | |
Collapse
|