1
|
Humbard MA, Maupin-Furlow JA. Prokaryotic proteasomes: nanocompartments of degradation. J Mol Microbiol Biotechnol 2013; 23:321-34. [PMID: 23920495 DOI: 10.1159/000351348] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Proteasomes are self-compartmentalized energy-dependent proteolytic machines found in Archaea, Actinobacteria species of bacteria and eukaryotes. Proteasomes consist of two separate protein complexes, the core particle that hydrolyzes peptide bonds and an AAA+ ATPase domain responsible for the binding, unfolding and translocation of protein substrates into the core particle for degradation. Similarly to eukaryotes, proteasomes play a central role in protein degradation and can be essential in Archaea. Core particles associate with and utilize a variety of ATPase complexes to carry out protein degradation in Archaea. In actinobacterial species, such as Mycobacterium tuberculosis, proteasome-mediated degradation is associated with pathogenesis and does not appear to be essential. Interestingly, both actinobacterial species and Archaea use small proteins to covalently modify proteins, prokaryotic ubiquitin-like proteins (Pup) in Actinobacteria and ubiquitin-like small archaeal modifier proteins (SAMP) in Archaea. These modifications may play a role in proteasome targeting similar to the ubiquitin-proteasome system in eukaryotes.
Collapse
Affiliation(s)
- Matthew A Humbard
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md., USA
| | | |
Collapse
|
2
|
Maupin-Furlow JA, Kaczowka SJ, Reuter CJ, Zuobi-Hasona K, Gil MA. Archaeal proteasomes: potential in metabolic engineering. Metab Eng 2003; 5:151-63. [PMID: 12948749 DOI: 10.1016/s1096-7176(03)00030-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Archaea are a valuable source of enzymes for industrial and scientific applications because of their ability to survive extreme conditions including high salt and temperature. Thanks to advances in molecular biology and genetics, archaea are also attractive hosts for metabolic engineering. Understanding how energy-dependent proteases and chaperones function to maintain protein quality control is key to high-level synthesis of recombinant products. In archaea, proteasomes are central players in energy-dependent proteolysis and form elaborate nanocompartments that degrade proteins into oligopeptides by processive hydrolysis. The catalytic core responsible for this proteolytic activity is the 20S proteasome, a barrel-shaped particle with a central channel and axial gates on each end that limit substrate access to a central proteolytic chamber. AAA proteins (ATPases associated with various cellular activities) are likely to play several roles in mediating energy-dependent proteolysis by the proteasome. These include ATP binding/hydrolysis, substrate binding/unfolding, opening of the axial gates, and translocation of substrate into the proteolytic chamber.
Collapse
Affiliation(s)
- Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Room 1052, Building 981, Gainesville, FL 32611-0700, USA.
| | | | | | | | | |
Collapse
|
3
|
Maupin-Furlow JA, Kaczowka SJ, Ou MS, Wilson HL. Archaeal proteasomes: proteolytic nanocompartments of the cell. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:279-338. [PMID: 11677686 DOI: 10.1016/s0065-2164(01)50008-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- J A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | | | |
Collapse
|
4
|
Benner SA, Cannarozzi G, Gerloff D, Turcotte M, Chelvanayagam G. Bona Fide Predictions of Protein Secondary Structure Using Transparent Analyses of Multiple Sequence Alignments. Chem Rev 1997; 97:2725-2844. [PMID: 11851479 DOI: 10.1021/cr940469a] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steven A. Benner
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | | | | | | | | |
Collapse
|
5
|
Abstract
In this study we present an accurate secondary structure prediction procedure by using an query and related sequences. The most novel aspect of our approach is its reliance on local pairwise alignment of the sequence to be predicted with each related sequence rather than utilization of a multiple alignment. The residue-by-residue accuracy of the method is 75% in three structural states after jack-knife tests. The gain in prediction accuracy compared with the existing techniques, which are at best 72%, is achieved by secondary structure propensities based on both local and long-range effects, utilization of similar sequence information in the form of carefully selected pairwise alignment fragments, and reliance on a large collection of known protein primary structures. The method is especially appropriate for large-scale sequence analysis of efforts such as genome characterization, where precise and significant multiple sequence alignments are not available or achievable.
Collapse
Affiliation(s)
- D Frishman
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
6
|
|
7
|
Abstract
In the past years, much effort has been put on the development of new methodologies and algorithms for the prediction of protein secondary and tertiary structures from (sequence) data; this is reviewed in detail. New approaches for these predictions such as neural network methods, genetic algorithms, machine learning, and graph theoretical methods are discussed. Secondary structure prediction algorithms were improved mostly by considering families of related proteins; however, for the reliable tertiary structure modeling of proteins, knowledge-based techniques are still preferred. Methods and examples with more or less successful results are described. Also, programs and parameterizations for energy minimisations, molecular dynamics, and electrostatic interactions have been improved, especially with respect to their former limits of applicability. Other topics discussed in this review include the use of traditional and on-line databases, the docking problem and surface properties of biomolecules, packing of protein cores, de novo design and protein engineering, prediction of membrane protein structures, the verification and reliability of model structures, and progress made with currently available software and computer hardware. In summary, the prediction of the structure, function, and other properties of a protein is still possible only within limits, but these limits continue to be moved.
Collapse
Affiliation(s)
- G Böhm
- Institut für Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Germany
| |
Collapse
|
8
|
Zeng H, Parthasarathy R, Rampal AL, Jung CY. Proposed structure of putative glucose channel in GLUT1 facilitative glucose transporter. Biophys J 1996; 70:14-21. [PMID: 8770183 PMCID: PMC1224905 DOI: 10.1016/s0006-3495(96)79560-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A family of structurally related intrinsic membrane proteins (facilitative glucose transporters) catalyzes the movement of glucose across the plasma membrane of animal cells. Evidence indicates that these proteins show a common structural motif where approximately 50% of the mass is embedded in lipid bilayer (transmembrane domain) in 12 alpha-helices (transmembrane helices; TMHs) and accommodates a water-filled channel for substrate passage (glucose channel) whose tertiary structure is currently unknown. Using recent advances in protein structure prediction algorithms we proposed here two three-dimensional structural models for the transmembrane glucose channel of GLUT1 glucose transporter. Our models emphasize the physical dimension and water accessibility of the channel, loop lengths between TMHs, the macrodipole orientation in four-helix bundle motif, and helix packing energy. Our models predict that five TMHs, either TMHs 3, 4, 7, 8, 11 (Model 1) or TMHs 2, 5, 11, 8, 7 (Model 2), line the channel, and the remaining TMHs surround these channel-lining TMHs. We discuss how our models are compatible with the experimental data obtained with this protein, and how they can be used in designing new biochemical and molecular biological experiments in elucidation of the structural basis of this important protein function.
Collapse
Affiliation(s)
- H Zeng
- Department of Biophysical Sciences, State University of New York at Buffalo 14215, USA
| | | | | | | |
Collapse
|
9
|
Abstract
The smooth progression of the eukaryotic cell cycle relies on the periodic activation of members of a family of cell cycle kinases by regulatory proteins called cyclins. Outside of the cell cycle, cyclin homologs play important roles in regulating the assembly of transcription complexes; distant structural relatives of the conserved cyclin core or "box" can also function as general transcription factors (like TFIIB) or survive embedded in the chain of the tumor suppressor, retinoblastoma protein. The present work attempts the prediction of the canonical secondary, supersecondary, and tertiary fold of the minimal cyclin box domain using a combination of techniques that make use of the evolutionary information captured in a multiple alignment of homolog sequences. A tandem set of closely packed, helical modules are predicted to form the cyclin box domain.
Collapse
Affiliation(s)
- J F Bazan
- Protein Machine Group, Department of Molecular Biology, DNAX Research Institute, Palo Alto, California 94304-1104, USA
| |
Collapse
|
10
|
Oblatt-Montal M, Yamazaki M, Nelson R, Montal M. Formation of ion channels in lipid bilayers by a peptide with the predicted transmembrane sequence of botulinum neurotoxin A. Protein Sci 1995; 4:1490-7. [PMID: 8520474 PMCID: PMC2143195 DOI: 10.1002/pro.5560040806] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Synthetic peptides patterned after the predicted transmembrane sequence of botulinum toxin A were used as tools to identify an ion channel-forming motif. A peptide denoted BoTxATM, with the sequence GAVILLEFIPEIAI PVLGTFALV, forms cation-selective channels when reconstituted in planar lipid bilayers. As predicted, the self-assembled conductive oligomers express heterogeneous single-channel conductances. The most frequent openings exhibit single-channel conductance of 12 and 7 pS in 0.5 M NaCl, and 29 and 9 pS in 0.5 M KCl. In contrast, ion channels are not formed by a peptide of the same amino acid composition as BoTxATM with a scrambled sequence. Conformational energy calculations show that a bundle of four amphipathic alpha-helices is a plausible structural motif underlying the measured pore properties. These studies suggest that the identified module may play a functional role in the ion channel-forming activity of intact botulinum toxin A.
Collapse
Affiliation(s)
- M Oblatt-Montal
- Department of Biology, University of California San Diego, La Jolla 92093-0366, USA
| | | | | | | |
Collapse
|
11
|
Abstract
The past year has seen a consolidation of protein secondary structure prediction methods. The advantages of prediction from an aligned family of proteins have been highlighted by several accurate predictions made 'blind', before any X-ray or NMR structure was known for the family. New techniques that apply machine learning and discriminant analysis show promise as alternatives to neural networks.
Collapse
Affiliation(s)
- G J Barton
- Laboratory of Molecular Biophysics, Oxford, UK
| |
Collapse
|
12
|
Kopp F, Kristensen P, Hendil KB, Johnsen A, Sobek A, Dahlmann B. The human proteasome subunit HsN3 is located in the inner rings of the complex dimer. J Mol Biol 1995; 248:264-72. [PMID: 7537829 DOI: 10.1016/s0022-2836(95)80049-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Subunit HsN3 of the human proteasome is a beta-type subunit homologous to PRE4 from yeast, X1 beta from Xenopus and RN3 from the rat. Using electron microscopy, the binding sites of a monoclonal antibody with specificity for subunit HsN3 have been located in the two juxtaposed inner rings of the human proteasome. Subunit HsN3 was present in two copies, one in each ring, in accordance with our concept of two identical halves making up the complete human proteasome. The subunit is involved in the trypsin-like as well as the peptidylglutamyl-peptide cleavage activities.
Collapse
Affiliation(s)
- F Kopp
- Diabetes Forschungsinstitut, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Löwe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 1995; 268:533-9. [PMID: 7725097 DOI: 10.1126/science.7725097] [Citation(s) in RCA: 1167] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The three-dimensional structure of the proteasome from the archaebacterium Thermoplasma acidophilum has been elucidated by x-ray crystallographic analysis by means of isomorphous replacement and cyclic averaging. The atomic model was built and refined to a crystallographic R factor of 22.1 percent. The 673-kilodalton protease complex consists of 14 copies of two different subunits, alpha and beta, forming a barrel-shaped structure of four stacked rings. The two inner rings consist of seven beta subunits each, and the two outer rings consist of seven alpha subunits each. A narrow channel controls access to the three inner compartments. The alpha 7 beta 7 beta 7 alpha 7 subunit assembly has 72-point group symmetry. The structures of the alpha and beta subunits are similar, consisting of a core of two antiparallel beta sheets that is flanked by alpha helices on both sides. The binding of a peptide aldehyde inhibitor marks the active site in the central cavity at the amino termini of the beta subunits and suggests a novel proteolytic mechanism.
Collapse
Affiliation(s)
- J Löwe
- Max-Planck-Institut für Biochemie, Abteilung für Strukturforschung, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Seemüller E, Lupas A, Zühl F, Zwickl P, Baumeister W. The proteasome from Thermoplasma acidophilum is neither a cysteine nor a serine protease. FEBS Lett 1995; 359:173-8. [PMID: 7867793 DOI: 10.1016/0014-5793(95)00036-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The 20 S proteasome, found in eukaryotes and in the archaebacterium Thermoplasma acidophilum, forms the proteolytic core of the 26 S proteasome which is the central protease of the non-lysosomal protein degradation pathway. Inhibitor studies have indicated that the 20 S proteasome may be an unusual type of cysteine or serine protease and a recent study of the Thermoplasma beta subunit has indicated that it carries the proteolytic activity. We have attempted to obtain information on the nature of the active site by mutating the only cysteine, both histidines and two completely conserved aspartates in the archaebacterial complex as well as all serines of the beta subunit, without decreasing the catalytic activity of the enzyme to any significant extent. Indeed, mutation of the conserved aspartate in the beta subunit increased the activity of the proteasome threefold. We conclude that the proteasome is not a cysteine or serine protease.
Collapse
Affiliation(s)
- E Seemüller
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | |
Collapse
|
15
|
Koster AJ, Walz J, Lupas A, Baumeister W. Structural features of archaebacterial and eukaryotic proteasomes. Mol Biol Rep 1995; 21:11-20. [PMID: 7565658 DOI: 10.1007/bf00990965] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The 26S proteasome is the central protease of the ubiquitin-dependent pathway of protein degradation. The molecule has a molecular mass of approximately 2000 kD and has a highly conserved structure in eukaryotes. The 26S proteasome is formed by a barrel-shaped 20S core complex and two polar 19S complexes. The 20S complex has C2 symmetry and is formed by four seven-membered rings of which the outer rings (alpha-type subunits) are rotated by 25.7 degrees relative to the inner rings while the inner rings (beta-type subunits) are in register. From a comparison of the activity and regulation of the 26S and 20S particles it can be deduced that the 20S particle contains the protease activity while the 19S complex contains isopeptidase, ATPase and protein unfolding activities. In this article we describe the structures of various proteasome complexes as determined by electron microscopy and discuss structural implications of their subunit sequences.
Collapse
Affiliation(s)
- A J Koster
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | |
Collapse
|