1
|
Martinez Morales M, van der Walle CF, Derrick JP. Modulation of the Fibrillation Kinetics and Morphology of a Therapeutic Peptide by Cucurbit[7]uril. Mol Pharm 2023. [PMID: 37327060 DOI: 10.1021/acs.molpharmaceut.3c00185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fibrillation is a challenge commonly encountered in the formulation and development of therapeutic peptides. Cucurbit[7]urils (CB[7]), a group of water soluble macrocycles, have been reported to suppress fibrillation in insulin and human calcitonin through association with Phe and Tyr residues which drive fibril formation. Here, we report the effect of CB[7] on the fibrillation behavior of the HIV fusion inhibitor enfuvirtide (ENF) that contains N-terminal Tyr and C-terminal Phe residues. Thioflavin T fluorescence, CD spectroscopy, and transmission electron microscopy were used to monitor fibrillation behavior. Fibrillation onset showed a strong pH dependency, with pH 6.5 identified as the condition most suitable to monitor the effects of CB[7]. Binding of CB[7] to wild-type ENF was measured by isothermal titration calorimetry and was consistent with a single site (Ka = 2.4 × 105 M-1). A weaker interaction (Ka = 2.8 × 103 M-1) was observed for an ENF mutant with the C-terminal Phe substituted for Ala (ENFm), suggesting that Phe was the specific site for CB[7] recognition. The onset of ENF fibrillation onset was delayed, rather than fully suppressed, in the presence of CB[7]. The ENFm mutant showed a greater delay in fibrillation onset but with no observable effect on fibrillation kinetics in the presence of CB[7]. Interestingly, ENF/CB[7] and ENFm fibrils exhibited comparable morphologies, differing from those observed for ENF alone. The results indicate that CB[7] is capable of modulating fibrillation onset and the resulting ENF fibrils by specifically binding to the C-terminal Phe residue. The work reinforces the potential of CB[7] as an inhibitor of fibrillation and highlights its role in determining fibril morphologies.
Collapse
Affiliation(s)
- Marcello Martinez Morales
- Dosage Form Design & Development, AstraZeneca, Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
- School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PL, U.K
| | | | - Jeremy P Derrick
- School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
2
|
Braga SS. Molecular Mind Games: The Medicinal Action of Cyclodextrins in Neurodegenerative Diseases. Biomolecules 2023; 13:biom13040666. [PMID: 37189413 DOI: 10.3390/biom13040666] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Cyclodextrins are often used as molecular carriers for small active ingredients in medicine. Recently, the intrinsic medicinal activity of some of these compounds has been under investigation, mainly related to their ability to interfere with cholesterol and, therefore, prevent and treat cholesterol-related diseases such as cardiovascular disease and neuronal diseases arising from altered cholesterol and lipid metabolism. One of the most promising compounds within the cyclodextrin family is 2-hydroxypropyl-β-cyclodextrin (HPβCD), owing to its superior biocompatibility profile. This work presents the most recent advances in the research and clinical use of HPβCD against Niemann-Pick disease, a congenital condition involving cholesterol accumulation inside lysosomes in brain cells, Alzheimer's and Parkinson's. HPβCD plays a complex role in each of these ailments, going beyond the mere sequestering of cholesterol molecules and involving an overall regulation of protein expression that helps restore the normal functioning of the organism.
Collapse
Affiliation(s)
- Susana Santos Braga
- LAQV-REQUIMTE (Associated Laboratory for Green Chemistry), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Chakrovorty A, Bhattacharjee B, Saxena A, Samadder A, Nandi S. Current Naturopathy to Combat Alzheimer's Disease. Curr Neuropharmacol 2023; 21:808-841. [PMID: 36173068 PMCID: PMC10227918 DOI: 10.2174/1570159x20666220927121022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegeneration is the progressive loss of structure or function of neurons, which may ultimately involve cell death. The most common neurodegenerative disorder in the brain happens with Alzheimer's disease (AD), the most common cause of dementia. It ultimately leads to neuronal death, thereby impairing the normal functionality of the central or peripheral nervous system. The onset and prevalence of AD involve heterogeneous etiology, either in terms of genetic predisposition, neurometabolomic malfunctioning, or lifestyle. The worldwide relevancies are estimated to be over 45 million people. The rapid increase in AD has led to a concomitant increase in the research work directed towards discovering a lucrative cure for AD. The neuropathology of AD comprises the deficiency in the availability of neurotransmitters and important neurotrophic factors in the brain, extracellular betaamyloid plaque depositions, and intracellular neurofibrillary tangles of hyperphosphorylated tau protein. Current pharmaceutical interventions utilizing synthetic drugs have manifested resistance and toxicity problems. This has led to the quest for new pharmacotherapeutic candidates naturally prevalent in phytochemicals. This review aims to provide an elaborative description of promising Phyto component entities having activities against various potential AD targets. Therefore, naturopathy may combine with synthetic chemotherapeutics to longer the survival of the patients.
Collapse
Affiliation(s)
- Arnob Chakrovorty
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, 741235, India
| | - Banani Bhattacharjee
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, 741235, India
| | - Aaruni Saxena
- Department of Cardiovascular Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Asmita Samadder
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| |
Collapse
|
4
|
Kovacs T, Nagy P, Panyi G, Szente L, Varga Z, Zakany F. Cyclodextrins: Only Pharmaceutical Excipients or Full-Fledged Drug Candidates? Pharmaceutics 2022; 14:pharmaceutics14122559. [PMID: 36559052 PMCID: PMC9788615 DOI: 10.3390/pharmaceutics14122559] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclodextrins, representing a versatile family of cyclic oligosaccharides, have extensive pharmaceutical applications due to their unique truncated cone-shaped structure with a hydrophilic outer surface and a hydrophobic cavity, which enables them to form non-covalent host-guest inclusion complexes in pharmaceutical formulations to enhance the solubility, stability and bioavailability of numerous drug molecules. As a result, cyclodextrins are mostly considered as inert carriers during their medical application, while their ability to interact not only with small molecules but also with lipids and proteins is largely neglected. By forming inclusion complexes with cholesterol, cyclodextrins deplete cholesterol from cellular membranes and thereby influence protein function indirectly through alterations in biophysical properties and lateral heterogeneity of bilayers. In this review, we summarize the general chemical principles of direct cyclodextrin-protein interactions and highlight, through relevant examples, how these interactions can modify protein functions in vivo, which, despite their huge potential, have been completely unexploited in therapy so far. Finally, we give a brief overview of disorders such as Niemann-Pick type C disease, atherosclerosis, Alzheimer's and Parkinson's disease, in which cyclodextrins already have or could have the potential to be active therapeutic agents due to their cholesterol-complexing or direct protein-targeting properties.
Collapse
Affiliation(s)
- Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R & D Laboratory Ltd., H-1097 Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
5
|
Vezenkov LT, Danalev DL, Iwanov I, Lozanov V, Atanasov A, Todorova R, Vassilev N, Karadjova V. Synthesis and biological study of new galanthamine-peptide derivatives designed for prevention and treatment of Alzheimer 's disease. Amino Acids 2022; 54:897-910. [PMID: 35562605 DOI: 10.1007/s00726-022-03167-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/23/2022] [Indexed: 11/29/2022]
Abstract
The Alzheimer's disease leads to neurodegenerative processes and affecting negatively million people worldwide. The treatment of the disease is still difficult and incomplete in practice. Galanthamine is one of the most commonly used drugs against the illness. The main aim of this work is design and synthesis of new derivatives of galanthamine comprising peptide moiety as well as study of their β-secretase inhibitory activity and the anti-aggregating effect. All new derivatives of galanthamine containing analogues of Leu-Val-Phe-Phe (Aβ17-Aβ20) were synthesized in solution using fragment and consecutive condensation approaches. The new derivatives were characterized by melting points, NMR, and HPLC/MS. They were tested in vitro for β-secretase inhibition activity by means of fluorescent method and were investigated in vitro for anti-aggregation activity on sheep platelet-rich plasma. Although the new compounds do not contain a structural element responsible for the β-secretase inhibition, five of them show high or good β-secretase inhibitory activity between 19.98 and 51.19% with IC50 between 1.95 and 5.26 nM. Four of the new molecules were able to inhibit platelet aggregation between 55.0 and 90.0% with IC50 between 0.69 and 1.36 µM. Four of the compounds were able to inhibit platelet aggregation and two of them have high anti-aggregating effects.
Collapse
Affiliation(s)
| | - Dancho L Danalev
- University of Chemical Technology and Metallurgy, Sofia, 1756, Bulgaria.
| | - Iwan Iwanov
- University of Chemical Technology and Metallurgy, Sofia, 1756, Bulgaria
| | - Valentin Lozanov
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, Sofia, 1000, Bulgaria
| | - Atanas Atanasov
- Medical Faculty, Trakia University, Stara Zagora, 6000, Bulgaria
| | - Rumyana Todorova
- Medical Faculty, Trakia University, Stara Zagora, 6000, Bulgaria
| | - Nikolay Vassilev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | | |
Collapse
|
6
|
Puglisi A, Bassini S, Reimhult E. Cyclodextrin-Appended Superparamagnetic Iron Oxide Nanoparticles as Cholesterol-Mopping Agents. Front Chem 2021; 9:795598. [PMID: 34869239 PMCID: PMC8636776 DOI: 10.3389/fchem.2021.795598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Cholesterol plays a crucial role in major cardiovascular and neurodegenerative diseases, including Alzheimer's disease and rare genetic disorders showing altered cholesterol metabolism. Cyclodextrins (CDs) have shown promising therapeutic efficacy based on their capacity to sequester and mobilise cholesterol. However, the administration of monomeric CDs suffers from several drawbacks due to their lack of specificity and poor pharmacokinetics. We present core-shell superparamagnetic iron oxide nanoparticles (SPIONs) functionalised with CDs appended to poly (2-methyl-2-oxazoline) polymers grafted in a dense brush to the iron oxide core. The CD-decorated nanoparticles (CySPIONs) are designed so that the macrocycle is specifically cleaved off the nanoparticle's shell at a slightly acidic pH. In the intended use, free monomeric CDs will then mobilise cholesterol out of the lysosome to the cytosol and beyond through the formation of an inclusion complex. Hence, its suitability as a therapeutic platform to remove cholesterol in the lysosomal compartment. Synthesis and full characterization of the polymer as well as of the core-shell SPION are presented. Cholesterol-binding activity is shown through an enzymatic assay.
Collapse
Affiliation(s)
- Antonino Puglisi
- Department of Nanobiotechnology, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Simone Bassini
- Department of Nanobiotechnology, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.,Life Sciences Department, University of Modena and Reggio Emilia, Modena, Italy
| | - Erik Reimhult
- Department of Nanobiotechnology, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
7
|
Abstract
Introduction: Prion diseases are a class of rare and fatal neurodegenerative diseases for which no cure is currently available. They are characterized by conformational conversion of cellular prion protein (PrPC) into the disease-associated 'scrapie' isoform (PrPSc). Under an etiological point of view, prion diseases can be divided into acquired, genetic, and idiopathic form, the latter of which are the most frequent.Areas covered: Therapeutic approaches targeting prion diseases are based on the use of chemical and nature-based compounds, targeting either PrPC or PrPSc or other putative player in pathogenic mechanism. Other proposed anti-prion treatments include passive and active immunization strategies, peptides, aptamers, and PrPC-directed RNA interference techniques. The treatment efficacy has been mainly assessed in cell lines or animal models of the disease testing their ability to reduce prion accumulation.Expert opinion: The assessed strategies focussing on the identification of an efficient anti-prion therapy faced various issues, which go from permeation of the blood brain barrier to immunological tolerance of the host. Indeed, the use of combinatory approaches, which could boost a synergistic anti-prion effect and lower the potential side effects of single treatments and may represent an extreme powerful and feasible way to tackle prion disease.
Collapse
Affiliation(s)
- Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| |
Collapse
|
8
|
Cyclodextrin Monomers and Polymers for Drug Activity Enhancement. Polymers (Basel) 2021; 13:polym13111684. [PMID: 34064190 PMCID: PMC8196804 DOI: 10.3390/polym13111684] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclodextrins (CDs) and cyclodextrin (CD)-based polymers are well-known complexing agents. One of their distinctive features is to increase the quantity of a drug in a solution or improve its delivery. However, in certain instances, the activity of the solutions is increased not only due to the increase of the drug dose but also due to the drug complexation. Based on numerous studies reviewed, the drug appeared more active in a complex form. This review aims to summarize the performance of CDs and CD-based polymers as activity enhancers. Accordingly, the review is divided into two parts, i.e., the effect of CDs as active drugs and as enhancers in antimicrobials, antivirals, cardiovascular diseases, cancer, neuroprotective agents, and antioxidants.
Collapse
|
9
|
Ben Mihoub A, Acherar S, Frochot C, Malaplate C, Yen FT, Arab-Tehrany E. Synthesis of New Water Soluble β-Cyclodextrin@Curcumin Conjugates and In Vitro Safety Evaluation in Primary Cultures of Rat Cortical Neurons. Int J Mol Sci 2021; 22:ijms22063255. [PMID: 33806807 PMCID: PMC8004725 DOI: 10.3390/ijms22063255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/01/2023] Open
Abstract
Self-aggregation of Curcumin (Cur) in aqueous biological environment decreases its bioavailability and in vivo therapeutic efficacy, which hampers its clinical use as candidate for reducing risk of neurodegenerative diseases. Here, we focused on the design of new Cur- β-Cyclodextrin nanoconjugates to improve the solubility and reduce cell toxicity of Cur. In this study, we described the synthesis, structural characterization, photophysical properties and neuron cell toxicity of two new water soluble β-CD/Cur nanoconjugates as new strategy for reducing risks of neurodegenerative diseases. Cur was coupled to one or two β-CD molecules via triazole rings using CuAAC click chemistry strategy to yield β-CD@Cur and (β-CD)2@Cur nanoconjugates, respectively. The synthesized nanoconjugates were found to be able to self-assemble in aqueous condition and form nano-aggregates of an average diameter size of around 35 and 120 nm for β-CD@Cur and (β-CD)2@Cur, respectively. The photophysical properties, water solubility and cell toxicity on rat embryonic cortical neurons of the designed nanoconjugates were investigated and compared to that of Cur alone. The findings revealed that both new nanoconjugates displayed better water solubility and in vitro biocompatibility than Cur alone, thus making it possible to envisage their use as future nano-systems for the prevention or risk reduction of neurodegenerative diseases.
Collapse
Affiliation(s)
- Amina Ben Mihoub
- LIBio Laboratory, Université de Lorraine, F-54000 Nancy, France
- LCPM, CNRS, Université de Lorraine, F-54000 Nancy, France
- LRGP, CNRS, Université de Lorraine, F-54000 Nancy, France;
- Correspondence: (A.B.M.); (S.A.); (E.A.-T.)
| | - Samir Acherar
- LCPM, CNRS, Université de Lorraine, F-54000 Nancy, France
- Correspondence: (A.B.M.); (S.A.); (E.A.-T.)
| | - Céline Frochot
- LRGP, CNRS, Université de Lorraine, F-54000 Nancy, France;
| | - Catherine Malaplate
- URAFPA, INRAE, Université de Lorraine, F-54000 Nancy, France; (C.M.); (F.T.Y.)
| | - Frances T. Yen
- URAFPA, INRAE, Université de Lorraine, F-54000 Nancy, France; (C.M.); (F.T.Y.)
| | - Elmira Arab-Tehrany
- LIBio Laboratory, Université de Lorraine, F-54000 Nancy, France
- Correspondence: (A.B.M.); (S.A.); (E.A.-T.)
| |
Collapse
|
10
|
Nicolosi M, Bellia F, Giuffrida ML, Zimbone S, Oliveri V, Vecchio G. Synthesis and biological evaluation of novel β-cyclodextrin-fluvastatin conjugates. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Matencio A, Caldera F, Cecone C, López-Nicolás JM, Trotta F. Cyclic Oligosaccharides as Active Drugs, an Updated Review. Pharmaceuticals (Basel) 2020; 13:E281. [PMID: 33003610 PMCID: PMC7601923 DOI: 10.3390/ph13100281] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022] Open
Abstract
There have been many reviews of the cyclic oligosaccharide cyclodextrin (CD) and CD-based materials used for drug delivery, but the capacity of CDs to complex different agents and their own intrinsic properties suggest they might also be considered for use as active drugs, not only as carriers. The aim of this review is to summarize the direct use of CDs as drugs, without using its complexing potential with other substances. The direct application of another oligosaccharide called cyclic nigerosyl-1,6-nigerose (CNN) is also described. The review is divided into lipid-related diseases, aggregation diseases, antiviral and antiparasitic activities, anti-anesthetic agent, function in diet, removal of organic toxins, CDs and collagen, cell differentiation, and finally, their use in contact lenses in which no drug other than CDs are involved. In the case of CNN, its application as a dietary supplement and immunological modulator is explained. Finally, a critical structure-activity explanation is provided.
Collapse
Affiliation(s)
- Adrián Matencio
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| | - Fabrizio Caldera
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| | - Claudio Cecone
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Espinardo, Murcia, Spain;
| | - Francesco Trotta
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| |
Collapse
|
12
|
Liu X, Ding D, Chen GD, Li L, Jiang H, Salvi R. 2-Hydroxypropyl-β-cyclodextrin Ototoxicity in Adult Rats: Rapid Onset and Massive Destruction of Both Inner and Outer Hair Cells Above a Critical Dose. Neurotox Res 2020; 38:808-823. [PMID: 32607920 DOI: 10.1007/s12640-020-00252-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
2-Hydroxypropyl-β-cyclodextrin (HPβCD), a cholesterol chelator, is being used to treat diseases associated with abnormal cholesterol metabolism such as Niemann-Pick C1 (NPC1). However, the high doses of HPβCD needed to slow disease progression may cause hearing loss. Previous studies in mice have suggested that HPβCD ototoxicity results from selective outer hair cell (OHC) damage. However, it is unclear if HPβCD causes the same type of damage or is more or less toxic to other species such as rats, which are widely used in toxicity research. To address these issues, rats were given a subcutaneous injection of HPβCD between 500 and 4000 mg/kg. Distortion product otoacoustic emissions (DPOAE), the cochlear summating potential (SP), and compound action potential (CAP) were used to assess cochlear function followed by quantitative analysis of OHC and inner hair cell (IHC) loss. The 3000- and 4000-mg/kg doses abolished DPOAE and greatly reduced SP and CAP amplitudes. These functional deficits were associated with nearly complete loss of OHC as well as ~ 80% IHC loss over the basal two thirds of the cochlea. The 2000-mg/kg dose abolished DPOAE and significantly reduced SP and CAP amplitudes at the high frequencies. These deficits were linked to OHC and IHC losses in the high-frequency region of the cochlea. Little or no damage occurred with 500 or 1000 mg/kg of HPβCD. The HPβCD-induced functional and structural deficits in rats occurred suddenly, involved damage to both IHC and OHC, and were more severe than those reported in mice.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Dalian Ding
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Li Li
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Haiyan Jiang
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
13
|
Karthi S, Sumitha KC, Geetha M, Appukuttan PS. Amyloid β Binds to Albumin-Associated Lrp-Like Plasma O-Glycoproteins: Albumin Prevents Inhibition of Binding by LDL. Protein Pept Lett 2019; 26:869-878. [PMID: 37020364 DOI: 10.2174/0929866526666190722151027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/16/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022]
Abstract
<P>Background: Albumin was reported to engage nearly 95% of plasma Amyloid β (Aβ)
and to reverse Aβ fibril formation in brain.
</P><P>
Objective: Since O-glycosylated LRP family of receptors capture Aβ in brain we compared Aβ
binding to electrophoretically purified albumin and to O-glycoproteins AOP1 and AOP2 that
adhere noncovalently to plasma albumin.
</P><P>
Methods: Strength of Aβ-protein interaction was measured as fluorescence increase in Fluorescentlabeled
Aβ (F-Aβ) resulting from conformational changes. Alternatively, differential segregation of
free and protein-bound Aβ in Density Gradient Ultracentrifugation (DGUC) was also examined.
</P><P>
Results: Fluorescence enhancement in F-Aβ was significantly greater by AOP1 and AOP2 than by
known Aβ reactants α -synuclein and β -cyclodextrin, but nil by albumin. In DGUC Aβ migrated
with the O-glycoproteins but not with albumin. Free O-glycoproteins unlike their albumin-bound
forms were blocked by LDL from capturing F-Aβ. Associated albumin did not affect Aβ binding of
O-glycoproteins. De-O-glycosylation of AOP1/AOP2 enhanced their Aβ binding showing that
peptide sequences at O-glycosylated regions were recognized by Aβ. Unlike albumin, AOP1 and
AOP2 were immunologically cross-reactive with LRP. Albumin sample used earlier to report
albumin-Aβ interaction contained two O-glycoproteins cross-reactive with human LRP and equal in
size to human AOP1 or AOP2.
</P><P>
Conclusion: Unlike albumin, albumin-bound O-glycoproteins, immunologically cross-reactive
with LRP, bind plasma Aβ. These O-glycoproteins are potential anti-amyloidogenic therapeutics if
they inhibit Aβ aggregation as other Aβ reactants do. Circulating immune complexes of albuminbound
O-glycoproteins with O-glycoprotein-specific natural antibodies can bind further to LRP-like
membrane proteins and are possible O-glycoprotein transporters to tissues.</P>
Collapse
Affiliation(s)
- Sreedevi Karthi
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695011, Kerala, India
| | - K. C. Sumitha
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695011, Kerala, India
| | - Mandagini Geetha
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695011, Kerala, India
| | - Padinjaradath S. Appukuttan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695011, Kerala, India
| |
Collapse
|
14
|
Ştefănescu R, Stanciu GD, Luca A, Caba IC, Tamba BI, Mihai CT. Contributions of Mass Spectrometry to the Identification of Low Molecular Weight Molecules Able to Reduce the Toxicity of Amyloid-β Peptide to Cell Cultures and Transgenic Mouse Models of Alzheimer's Disease. Molecules 2019; 24:E1167. [PMID: 30909659 PMCID: PMC6471768 DOI: 10.3390/molecules24061167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's Disease affects approximately 33 million people worldwide and is characterized by progressive loss of memory at the cognitive level. The formation of toxic amyloid oligomers, extracellular amyloid plaques and amyloid angiopathy in brain by amyloid beta peptides are considered a part of the identified mechanism involved in disease pathogenesis. The optimal treatment approach leads toward finding a chemical compound able to form a noncovalent complex with the amyloid peptide thus blocking the process of amyloid aggregation. This direction gained an increasing interest lately, many studies demonstrating that mass spectrometry is a valuable method useful for the identification and characterization of such molecules able to interact with amyloid peptides. In the present review we aim to identify in the scientific literature low molecular weight chemical compounds for which there is mass spectrometric evidence of noncovalent complex formation with amyloid peptides and also there are toxicity reduction results which verify the effects of these compounds on amyloid beta toxicity towards cell cultures and transgenic mouse models developing Alzheimer's Disease.
Collapse
Affiliation(s)
- Raluca Ştefănescu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universității Street, 700115 Iaşi, Romania.
| | - Gabriela Dumitriṭa Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universității Street, 700115 Iaşi, Romania.
| | - Andrei Luca
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universității Street, 700115 Iaşi, Romania.
| | - Ioana Cezara Caba
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universității Street, 700115 Iaşi, Romania.
- Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universităṭii Street, 700115 Iaşi, Romania.
| | - Bogdan Ionel Tamba
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universității Street, 700115 Iaşi, Romania.
| | - Cosmin Teodor Mihai
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universității Street, 700115 Iaşi, Romania.
| |
Collapse
|
15
|
Modulation of aggregation of silk fibroin by synergistic effect of the complex of curcumin and β-cyclodextrin. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2019; 1867:416-425. [PMID: 30677520 DOI: 10.1016/j.bbapap.2019.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/14/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023]
Abstract
Amyloid aggregation has been associated with numerous human pathological diseases. A recent study has demonstrated that silk fibroin intermittently endorses amyloidogenesis in vivo. In the current study, we explored the propensity of silk fibroin to undergo amyloid-like aggregation and its prevention using an optimized concoction of curcumin with β-cyclodextrin. Aggregation of silk fibroin resulted in the formation of fibrils with a diameter of ~3.2 nm. However, addition of the optimized concentration of curcumin and β-cyclodextrin to silk fibroin inhibited aggregation and preserved the random coil conformation even under aggregation inducing conditions, as demonstrated by CD and FTIR spectroscopy. Benzene rings of curcumin interact with the aromatic residues of fibroin via hydrophobic interactions. However, β-cyclodextrin preferentially interacts with the non-polar residues, which are the core components for nucleation dependent protein aggregation. The present study demonstrates the ability of the concoction of curcumin and β-cyclodextrin in tuning the self assembly process of fibroin. It also provides a platform to explore the assembly process of nano-fibril and hierarchical structures in vitro along with a novel insight for designing clinically relevant silk-based functional biomaterials.
Collapse
|
16
|
Dubey P, Ghosh S, Banerjee S. WITHDRAWN: Synergistic Effect of Curcumin and β-cyclodextrin on Inhibition of Silk Fibroin Self Assembly. Arch Biochem Biophys 2018:S0003-9861(18)30514-9. [PMID: 30145114 DOI: 10.1016/j.abb.2018.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/12/2018] [Accepted: 08/21/2018] [Indexed: 11/21/2022]
Affiliation(s)
- Priyanka Dubey
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sourabh Ghosh
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sauradipta Banerjee
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
17
|
Kuperman M, Chernii S, Varzatskii O, Zhdanov A, Bykov A, Zhizhin K, Yarmoluk S, Kovalska V. The Discovery of the Effect of closo
-Borate on Amyloid Fibril Formation. ChemistrySelect 2017. [DOI: 10.1002/slct.201701936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Marina Kuperman
- Institute of Molecular Biology and Genetics NASU; 150 Zabolotnogo St. 03143 Kyiv Ukraine
| | - Svitlana Chernii
- Institute of Molecular Biology and Genetics NASU; 150 Zabolotnogo St. 03143 Kyiv Ukraine
| | - Oleg Varzatskii
- Institute of General and Inorganic Chemistry NASU; 32/34 Palladin Av. 03080 Kyiv Ukraine
| | - Andrey Zhdanov
- Kumakov Institute of General and Inorganic Chemistry; 31 Leninskii Av. 119071 Moscow, the Russian Federation
| | - Alexander Bykov
- Kumakov Institute of General and Inorganic Chemistry; 31 Leninskii Av. 119071 Moscow, the Russian Federation
| | - Konstantin Zhizhin
- Kumakov Institute of General and Inorganic Chemistry; 31 Leninskii Av. 119071 Moscow, the Russian Federation
| | - Sergiy Yarmoluk
- Institute of Molecular Biology and Genetics NASU; 150 Zabolotnogo St. 03143 Kyiv Ukraine
| | - Vladyslava Kovalska
- Institute of Molecular Biology and Genetics NASU; 150 Zabolotnogo St. 03143 Kyiv Ukraine
| |
Collapse
|
18
|
Yang DS, Stavrides P, Kumar A, Jiang Y, Mohan PS, Ohno M, Dobrenis K, Davidson CD, Saito M, Pawlik M, Huo C, Walkley SU, Nixon RA. Cyclodextrin has conflicting actions on autophagy flux in vivo in brains of normal and Alzheimer model mice. Hum Mol Genet 2017; 26:843-859. [PMID: 28062666 DOI: 10.1093/hmg/ddx001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/03/2016] [Indexed: 12/13/2022] Open
Abstract
2-hydroxypropyl-β-cyclodextrin (CYCLO), a modifier of cholesterol efflux from cellular membrane and endo-lysosomal compartments, reduces lysosomal lipid accumulations and has therapeutic effects in animal models of Niemann-Pick disease type C and several other neurodegenerative states. Here, we investigated CYCLO effects on autophagy in wild-type mice and TgCRND8 mice-an Alzheimer's Disease (AD) model exhibiting β-amyloidosis, neuronal autophagy deficits leading to protein and lipid accumulation within greatly enlarged autolysosomes. A 14-day intracerebroventricular administration of CYCLO to 8-month-old TgCRND8 mice that exhibit moderately advanced neuropathology markedly diminished the sizes of enlarged autolysosomes and lowered their content of GM2 ganglioside and Aβ-immunoreactivity without detectably altering amyloid precursor protein processing or extracellular Aβ/β-amyloid burden. We identified two major actions of CYCLO on autophagy underlying amelioration of lysosomal pathology. First, CYCLO stimulated lysosomal proteolytic activity by increasing cathepsin D activity, levels of cathepsins B and D and two proteins known to interact with cathepsin D, NPC1 and ABCA1. Second, CYCLO impeded autophagosome-lysosome fusion as evidenced by the accumulation of LC3, SQSTM1/p62, and ubiquitinated substrates in an expanded population of autophagosomes in the absence of greater autophagy induction. By slowing substrate delivery to lysosomes, autophagosome maturational delay, as further confirmed by our in vitro studies, may relieve lysosomal stress due to accumulated substrates. These findings provide in vivo evidence for lysosomal enhancing properties of CYCLO, but caution that prolonged interference with cellular membrane fusion/autophagosome maturation could have unfavorable consequences, which might require careful optimization of dosage and dosing schedules.
Collapse
Affiliation(s)
- Dun-Sheng Yang
- Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | | | - Asok Kumar
- Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Ying Jiang
- Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Panaiyur S Mohan
- Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Masuo Ohno
- Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Cristin D Davidson
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mitsuo Saito
- Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | | | | | - Steven U Walkley
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ralph A Nixon
- Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA.,Cell Biology, New York University Langone Medical Center, New York, NY, USA
| |
Collapse
|
19
|
Duez Q, Knight G, Daly S, De Winter J, Halin E, MacAleese L, Antoine R, Gerbaux P, Dugourd P. Action-FRET of β-cyclodextrin inclusion complexes. NEW J CHEM 2017. [DOI: 10.1039/c6nj03250h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Action-FRET is introduced as an original method to probe the structure of gaseous non-covalent complexes.
Collapse
Affiliation(s)
- Quentin Duez
- Organic Synthesis and Mass Spectrometry Laboratory
- Interdisciplinary Center for Mass Spectrometry (CISMa)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons - UMONS
- 7000 Mons
| | - Geoffrey Knight
- Univ Lyon
- Université Claude Bernard Lyon 1
- CNRS
- Institut Lumière Matière
- Villeurbanne
| | - Steven Daly
- Univ Lyon
- Université Claude Bernard Lyon 1
- CNRS
- Institut Lumière Matière
- Villeurbanne
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory
- Interdisciplinary Center for Mass Spectrometry (CISMa)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons - UMONS
- 7000 Mons
| | - Emilie Halin
- Organic Synthesis and Mass Spectrometry Laboratory
- Interdisciplinary Center for Mass Spectrometry (CISMa)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons - UMONS
- 7000 Mons
| | - Luke MacAleese
- Univ Lyon
- Université Claude Bernard Lyon 1
- CNRS
- Institut Lumière Matière
- Villeurbanne
| | - Rodolphe Antoine
- Univ Lyon
- Université Claude Bernard Lyon 1
- CNRS
- Institut Lumière Matière
- Villeurbanne
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory
- Interdisciplinary Center for Mass Spectrometry (CISMa)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons - UMONS
- 7000 Mons
| | - Philippe Dugourd
- Univ Lyon
- Université Claude Bernard Lyon 1
- CNRS
- Institut Lumière Matière
- Villeurbanne
| |
Collapse
|
20
|
di Cagno MP. The Potential of Cyclodextrins as Novel Active Pharmaceutical Ingredients: A Short Overview. Molecules 2016; 22:molecules22010001. [PMID: 28029138 PMCID: PMC6155938 DOI: 10.3390/molecules22010001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides of natural origin that were discovered more than 100 years ago. The peculiar cone-like conformation of the sugar ring, expressing a lipophilic cavity and a hydrophilic external surface, allows these substances to spontaneously complex poorly soluble compounds in an aqueous environment. For more than 50 years, these substances have found applicability in the pharmaceutical and food industries as solubilizing agents for poorly soluble chemical entities. Nowadays, several research groups all over the world are investigating their potential as active pharmaceutical ingredients (APIs) for the treatment of several illnesses (e.g., hypercholesterolemia, cancer, Niemann-Pick Type C disease). The aim of this review is to briefly retrace cyclodextrins’ legacy as complexing agents and describe the current and future prospects of this class of chemical entities in pharmaceutics as new APIs.
Collapse
Affiliation(s)
- Massimiliano Pio di Cagno
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø, The Arctic University of Norway, 9019 Tromsø, Norway.
| |
Collapse
|
21
|
Coisne C, Tilloy S, Monflier E, Wils D, Fenart L, Gosselet F. Cyclodextrins as Emerging Therapeutic Tools in the Treatment of Cholesterol-Associated Vascular and Neurodegenerative Diseases. Molecules 2016; 21:E1748. [PMID: 27999408 PMCID: PMC6273856 DOI: 10.3390/molecules21121748] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases, like atherosclerosis, and neurodegenerative diseases affecting the central nervous system (CNS) are closely linked to alterations of cholesterol metabolism. Therefore, innovative pharmacological approaches aiming at counteracting cholesterol imbalance display promising therapeutic potential. However, these approaches need to take into account the existence of biological barriers such as intestinal and blood-brain barriers which participate in the organ homeostasis and are major defense systems against xenobiotics. Interest in cyclodextrins (CDs) as medicinal agents has increased continuously based on their ability to actively extract lipids from cell membranes and to provide suitable carrier system for drug delivery. Many novel CD derivatives are constantly generated with the objective to improve CD bioavailability, biocompatibility and therapeutic outcomes. Newly designed drug formulation complexes incorporating CDs as drug carriers have demonstrated better efficiency in treating cardiovascular and neurodegenerative diseases. CD-based therapies as cholesterol-sequestrating agent have recently demonstrated promising advances with KLEPTOSE® CRYSMEB in atherosclerosis as well as with the 2-hydroxypropyl-β-cyclodextrin (HPβCD) in clinical trials for Niemann-Pick type C disease. Based on this success, many investigations evaluating the therapeutical beneficial of CDs in Alzheimer's, Parkinson's and Huntington's diseases are currently on-going.
Collapse
Affiliation(s)
- Caroline Coisne
- Laboratoire de la barrière hémato-encéphalique (LBHE), University Artois, EA 2465, Lens, F-62300, France.
| | - Sébastien Tilloy
- Unité de Catalyse et de Chimie du Solide (UCCS), University Artois, CNRS, UMR 8181, Lens, F-62300, France.
| | - Eric Monflier
- Unité de Catalyse et de Chimie du Solide (UCCS), University Artois, CNRS, UMR 8181, Lens, F-62300, France.
| | - Daniel Wils
- ROQUETTE, Nutrition & Health R & D, 62136 Lestrem, France.
| | - Laurence Fenart
- Laboratoire de la barrière hémato-encéphalique (LBHE), University Artois, EA 2465, Lens, F-62300, France.
| | - Fabien Gosselet
- Laboratoire de la barrière hémato-encéphalique (LBHE), University Artois, EA 2465, Lens, F-62300, France.
| |
Collapse
|
22
|
Yalcin A, Soddu E, Turunc Bayrakdar E, Uyanikgil Y, Kanit L, Armagan G, Rassu G, Gavini E, Giunchedi P. Neuroprotective Effects of Engineered Polymeric Nasal Microspheres Containing Hydroxypropyl-β-cyclodextrin on β-Amyloid (1-42)-Induced Toxicity. J Pharm Sci 2016; 105:2372-80. [PMID: 27353207 DOI: 10.1016/j.xphs.2016.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/19/2016] [Accepted: 05/19/2016] [Indexed: 12/31/2022]
Abstract
β-Amyloid (Aβ) plaques are the key neurotoxic assemblies in Alzheimer disease. It has been suggested that an interaction occurs between membrane cholesterol and Aβ aggregation in the brain. Cyclodextrins can remove cholesterol from cell membranes and change receptor function. This study aimed to investigate the effect of hydroxypropyl-β-cyclodextrin (HP-CD) polymeric microspheres, based on chitosan or sodium alginate, on the levels of lipid peroxidation, reactive oxygen species production, and mitochondrial function in brain synaptosomes. The effect of microspheres on DNA fragmentation, the expression of Bcl-2, Bax, and Apex1 mRNAs in rat hippocampus after Aβ(1-42) peptide-induced neurotoxicity was also evaluated. Comparison with HP-CD raw material was performed. Aβ(1-42) treatment significantly decreased the mitochondrial activity of Apex1 and Bcl-2 mRNAs, induced DNA fragmentation, and increased mRNA levels of Bax. Treatment with HP-CD microspheres against Aβ(1-42) significantly reduced DNA fragmentation and increased the Bcl-2/Bax mRNA ratio and mitochondrial function. In addition, HP-CD microspheres used against Aβ(1-42) decreased the levels of lipid peroxidation and reactive oxygen species production. These results indicate that nasally administered spray-dried HP-CD microspheres are able to provide protection against Aβ(1-42)-induced neurotoxicity, due to the suppressed levels of oxidative stress and apoptotic signals in the rat hippocampus.
Collapse
Affiliation(s)
- Ayfer Yalcin
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey; Department of Neurosciences, Health Science Institute, Ege University, Bornova, Izmir 35100, Turkey
| | - Elena Soddu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari 07100, Italy
| | - Ezgi Turunc Bayrakdar
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey
| | - Yigit Uyanikgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Bornova, Izmir 35100, Turkey
| | - Lutfiye Kanit
- Department of Neurosciences, Health Science Institute, Ege University, Bornova, Izmir 35100, Turkey; Department of Physiology, Faculty of Medicine, Ege University, Bornova, Izmir 35100, Turkey
| | - Guliz Armagan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey
| | - Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari 07100, Italy
| | - Elisabetta Gavini
- Department of Chemistry and Pharmacy, University of Sassari, Sassari 07100, Italy.
| | - Paolo Giunchedi
- Department of Chemistry and Pharmacy, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
23
|
Giglio V, Bellia F, Oliveri V, Vecchio G. Aminocyclodextrin Oligomers as Protective Agents of Protein Aggregation. Chempluschem 2016; 81:660-665. [PMID: 31968719 DOI: 10.1002/cplu.201600239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Indexed: 12/12/2022]
Abstract
Over 30 different amyloid proteins and a number of corresponding protein-misfolding diseases have been identified. Among these is Alzheimer's disease, the most common neurodegenerative disorder. The treatment of these diseases is still a goal to reach and many molecules have been studied in this context. Among these, the cyclodextrins have shown interesting potential as agents against protein aggregation (antiaggregants). On the basis of this interest, we investigated the effect on protein aggregation of some oligomers of β-cyclodextrins. In particular, it was found that amino oligomers show good inhibition of β-amyloid aggregation in the micromolar concentration range. The presence of both a multicavity system and amino groups seems to be essential for preventing protein aggregation.
Collapse
Affiliation(s)
- Valentina Giglio
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Francesco Bellia
- Istituto di Biostrutture e Bioimmagini, CNR, Via P. Gaifami 18, 95126, Catania, Italy
| | - Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125, Catania, Italy.,Consorzio Interuniversitario di Ricerca, in Chimica dei Metalli nei Sistemi Biologici, C.I.R.C.M.S.B., Unità di Ricerca di Catania, 95125, Catania, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
24
|
Oliveri V, Vecchio G. Cyclodextrins as Protective Agents of Protein Aggregation: An Overview. Chem Asian J 2016; 11:1648-57. [PMID: 27037956 DOI: 10.1002/asia.201600259] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Indexed: 11/08/2022]
Abstract
Cyclodextrins are extensively used in different fields (e.g., catalysis, chromatography, pharma, supramolecular chemistry, bioorganic chemistry, and bioinorganic chemistry), and their applications have been widely reviewed. Their main application in the field of pharmaceutical is as a drug carrier. This review overviews, for the first time, the use of cyclodextrins and their derivatives as antiaggregant agents in a number of proteins (e.g., amyloid-β, insulin, recombinant human growth hormone, prion protein, transthyretin, and α-synuclein) and some multimeric enzymes. There are many diseases that are correlated to protein misfolding and amyloid formation processes affecting numerous organs and tissues. There are over 30 different amyloid proteins and a number of corresponding diseases. Alzheimer's disease is the most common neurodegenerative disease. Treatment of these diseases is still a goal to reach, and many molecules are studied in this perspective. Cyclodextrins have also been studied, and they show great potential; as such, further studies could be very promising. This review aims to be a stimulus for the design of new cyclodextrin derivatives to obtain multifunctional systems with antiaggregant activity.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125, Catania, Italy.,Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, C.I.R.C.M.S.B, Unità di Ricerca di Catania, 95125, Catania, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
25
|
Shinde MN, Barooah N, Bhasikuttan AC, Mohanty J. Inhibition and disintegration of insulin amyloid fibrils: a facile supramolecular strategy with p-sulfonatocalixarenes. Chem Commun (Camb) 2016; 52:2992-5. [DOI: 10.1039/c5cc10159j] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study reveals the ability of p-sulfonatocalix[4/6]arenes to effectively inhibit the fibril formation in human insulin and demonstrate its potential to disintegrate/dissolve the mature fibrils, a promising supramolecular therapeutic strategy for amyloidosis.
Collapse
Affiliation(s)
- Meenakshi N. Shinde
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai
- India
- BARC-SPPU PhD Program
| | - Nilotpal Barooah
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai
- India
| | - Achikanath C. Bhasikuttan
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai
- India
- Homi Bhabha National Institute
| | - Jyotirmayee Mohanty
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai
- India
- Homi Bhabha National Institute
| |
Collapse
|
26
|
Oliveri V, Bellia F, Pietropaolo A, Vecchio G. Unusual Cyclodextrin Derivatives as a New Avenue to Modulate Self- and Metal-Induced Aβ Aggregation. Chemistry 2015; 21:14047-59. [PMID: 26298549 DOI: 10.1002/chem.201502155] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 12/19/2022]
Abstract
Mounting evidence suggests an important role of cyclodextrins in providing protection in neurodegenerative disorders. Metal dyshomeostasis is reported to be a pathogenic factor in neurodegeneration because it could be responsible for damage involving oxidative stress and protein aggregation. As such, metal ions represent an effective target. To improve the metal-binding ability of cyclodextrin, we synthesized three new 8-hydroxyquinoline-cyclodextrin conjugates with difunctionalized cyclodextrins. In particular, the 3-difunctionalized regioisomer represents the first example of cyclodextrin with two pendants at the secondary rim, resulting in a promising compound. The derivatives have significant antioxidant capacity and the powerful activity in inhibiting self-induced amyloid-β aggregation seems to be led by synergistic effects of both cyclodextrin and hydroxyquinoline. Moreover, the derivatives are also able to complex metal ions and to inhibit metal-induced protein aggregation. Therefore, these compounds could have potential as therapeutic agents in diseases related to protein aggregation and metal dyshomeostasis.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125, Catania (Italy).,Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, C.I.R.C.M.S.B, Unità di Ricerca di Catania, 95125 Catania (Italy)
| | - Francesco Bellia
- Istituto di Biostrutture e Bioimmagini, CNR, Via P. Gaifami 18, 95126 Catania, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125, Catania (Italy).
| |
Collapse
|
27
|
Arima H, Hayashi Y, Higashi T, Motoyama K. Recent advances in cyclodextrin delivery techniques. Expert Opin Drug Deliv 2015; 12:1425-41. [DOI: 10.1517/17425247.2015.1026893] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Oliveri V, Bellia F, Vecchio G. Cyclodextrin 3-Functionalized with 8-Hydroxyquinoline as an Antioxidant Inhibitor of Metal-Induced Amyloid Aggregation. Chempluschem 2015; 80:762-770. [DOI: 10.1002/cplu.201402450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 11/07/2022]
|
29
|
Volmer DA, Qi Y. Letter: β-Cyclodextrin affects the formation of isomerization products during peptide deamidation. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:701-705. [PMID: 26353992 DOI: 10.1255/ejms.1385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cyclodextrins (CDs) are a group of nontoxic oligosaccharides that are widely used as drug excipients and protein stabilizers. CDs have also been found to reduce the neurotoxicity and fibrillation of amyloid beta (Aβ), the major component of the amyloid plaques found in the brain of patients suffering from Alzheimer's disease. The formation of these plaques was found to be enhanced by the presence of iso-aspartic acid (isoAsp) residues in the Aβ peptide, which can be formed by deamidation from asparagine (Asn). To explore further the influence of CDs on Aβ, we investigated three Asn-containing peptides, including Aβ25-35, by electrospray ionization, electron capture dissociation, and Fourier-transform ion cyclotron resonance mass spectrometry to explore details of the deamidation process in the presence and absence of peptide/CD adducts. The results showed that CDs reduced the formation of the isomerization product isoAsp during peptide deamidation. This finding might help to better understand the role of CDs during the protein-aggregation process.
Collapse
Affiliation(s)
- Dietrich A Volmer
- Institute of Bioanalytical Chemistry, Saarland University, 66123 Saarbrücken, Germany.
| | - Yulin Qi
- Institute of Bioanalytical Chemistry, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
30
|
Cholesterol balance in prion diseases and Alzheimer's disease. Viruses 2014; 6:4505-35. [PMID: 25419621 PMCID: PMC4246236 DOI: 10.3390/v6114505] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/08/2014] [Accepted: 11/14/2014] [Indexed: 12/16/2022] Open
Abstract
Prion diseases are transmissible and fatal neurodegenerative disorders of humans and animals. They are characterized by the accumulation of PrPSc, an aberrantly folded isoform of the cellular prion protein PrPC, in the brains of affected individuals. PrPC is a cell surface glycoprotein attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidyl-inositol (GPI) anchor. Specifically, it is associated with lipid rafts, membrane microdomains enriched in cholesterol and sphinoglipids. It has been established that inhibition of endogenous cholesterol synthesis disturbs lipid raft association of PrPC and prevents PrPSc accumulation in neuronal cells. Additionally, prion conversion is reduced upon interference with cellular cholesterol uptake, endosomal export, or complexation at the plasma membrane. Altogether, these results demonstrate on the one hand the importance of cholesterol for prion propagation. On the other hand, growing evidence suggests that prion infection modulates neuronal cholesterol metabolism. Similar results were reported in Alzheimer’s disease (AD): whereas amyloid β peptide formation is influenced by cellular cholesterol, levels of cholesterol in the brains of affected individuals increase during the clinical course of the disease. In this review, we summarize commonalities of alterations in cholesterol homeostasis and discuss consequences for neuronal function and therapy of prion diseases and AD.
Collapse
|
31
|
Oliveri V, Attanasio F, Puglisi A, Spencer J, Sgarlata C, Vecchio G. Multifunctional 8-hydroxyquinoline-appended cyclodextrins as new inhibitors of metal-induced protein aggregation. Chemistry 2014; 20:8954-64. [PMID: 24863958 DOI: 10.1002/chem.201402690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Indexed: 11/09/2022]
Abstract
Mounting evidence suggests a pivotal role of metal imbalances in protein misfolding and amyloid diseases. As such, metal ions represent a promising therapeutic target. In this context, the synthesis of chelators that also contain complementary functionalities to combat the multifactorial nature of neurodegenerative diseases is a highly topical issue. We report two new 8-hydroxyquinoline-appended cyclodextrins and highlight their multifunctional properties, including their Cu(II) and Zn(II) binding abilities, and capacity to act as antioxidants and metal-induced antiaggregants. In particular, the latter property has been applied in the development of an effective assay that exploits the formation of amyloid fibrils when β-lactoglobulin A is heated in the presence of metal ions.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125 Catania (Italy); Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QJ (UK)
| | | | | | | | | | | |
Collapse
|
32
|
Potent γ-secretase inhibitors/modulators interact with amyloid-β fibrils but do not inhibit fibrillation: A high-resolution NMR study. Biochem Biophys Res Commun 2014; 447:590-5. [DOI: 10.1016/j.bbrc.2014.04.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/08/2014] [Indexed: 01/12/2023]
|
33
|
Jameson LP, Smith NW, Dzyuba SV. Dye-binding assays for evaluation of the effects of small molecule inhibitors on amyloid (aβ) self-assembly. ACS Chem Neurosci 2012; 3:807-19. [PMID: 23173064 DOI: 10.1021/cn300076x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/06/2012] [Indexed: 01/07/2023] Open
Abstract
Dye-binding assays, such as those utilizing Congo red and thioflavin T, are among the most widely used tools to probe the aggregation of amyloidogenic biomolecules and for the evaluation of small molecule inhibitors of amyloid aggregation and fibrillization. A number of recent reports have indicated that these dye-binding assays could be prone to false positive effects when assessing inhibitors' potential toward Aβ peptides, species involved in Alzheimer's disease. Specifically, this review focuses on the application of thioflavin T for determining the efficiency of small molecule inhibitors of Aβ aggregation and addresses potential reasons that might be associated with the false positive effects in an effort to increase reliability of dye-binding assays.
Collapse
Affiliation(s)
- Laramie P. Jameson
- Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Nicholas W. Smith
- Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Sergei V. Dzyuba
- Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
34
|
Zhao LN, Long H, Mu Y, Chew LY. The toxicity of amyloid β oligomers. Int J Mol Sci 2012; 13:7303-7327. [PMID: 22837695 PMCID: PMC3397527 DOI: 10.3390/ijms13067303] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/01/2012] [Accepted: 06/08/2012] [Indexed: 12/13/2022] Open
Abstract
In this review, we elucidate the mechanisms of Aβ oligomer toxicity which may contribute to Alzheimer's disease (AD). In particular, we discuss on the interaction of Aβ oligomers with the membrane through the process of adsorption and insertion. Such interaction gives rises to phase transitions in the sub-structures of the Aβ peptide from α-helical to β-sheet structure. By means of a coarse-grained model, we exhibit the tendency of β-sheet structures to aggregate, thus providing further insights to the process of membrane induced aggregation. We show that the aggregated oligomer causes membrane invagination, which is a precursor to the formation of pore structures and ion channels. Other pathological progressions to AD due to Aβ oligomers are also covered, such as their interaction with the membrane receptors, and their direct versus indirect effects on oxidative stress and intraneuronal accumulation. We further illustrate that the molecule curcumin is a potential Aβ toxicity inhibitor as a β-sheet breaker by having a high propensity to interact with certain Aβ residues without binding to them. The comprehensive understanding gained from these current researches on the various toxicity mechanisms show promises in the provision of better therapeutics and treatment strategies in the near future.
Collapse
Affiliation(s)
- Li Na Zhao
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637731, Singapore; E-Mails: (L.N.Z.); (H.W.L.)
| | - HonWai Long
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637731, Singapore; E-Mails: (L.N.Z.); (H.W.L.)
- High Performance Computing Centre, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Lock Yue Chew
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637731, Singapore; E-Mails: (L.N.Z.); (H.W.L.)
| |
Collapse
|
35
|
Wahlström A, Cukalevski R, Danielsson J, Jarvet J, Onagi H, Rebek J, Linse S, Gräslund A. Specific binding of a β-cyclodextrin dimer to the amyloid β peptide modulates the peptide aggregation process. Biochemistry 2012; 51:4280-9. [PMID: 22554145 DOI: 10.1021/bi300341j] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease involves progressive neuronal loss. Linked to the disease is the amyloid β (Aβ) peptide, a 38-43-amino acid peptide found in extracellular amyloid plaques in the brain. Cyclodextrins are nontoxic, cone-shaped oligosaccharides with a hydrophilic exterior and a hydrophobic cavity making them suitable hosts for aromatic guest molecules in water. β-Cyclodextrin consists of seven α-d-glucopyranoside units and has been shown to reduce the level of fibrillation and neurotoxicity of Aβ. We have studied the interaction between Aβ and a β-cyclodextrin dimer, consisting of two β-cyclodextrin monomers connected by a flexible linker. The β-cyclodextrin monomer has been found to interact with Aβ(1-40) at sites Y10, F19, and/or F20 with a dissociation constant (K(D)) of 3.9 ± 2.0 mM. Here (1)H-(15)N and (1)H-(13)C heteronuclear single-quantum correlation nuclear magnetic resonance (NMR) spectra show that in addition, the β-cyclodextrin monomer and dimer bind to the histidines. NMR translational diffusion experiments reveal the increased affinity of the β-cyclodextrin dimer (apparent K(D) of 1.1 ± 0.5 mM) for Aβ(1-40) compared to that of the β-cyclodextrin monomer. Kinetic aggregation experiments based on thioflavin T fluorescence indicate that the dimer at 0.05-5 mM decreases the lag time of Aβ aggregation, while a concentration of 10 mM increases the lag time. The β-cyclodextrin monomer at a high concentration decreases the lag time of the aggregation. We conclude that cyclodextrin monomers and dimers have specific, modulating effects on the Aβ(1-40) aggregation process. Transmission electron microscopy shows that the regular fibrillar aggregates formed by Aβ(1-40) alone are replaced by a major fraction of amorphous aggregates in the presence of the β-cyclodextrin dimer.
Collapse
Affiliation(s)
- Anna Wahlström
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Turina AV, Schreier S, Perillo MA. Coupling between GABA(A)-R ligand-binding activity and membrane organization in β-cyclodextrin-treated synaptosomal membranes from bovine brain cortex: new insights from EPR experiments. Cell Biochem Biophys 2012; 63:17-33. [PMID: 22311134 DOI: 10.1007/s12013-012-9338-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Correlations between GABA(A) receptor (GABA(A)-R) activity and molecular organization of synaptosomal membranes (SM) were studied along the protocol for cholesterol (Cho) extraction with β-cyclodextrin (β-CD). The mere pre-incubation (PI) at 37°C accompanying the β-CD treatment was an underlying source of perturbations increasing [(3)H]-FNZ maximal binding (70%) and K (d) (38%), plus a stiffening of SMs' hydrocarbon core region. The latter was inferred from an increased compressibility modulus (K) of SM-derived Langmuir films, a blue-shifted DPH fluorescence emission spectrum and the hysteresis in DPH fluorescence anisotropy (A (DPH)) in SMs submitted to a heating-cooling cycle (4-37-4°C) with A (DPH,heating) < A (DPH,cooling). Compared with PI samples, the β-CD treatment reduced B (max) by 5% which correlated with a 45%-decrement in the relative Cho content of SM, a decrease in K and in the order parameter in the EPR spectrum of a lipid spin probe labeled at C5 (5-SASL), and significantly increased A (TMA-DPH). PI, but not β-CD treatment, could affect the binding affinity. EPR spectra of 5-SASL complexes with β-CD-, SM-partitioned, and free in solution showed that, contrary to what is usually assumed, β-CD is not completely eliminated from the system through centrifugation washings. It was concluded that β-CD treatment involves effects of at least three different types of events affecting membrane organization: (a) effect of PI on membrane annealing, (b) effect of residual β-CD on SM organization, and (c) Cho depletion. Consequently, molecular stiffness increases within the membrane core and decreases near the polar head groups, leading to a net increase in GABA(A)-R density, relative to untreated samples.
Collapse
Affiliation(s)
- Anahí V Turina
- IIBYT, CONICET - Biofísica-Química, Departamento de Química, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | | | | |
Collapse
|
37
|
Computational insights into the development of novel therapeutic strategies for Alzheimer's disease. Future Med Chem 2011; 1:119-35. [PMID: 21426072 DOI: 10.4155/fmc.09.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND β-amyloidosis and oxidative stress have been implicated as root causes of Alzheimer's disease (AD). Current potential therapeutic strategies for the treatment of AD include inhibition of amyloid β (Aβ) production, stimulation of Aβ degradation and prevention of Aβ oligomerization. However, efforts in this direction are hindered by the lack of understanding of the biochemical processes occurring at the atomic level in AD. DISCUSSION A radically different approach to achieve this goal would be the application of comprehensive theoretical and computational techniques such as molecular dynamics, quantum mechanics, hybrid quantum mechanics/molecular mechanics, bioinformatics and rotational spectroscopy to investigate complex chemical and physical processes in β-amyloidosis and the oxidative stress mechanism. CONCLUSION Results obtained from these studies will provide an atomic level understanding of biochemical processes occurring in AD and advance efforts to develop effective therapeutic strategies for this disease.
Collapse
|
38
|
Martineau E, de Guzman JM, Rodionova L, Kong X, Mayer PM, Aman AM. Investigation of the noncovalent interactions between anti-amyloid agents and amyloid beta peptides by ESI-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1506-1514. [PMID: 20580569 DOI: 10.1016/j.jasms.2010.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 05/15/2010] [Accepted: 05/18/2010] [Indexed: 05/29/2023]
Abstract
This paper describes an efficient and reproducible screening method for identifying low molecular weight compounds that bind to amyloid beta peptides (Abeta) peptides using electrospray ionization mass spectrometry (ESI-MS). Low molecular weight compounds capable of interacting with soluble Abeta may be able to modulate/inhibit the Abeta aggregation process and serve as potential disease-modifying agents for AD. The present approach was used to rank the binding affinity of a library of compounds to Abeta1-40 peptide. The results obtained show that low molecular weight compounds bind similarly to Abeta1-42, Abeta1-40, as well as Abeta1-28 peptides and they underline the critical role of Abeta peptide charge motif in binding at physiological pH. Finally, some elements of structure-activity relationship (SAR) involved in the binding affinity of homotaurine to soluble Abeta peptides are discussed.
Collapse
Affiliation(s)
- Eric Martineau
- Chemistry Department, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Gavini E, Rassu G, Haukvik T, Lanni C, Racchi M, Giunchedi P. Mucoadhesive microspheres for nasal administration of cyclodextrins. J Drug Target 2009; 17:168-79. [PMID: 18985506 DOI: 10.1080/10611860802556842] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this study was to examine the in vitro capacity of cyclodextrins to interfere on the beta-amyloid fibril formation; then, mucoadhesive microspheres containing cyclodextrins were prepared and characterised as nasal delivery system for brain targeting. Eight batches of microspheres containing chitosan or alginate loaded with beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin in two different cyclodextrin to polymer ratios were produced by spray drying. The results show that none of the tested CDs has direct cellular toxicity and they protect the cell viability from beta-peptide. The microspheres prepared are characterised by small particle sizes, ability to absorb water and to delay the in vitro dissolution rate of the CDs; good ex vivo mucoadhesive properties of the formulations are assessed. The microsphere properties are influenced by the kind of polymer, of cyclodextrin and by cyclodextrin to polymer ratio used. In particular, the alginate formulation containing the higher cyclodextrin content shows the best performance.
Collapse
|
40
|
Matharu B, Gibson G, Parsons R, Huckerby TN, Moore SA, Cooper LJ, Millichamp R, Allsop D, Austen B. Galantamine inhibits beta-amyloid aggregation and cytotoxicity. J Neurol Sci 2009; 280:49-58. [PMID: 19249060 DOI: 10.1016/j.jns.2009.01.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 01/20/2009] [Accepted: 01/28/2009] [Indexed: 02/03/2023]
Abstract
The ability of galantamine (Reminyl) to inhibit the aggregation and toxicity of the beta-amyloid peptide (Abeta) was investigated. Galantamine showed concentration-dependent inhibition of aggregation of both Abeta 1-40 and Abeta 1-42, as determined by an ELISA method. Electron microscope studies of Abeta 1-40 incubated in the presence of galantamine revealed fibrils that were disordered and clumped in appearance. MTT and lactate dehydrogenase assays, employing SH-SY5Y human neuroblastoma cells, showed that galantamine reduced the cytotoxicity induced by Abeta 1-40. Galantamine also dramatically reduced Abeta 1-40-induced cellular apoptosis in these cells. There is some evidence that galantamine may not be acting purely as a symptomatic treatment. Disease-modifying effects of the drug could be due to an additional effect on Abeta aggregation and/or toxicity.
Collapse
Affiliation(s)
- Balpreet Matharu
- Neurodegeneration Unit, Basic Medical Sciences, St. George's University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yamin G, Ono K, Inayathullah M, Teplow DB. Amyloid beta-protein assembly as a therapeutic target of Alzheimer's disease. Curr Pharm Des 2009; 14:3231-46. [PMID: 19075703 DOI: 10.2174/138161208786404137] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder in the aged, is characterized by the cerebral deposition of fibrils formed by the amyloid beta-protein (Abeta), a 40-42 amino acid peptide. The folding of Abeta into neurotoxic oligomeric, protofibrillar, and fibrillar assemblies is hypothesized to be the key pathologic event in AD. Abeta is formed through cleavage of the Abeta precursor protein by two endoproteinases, beta-secretase and gamma-secretase, that cleave the Abeta N-terminus and C-terminus, respectively. These facts support the relevance of therapeutic strategies targeting Abeta production, assembly, clearance, and neurotoxicity. Currently, no disease-modifying therapeutic agents are available for AD patients. Instead, existing therapeutics provide only modest symptomatic benefits for a limited time. We summarize here recent efforts to produce therapeutic drugs targeting Abeta assembly. A number of approaches are being used in these efforts, including immunological, nutraceutical, and more classical medicinal chemical (peptidic inhibitors, carbohydrate-containing compounds, polyamines, "drug-like" compounds, chaperones, metal chelators, and osmolytes), and many of these have progressed to phase III clinical trails. We also discuss briefly a number of less mature, but intriguing, strategies that have therapeutic potential. Although initial trials of some disease-modifying agents have failed, we argue that substantial cause for optimism exists.
Collapse
Affiliation(s)
- Ghiam Yamin
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles E. Young Drive South (Room 445), Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
42
|
Influence of the substituent on amide nitrogen atom of N-acetyl tyrosine on interactions with β-cyclodextrin. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2008.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Dolphin GT, Ouberai M, Dumy P, Garcia J. Designed Amyloid β Peptide Fibril—A Tool for High-Throughput Screening of Fibril Inhibitors. ChemMedChem 2007; 2:1613-23. [PMID: 17876751 DOI: 10.1002/cmdc.200700103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Amyloid beta peptide (Abeta) fibril formation is widely believed to be the causative event of Alzheimer's disease pathogenesis. Therapeutic approaches are therefore in development that target various sites in the production and aggregation of Abeta. Herein we present a high-throughput screening tool to generate novel hit compounds that block Abeta fibril formation. This tool is an application for our fibril model (Abeta(16-37)Y(20)K(22)K(24))(4), which is a covalent assembly of four Abeta fragments. With this tool, screening studies are complete within one hour, as opposed to days with native Abeta(1-40). A Z' factor of 0.84+/-0.03 was determined for fibril formation and inhibition, followed by the reporter molecule thioflavin T. Herein we also describe the analysis of a broad range of reported inhibitors and non-inhibitors of Abeta fibril formation to test the validity of the system.
Collapse
Affiliation(s)
- Gunnar T Dolphin
- Département Chimie Moléculaire (DCM), UMR 5250, ICMG-FR, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
44
|
Moosavi-Movahedi AA, Pirzadeh P, Hashemnia S, Ahmadian S, Hemmateenejad B, Amani M, Saboury AA, Ahmad F, Shamsipur M, Hakimelahi GH, Tsai FY, Alijanvand HH, Yousefi R. Fibril formation of lysozyme upon interaction with sodium dodecyl sulfate at pH 9.2. Colloids Surf B Biointerfaces 2007; 60:55-61. [PMID: 17616361 DOI: 10.1016/j.colsurfb.2007.05.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 05/25/2007] [Accepted: 05/25/2007] [Indexed: 11/26/2022]
Abstract
Fibril formation seems to be a general property of all proteins. Its occurrence in hen or human lysozyme depends on certain conditions, namely acidic pHs or the presence of some additives. This paper studies the interaction of lysozyme with sodium dodecyl sulfate (SDS) at pH 9.2, using UV-visible spectrophotometry, circular dichroism (CD) spectropolarimetry, electron microscopy (EM) and chemometry. Based on observations such as the strange increase in absorbance at 650nm (pH 9.2) and the presence of intermediates, it is assumed that lysozyme fibrils have been formed at pH 9.2 in the presence of SDS as an anionic surfactant. Thioflavin T emission fluorescence and an EM image confirmed this assumption. beta-cyclodextrin was then used as a turbidity inhibitor to establish its effect on the distribution of intermediates that participate in fibril formation.
Collapse
|
45
|
Prior M, Lehmann S, Sy MS, Molloy B, McMahon HEM. Cyclodextrins inhibit replication of scrapie prion protein in cell culture. J Virol 2007; 81:11195-207. [PMID: 17699584 PMCID: PMC2045541 DOI: 10.1128/jvi.02559-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders that are caused by the conversion of a normal host-encoded protein, PrP(C), to an abnormal, disease-causing form, PrP(Sc). This paper reports that cyclodextrins have the ability to reduce the pathogenic isoform of the prion protein PrP(Sc) to undetectable levels in scrapie-infected neuroblastoma cells. Beta-cyclodextrin removed PrP(Sc) from the cells at a concentration of 500 microM following 2 weeks of treatment. Structure activity studies revealed that antiprion activity was dependent on the size of the cyclodextrin. The half-maximal inhibitory concentration (IC(50)) for beta-cyclodextrin was 75 microM, whereas alpha-cyclodextrin, which possessed less antiprion activity, had an IC(50) of 750 microM. This report presents cyclodextrins as a new class of antiprion compound. For decades, the pharmaceutical industry has successfully used cyclodextrins for their complex-forming ability; this ability is due to the structural orientation of the glucopyranose units, which generate a hydrophobic cavity that can facilitate the encapsulation of hydrophobic moieties. Consequently, cyclodextrins could be ideal candidates for the treatment of prion diseases.
Collapse
Affiliation(s)
- Marguerite Prior
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield Campus, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
46
|
Soares AF, Carvalho RDA, Veiga F. Oral administration of peptides and proteins: nanoparticles and cyclodextrins as biocompatible delivery systems. Nanomedicine (Lond) 2007; 2:183-202. [PMID: 17716120 DOI: 10.2217/17435889.2.2.183] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review discusses drawbacks to peptide and protein oral formulations related to these drugs’ chemical and physical instability. Means used to overcome such limitations are mentioned and discussed in parallel with manufacturing considerations, metabolism, absorption mechanisms and the efflux systems that peptides and proteins experience as they travel through the gastrointestinal tract. Special focus is given to the use of delivery systems based on nanoparticles and cyclodextrins. Advantages of these systems relate to the protection from degradation, enhancement of absorption, targeting and controlling the release of the drug. Biodistribution and safety issues are discussed once material from the delivery system is expected to be absorbed by the body and thus interact with biological components. Operating parameters regarding nanoparticle manufacture and composition are also overviewed since nanoparticle physicochemical characteristics influence the ability to successfully entrap the intended drug as well as interaction with body.
Collapse
Affiliation(s)
- Ana Francisca Soares
- Pharmaceutical Technology Laboratory, Faculty of Pharmacy, University of Coimbra, Rua do Norte, 3000-004 Coimbra, Portugal.
| | | | | |
Collapse
|
47
|
Necula M, Kayed R, Milton S, Glabe CG. Small Molecule Inhibitors of Aggregation Indicate That Amyloid β Oligomerization and Fibrillization Pathways Are Independent and Distinct. J Biol Chem 2007; 282:10311-24. [PMID: 17284452 DOI: 10.1074/jbc.m608207200] [Citation(s) in RCA: 533] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer disease is characterized by the abnormal aggregation of amyloid beta peptide into extracellular fibrillar deposits known as amyloid plaques. Soluble oligomers have been observed at early time points preceding fibril formation, and these oligomers have been implicated as the primary pathological species rather than the mature fibrils. A significant issue that remains to be resolved is whether amyloid oligomers are an obligate intermediate on the pathway to fibril formation or represent an alternate assembly pathway that may or may not lead to fiber formation. To determine whether amyloid beta oligomers are obligate intermediates in the fibrillization pathway, we characterized the mechanism of action of amyloid beta aggregation inhibitors in terms of oligomer and fibril formation. Based on their effects, the small molecules segregated into three distinct classes: compounds that inhibit oligomerization but not fibrillization, compounds that inhibit fibrillization but not oligomerization, and compounds that inhibit both. Several compounds selectively inhibited oligomerization at substoichiometric concentrations relative to amyloid beta monomer, with some active in the low nanomolar range. These results indicate that oligomers are not an obligate intermediate in the fibril formation pathway. In addition, these data suggest that small molecule inhibitors are useful for clarifying the mechanisms underlying protein aggregation and may represent potential therapeutic agents that target fundamental disease mechanisms.
Collapse
Affiliation(s)
- Mihaela Necula
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
48
|
Saengkhae C, Salerno M, Adès D, Siove A, Le Moyec L, Migonney V, Garnier-Suillerot A. Ability of carbazole salts, inhibitors of Alzheimer beta-amyloid fibril formation, to cross cellular membranes. Eur J Pharmacol 2007; 559:124-31. [PMID: 17291491 DOI: 10.1016/j.ejphar.2007.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 01/03/2007] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease is characterized by the presence of beta-amyloid fibril formation. The inhibition of this peptide accumulation may be a prevention method for Alzheimer's disease. Several classes of molecules have been reported to inhibit beta-amyloid fibril formation and among them carbazoles. However, very few studies have been performed to determine the destination of such molecules in vivo and especially if they can pass the blood brain barrier. The aim of this paper is to study whether carbazoles could pass the blood brain barrier, i.e. if they can circumvent ATP Binding Cassette (ABC) transporters such as P-glycoprotein (P-gp) and Multidrug Resistance-associated protein (MRP1) which efficiently limit drug brain uptake. For this purpose we have synthesized a fluorescent derivative of carbazole benzothiazolium iodide 1,2 disubstituted ethylene (referred as carbazole thiazole: CT), which can be easily detected and followed in the pre-trial study phases in cells or in tissue. We use cellular models overexpressing P-gp and MRP1. Our results show that: i) CT is able to cross membranes and to penetrate rapidly inside the cells, ii) CT is a P-gp substrate and consequently its accumulation in P-gp overexpressing cells is very low, iii) CT is a poor MRP1 substrate. In addition once inside the cells, CT rapidly binds to DNA and is then slowly reduced by intracellular reducing agents. In conclusion, the efficiency of carbazole derivatives in inhibiting the beta-amyloid formation in vivo could be highly compromised because, as P-gp substrates, they will probably not cross the blood brain barrier.
Collapse
Affiliation(s)
- Chantarawan Saengkhae
- Laboratoire de Biophysique Moléculaire, Cellulaire et Tissulaire, UMR CNRS 7033, Université Paris 13 et Paris 6, 74 rue Marcel Cachin, 93017 Bobigny, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Garcia-Fuentes M, Trapani A, Alonso MJ. Protection of the peptide glutathione by complex formation with α-cyclodextrin: NMR spectroscopic analysis and stability study. Eur J Pharm Biopharm 2006; 64:146-53. [PMID: 16854575 DOI: 10.1016/j.ejpb.2006.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 05/18/2006] [Accepted: 05/18/2006] [Indexed: 10/24/2022]
Abstract
The main objective of this work was to investigate the complexation mechanism of the tripeptide glutathione with alpha-cyclodextrin (alpha-CyD). The final purpose was to explore the possibility of using this complexation approach for preserving the stability of this peptide in all biological environments relevant for oral drug delivery. The complexes between the peptide and alpha-CyD were formed in aqueous solution and the complexation mechanism was investigated using different (1)H NMR experimental approaches. The resulting complexes were also studied with respect to their ability to protect the peptide against proteolytic degradation by the exopeptidase, gamma-glutamyltranspeptidase. The NMR experiment, 1D-saturation transfer NOE difference (STD), evidenced the interaction between alpha-CyD and glutathione. The binding constants, calculated by a titration method, were in the range of 55-70 M(-1) at 25 degrees C and in the range 68-72 M(-1) at 37 degrees C. Moreover, from the 1D-pulse field gradient spin echo-transverse-rotating frame nuclear Overhauser (PFGSE-T ROESY) spectra it was concluded that alpha-CyD binds preferably to the l-glutamate (side chain) moiety of glutathione, leaving the glycine residue exposed to the external medium. This result was consistent with those of the in vitro stability study, which indicated that the degradation of glutathione was markedly reduced to the half in 2h upon inclusion in alpha-CyD. Overall, these results show the possibility of protecting specific peptide groups by their inclusion in CyDs as well as the utility of NMR experiments for the understanding of this stabilization strategy.
Collapse
Affiliation(s)
- M Garcia-Fuentes
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Santiago de Compostela, Spain
| | | | | |
Collapse
|
50
|
Pirzadeh P, Moosavi-Movahedi AA, Hemmateenejad B, Ahmad F, Shamsipur M, Saboury AA. Chemometric studies of lysozyme upon interaction with sodium dodecyl sulfate and β-cyclodextrin. Colloids Surf B Biointerfaces 2006; 52:31-8. [PMID: 16839751 DOI: 10.1016/j.colsurfb.2006.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/22/2006] [Accepted: 05/26/2006] [Indexed: 11/18/2022]
Abstract
The interaction of hen egg-white lysozyme with sodium n-dodecyl sulfate (SDS) as an anionic surfactant was investigated by UV-vis spectrophotometry at different pHs at 25 degrees C using HCl/glycine and NaOH/glycine for acidic and basic pH ranges, respectively. Analysis of the spectral data using chemometric method gave the evidence for the existence of intermediate components during the cited interaction. Results also indicated a connection between turbidity of the protein solution upon interaction with SDS and distribution of our newly found intermediates. As intermediates are important in aggregation of proteins, beta-cyclodextrin was employed as an anti-aggregation agent and the results obtained for the lysozyme-SDS-beta-cyclodextrin ternary system were compared with those obtained in the absence of beta-cyclodextrin on distribution and mole fraction of intermediates with. It is also shown that as the distribution of intermediates broadens in a range of SDS concentrations, the turbidity and aggregation state of solution are reduced.
Collapse
Affiliation(s)
- P Pirzadeh
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | | | | | | | | |
Collapse
|