1
|
Masuda K, Kuwano Y. Diverse roles of RNA-binding proteins in cancer traits and their implications in gastrointestinal cancers. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1520. [PMID: 30479000 DOI: 10.1002/wrna.1520] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023]
Abstract
Gene expression patterns in cancer cells are strongly influenced by posttranscriptional mechanisms. RNA-binding proteins (RBPs) play key roles in posttranscriptional gene regulation; they can interact with target mRNAs in a sequence- and structure-dependent manner, and determine cellular behavior by manipulating the processing of these mRNAs. Numerous RBPs are aberrantly deregulated in many human cancers and hence, affect the functioning of mRNAs that encode proteins, implicated in carcinogenesis. Here, we summarize the key roles of RBPs in posttranscriptional gene regulation, describe RBPs disrupted in cancer, and lastly focus on RBPs that are responsible for implementing cancer traits in the digestive tract. These evidences may reveal a potential link between changes in expression/function of RBPs and malignant transformation, and a framework for new insights and potential therapeutic applications. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Kiyoshi Masuda
- Kawasaki Medical School at Kurashiki-City, Okayama, Japan
| | - Yuki Kuwano
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School at Tokushima-City, Tokushima, Japan
| |
Collapse
|
2
|
Pullmann R, Rabb H. HuR and other turnover- and translation-regulatory RNA-binding proteins: implications for the kidney. Am J Physiol Renal Physiol 2014; 306:F569-76. [PMID: 24431206 DOI: 10.1152/ajprenal.00270.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The posttranscriptional regulation of gene expression occurs through cis RNA regulatory elements by the action of trans factors, which are represented by noncoding RNAs (especially microRNAs) and turnover- and translation-regulatory (TTR) RNA-binding proteins (RBPs). These multifactorial proteins are a group of heterogeneous RBPs primarily implicated in controlling the decay and translation rates of target mRNAs. TTR-RBPs usually shuttle between cellular compartments (the nucleus and cytoplasm) in response to various stimuli and undergo posttranslational modifications such as phosphorylation or methylation to ensure their proper subcellular localization and function. TTR-RBPs are emerging as key regulators of a wide variety of genes influencing kidney physiology and pathology. This review summarizes the current knowledge of TTR-RBPs that influence renal metabolism. We will discuss the role of TTR-RBPs as regulators of kidney ischemia, fibrosis and matrix remodeling, angiogenesis, membrane transport, immunity, vascular tone, hypertension, and acid-base balance as well as anemia, bone mineral disease, and vascular calcification.
Collapse
|
3
|
Masuda K, Kuwano Y, Nishida K, Rokutan K. General RBP expression in human tissues as a function of age. Ageing Res Rev 2012; 11:423-31. [PMID: 22326651 DOI: 10.1016/j.arr.2012.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
Gene expression patterns vary dramatically in a tissue-specific and age-dependent manner. RNA-binding proteins that regulate mRNA turnover and/or translation (TTR-RBPs) critically affect the subsets of expressed proteins. Although many proteins implicated in age-related processes are encoded by mRNAs that are targets of TTR-RBPs, very little is known regarding the tissue- and age-dependent expression of TTR-RBPs in humans. Recent analysis of TTR-RBPs expression using human tissue microarray has provided us interesting insight into their possibly physiologic roles as a function of age. This analysis has also revealed striking discrepancies between the levels of TTR-RBPs in senescent human diploid fibroblasts (HDFs), widely used as an in vitro model of aging, and the levels of TTR-RBPs in tissues from individuals of advancing age. In this article, we will review our knowledge of human TTR-RBP expression in different tissues as a function of age.
Collapse
|
4
|
Gorospe M, Tominaga K, Wu X, Fähling M, Ivan M. Post-Transcriptional Control of the Hypoxic Response by RNA-Binding Proteins and MicroRNAs. Front Mol Neurosci 2011; 4:7. [PMID: 21747757 PMCID: PMC3130151 DOI: 10.3389/fnmol.2011.00007] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/17/2011] [Indexed: 01/08/2023] Open
Abstract
Mammalian gene expression patterns change profoundly in response to low oxygen levels. These changes in gene expression programs are strongly influenced by post-transcriptional mechanisms mediated by mRNA-binding factors: RNA-binding proteins (RBPs) and microRNAs (miRNAs). Here, we review the RBPs and miRNAs that modulate mRNA turnover and translation in response to hypoxic challenge. RBPs such as HuR (human antigen R), PTB (polypyrimidine tract-binding protein), heterogeneous nuclear ribonucleoproteins (hnRNPs), tristetraprolin, nucleolin, iron-response element-binding proteins (IRPs), and cytoplasmic polyadenylation-element-binding proteins (CPEBs), selectively bind to numerous hypoxia-regulated transcripts and play a major role in establishing hypoxic gene expression patterns. MiRNAs including miR-210, miR-373, and miR-21 associate with hypoxia-regulated transcripts and further modulate the levels of the encoded proteins to implement the hypoxic gene expression profile. We discuss the potent regulation of hypoxic gene expression by RBPs and miRNAs and their integrated actions in the cellular hypoxic response.
Collapse
Affiliation(s)
- Myriam Gorospe
- Laboratory of Molecular Biology and Immunology, National Institute on Aging-Intramural Research Program, National Institutes of HealthBaltimore, MD, USA
| | - Kumiko Tominaga
- Laboratory of Molecular Biology and Immunology, National Institute on Aging-Intramural Research Program, National Institutes of HealthBaltimore, MD, USA
| | - Xue Wu
- Department of Medicine, Indiana University School of MedicineIndianapolis, IN, USA
| | - Michael Fähling
- Institut für Vegetative Physiologie, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlin, Germany
| | - Mircea Ivan
- Department of Medicine, Indiana University School of MedicineIndianapolis, IN, USA
| |
Collapse
|
5
|
Kondo S, Kubota S, Mukudai Y, Nishida T, Yoshihama Y, Shirota T, Shintani S, Takigawa M. Binding of glyceraldehyde-3-phosphate dehydrogenase to the cis-acting element of structure-anchored repression in ccn2 mRNA. Biochem Biophys Res Commun 2011; 405:382-7. [PMID: 21236242 DOI: 10.1016/j.bbrc.2011.01.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
Abstract
CCN2/connective tissue growth factor (CTGF) can be induced by hypoxia and promotes tumor angiogenesis. Our previous studies revealed that hypoxia-induced gene expression of human ccn2 mRNA is regulated post-transcriptionally in human chondrosarcoma-derived cell line, HCS-2/8, in which a minimal cis-element, entitled CAESAR, in the 3'-untranslated region (UTR) of ccn2 mRNA and a 35-kDa protein counterpart play an important role by determining the stability of ccn2 mRNA. In the present study, we identified this corresponding protein as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by utilizing RNA affinity chromatography combined with mass spectrometry. The results of an RNA binding assay revealed the specific binding of GAPDH to this cis-element. To further characterize the interaction between GAPDH and ccn2 mRNA, we examined the roles of redox conditions and glycolytic coenzyme in the binding of GAPDH to the ccn2 mRNA. An oxidizing agent, diamide, abolished the GAPDH-RNA interaction in a concentration-dependent manner; whereas this effect could be reversed by subsequent treatment with 2-mercaptoethanol (2-ME). In addition, nicotinamide-adenine dinucleotide (NAD), a coenzyme of GAPDH, inhibited the GAPDH-RNA binding. Taken together, these findings suggest that the glycolytic enzyme GAPDH regulates the gene expression of ccn2 mRNA in trans by acting as a sensor of oxidative stress and redox signals, leading to CCN2 overexpression under the condition of hypoxia and promotion of angiogenesis.
Collapse
Affiliation(s)
- Seiji Kondo
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
In cells responding to low oxygen levels, gene expression patterns are strongly influenced by post-transcriptional processes. RNA-binding proteins (RBPs) are pivotal regulators of gene expression in response to numerous stresses, including hypoxia. Here, we review the RBPs that modulate mRNA turnover and translation in response to hypoxic challenge. The RBPs HuR (human antigen R) and PTB (polypyrimidine tract-binding protein) associate with mRNAs encoding hypoxia-response proteins such as HIF-1α and VEGF mRNAs, enhance their expression after hypoxia and play a major role in establishing hypoxic gene expression patterns. Additional RBPs such as iron-response element-binding proteins (IRPs), cytoplasmic polyadenylation-element-binding proteins (CPEBs) and several heterogeneous nuclear ribonucleoproteins (hnRNPs) also bind to hypoxia-regulated transcripts and modulate the levels of the encoded proteins. We discuss the efficient regulation of hypoxic gene expression by RBPs and the mounting interest in targeting hypoxia-regulatory RBPs in diseases with aberrant hypoxic responses.
Collapse
Affiliation(s)
- Kiyoshi Masuda
- Laboratory of Cellular and Molecular Biology, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
7
|
Guo S, Miyake M, Liu KJ, Shi H. Specific inhibition of hypoxia inducible factor 1 exaggerates cell injury induced by in vitro ischemia through deteriorating cellular redox environment. J Neurochem 2009; 108:1309-21. [PMID: 19183269 DOI: 10.1111/j.1471-4159.2009.05877.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hypoxia inducible factor 1 (HIF-1) has been suggested to play a critical role in the fate of cells exposed to hypoxic stress. However, the mechanism of HIF-1-regulated cell survival is still not fully understood in ischemic conditions. Redox status is critical for decisions of cell survival, death and differentiation. We investigated the effects of inhibiting HIF-1 on cellular redox status in SH-SY5Y cells exposed to hypoxia or oxygen and glucose deprivation (OGD), coupled with cell death analyses. Our results demonstrated that inhibiting HIF-1alpha expression by HIF-1alpha specific small interfering RNA (siRNA) transfection increased reactive oxygen species generation, and transformed the cells to more oxidizing environments (low GSH/GSSG ratio, low NADPH level) under either hypoxic or OGD exposure. Cell death increased dramatically in the siRNA transfected cells, compared to non-transfected cells after hypoxic/OGD exposures. In contrast, increasing HIF-1alpha expression by desferrioxamine, a metal chelator and hydroxylase inhibitor, induced a more reducing environment (high GSH/GSSG ratio, high NADPH level) and reduced cell death. Further studies showed that HIF-1 regulated not only glucose transporter-1 expression, but also the key enzymes of the pentose phosphate pathway such as glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. These enzymes are important in maintaining cellular redox homeostasis by generating NADPH, the primary reducing agent in cells. Moreover, catalase significantly decreased cell death in the siRNA-transfected cells induced by hypoxia and OGD. These results suggest that maintenance of cellular redox status by HIF-1 protects cells from hypoxia and ischemia mediated injuries.
Collapse
Affiliation(s)
- Shuhong Guo
- University of New Mexico Health Sciences Center, Albuquerque, USA
| | | | | | | |
Collapse
|
8
|
Chen H, Shi H. A reducing environment stabilizes HIF-2alpha in SH-SY5Y cells under hypoxic conditions. FEBS Lett 2008; 582:3899-902. [PMID: 18957292 DOI: 10.1016/j.febslet.2008.10.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/03/2008] [Accepted: 10/18/2008] [Indexed: 02/03/2023]
Abstract
Accumulating evidence suggests that hypoxia-inducible factor-2 (HIF-2) is important for the cellular response to hypoxia. However, it is not clear how HIF-2 is regulated under hypoxic conditions. We investigated kinetic changes in redox status and HIF-2alpha accumulation in hypoxic SH-SY5Y cells. Our results demonstrated that hypoxia caused a reducing environment and increased HIF-2alpha protein levels. Experiments with redox modulations (N-acetylcysteine and l-buthionine sulfoximine) confirmed that a reducing environment induced HIF-2alpha accumulation while an oxidizing environment decreased it. In addition, experiments with SOD mimic, catalase, and exogenous H2O2 provided evidence that the presence of H2O2 down-regulated the amount of HIF-2alpha protein. This study offers novel evidence supporting redox status regulation of HIF-2alpha accumulation under hypoxic conditions.
Collapse
Affiliation(s)
- Hu Chen
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | |
Collapse
|
9
|
Yoshida Y, Hasunuma K. Reactive oxygen species affect photomorphogenesis in Neurospora crassa. J Biol Chem 2003; 279:6986-93. [PMID: 14625272 DOI: 10.1074/jbc.m310060200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Neurospora crassa, several biological phenomena such as the synthesis of carotenoids in the mycelia and polarity of perithecia are regulated by light. We found that a sod-1 mutant, with a defective Cu,Zn-type superoxide dismutase (SOD), showed accelerated light-dependent induction of carotenoid accumulation in the mycelia compared with the wild type. The initial rate of light-induced carotenoid accumulation in the sod-1 mutant was faster than that in the vvd mutant known to accumulate high concentrations. This acceleration was suppressed by treatment with antioxidant reagents. Light-induced transcription of genes involved in carotenoid synthesis, al-1, -2, and -3, was sustained in the sod-1 mutant, whereas it was transient in the wild type. Moreover sod-1 was defective in terms of light-induced polarity of perithecia. By genetic analysis, the enhancement in light-inducible carotenoid synthesis in sod-1 was dependent on the wild type alleles of wc-1 and wc-2. However, the sod-1;vvd double mutant showed additive effects on the carotenoid accumulation in the mycelia. These results suggested that intracellular reactive oxygen species regulated by SOD-1 could affect the light-signal transduction pathway via WC proteins.
Collapse
Affiliation(s)
- Yusuke Yoshida
- Kihara Institute for Biological Research, Graduate School of Integrated Science, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama 244-0813, Japan
| | | |
Collapse
|
10
|
Abstract
Reactive oxygen intermediates (ROIs) in low concentration, as released permanently by nonphagocytic cells, possess important functions in inter- and intracellular signalling. They lead to alterations in the phosphorylation pattern followed by gene activation, including the expression of proto-oncogenes. Redox-sensitive sites in membrane molecules may trigger adhesion and chemotaxis or open ion channels and activate transport processes across the cytoplasma membrane. ROIs shift the ratio of cyclic GMP to cyclic AMP giving signals to proliferation and differentiation processes. Senescence, apoptosis, and cell death can also be modulated by ROIs, depending on concentration and cell type.
Collapse
Affiliation(s)
- B Meier
- Tierärztliche Hochschule, Hannover, Federal Republic of Germany
| |
Collapse
|
11
|
Salvador ML, Klein U. The redox state regulates RNA degradation in the chloroplast of Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 1999; 121:1367-74. [PMID: 10594124 PMCID: PMC59504 DOI: 10.1104/pp.121.4.1367] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/1999] [Accepted: 09/01/1999] [Indexed: 05/17/2023]
Abstract
A Chlamydomonas reinhardtii chloroplast transformant, designated MU7, carrying a chimeric (rbcL promoter: beta-glucuronidase [GUS]: psaB 3' end) gene whose transcripts have been found previously to be unstable in light (half-life of 20 min in light as opposed to a half-life of 5 h in the dark), was used to study the role of electron transport and of the redox state in the degradation of chloroplast transcripts in the light. Blocking photosynthetic electron transport with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) prevented the light-dependent breakdown of the pool of GUS transcripts in MU7 cells. Diamide, an oxidizing agent, caused a measurable delay in the degradation of GUS transcripts in the light. The addition of dithiothreitol (DTT), a dithiol reductant, to MU7 cells in which GUS transcript levels were stabilized by DCMU induced degradation of GUS transcripts. Similarly, DTT induced a decrease in the levels of GUS transcripts when added to MU7 cells in the dark period of the light/dark cycle, a period in which GUS transcript levels normally increase. The levels of transcripts of endogenous chloroplast genes were affected by DCMU and DTT in the same direction as levels of GUS transcripts. The results suggest a regulatory role of the redox state in the degradation of chloroplast transcripts in C. reinhardtii.
Collapse
Affiliation(s)
- M L Salvador
- Department of Biochemistry and Molecular Biology, University of Valencia, Doctor Moliner 50, 46100 Valencia, Spain
| | | |
Collapse
|
12
|
|
13
|
|
14
|
Mason CA, Chang P, Fallery C, Rabinovitch M. Nitric oxide mediates LC-3-dependent regulation of fibronectin in ductus arteriosus intimal cushion formation. FASEB J 1999; 13:1423-34. [PMID: 10428766 DOI: 10.1096/fasebj.13.11.1423] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ductus arteriosus intimal cushion formation is characterized by fibronectin-dependent smooth muscle cell (SMC) migration. Enhanced fibronectin synthesis in ductus SMC is regulated by the interaction of LC-3, a microtubule-associated protein, with an AU-rich element (ARE) in the 3'-untranslated region of fibronectin mRNA, facilitating its recruitment to polyribosomes for translation. Since nitric oxide (NO) is implicated in posttranscriptional gene regulation and is produced in the ductus, we investigated its mechanistic role in LC-3-mediated fibronectin synthesis. NO production was sevenfold higher in ductus vs. aortic SMC (P<0.005) associated with increased neuronal NO synthase (nNOS) expression. The NOS inhibitor L-NMMA decreased fibronectin synthesis by approximately 45-50% (P<0.05), whereas the NO donor, SNAP, increased ductus fibronectin synthesis approximately onefold (P<0.05); neither agent altered fibronectin mRNA levels. Immunoblotting revealed that SNAP increased and L-NMMA reduced a membrane-associated phosphorylated form of LC-3. RNA gel mobility shift assays confirmed that NO enhanced LC-3 binding to the fibronectin mRNA ARE. Our studies indicate a tissue-specific program in the ductus arteriosus whereby elevated nNOS expression and NO production regulate the posttranscriptional increase in fibronectin synthesis required for SMC motility.
Collapse
Affiliation(s)
- C A Mason
- Division of Cardiovascular Research, Research Institute, The Hospital for Sick Children, Departments of Pediatrics, Pathology and Medicine, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | | | | | | |
Collapse
|
15
|
Brar SS, Kennedy TP, Whorton AR, Murphy TM, Chitano P, Hoidal JR. Requirement for reactive oxygen species in serum-induced and platelet-derived growth factor-induced growth of airway smooth muscle. J Biol Chem 1999; 274:20017-26. [PMID: 10391952 DOI: 10.1074/jbc.274.28.20017] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species have been recently identified as important mediators of mitogenic signaling in a number of cell types. We therefore explored their role in mediating mitogenesis of airway smooth muscle. The antioxidants catalase, N-acetylcysteine, and probucol significantly reduced proliferation in primary cultures of rat tracheal smooth muscle stimulated with fetal bovine serum or platelet-derived growth factor, without affecting cell viability or inducing apoptosis. N-Acetylcysteine also significantly reduced serum-stimulated elevation of c-Fos but did not prevent the normal mitogen-induced increase in c-fos mRNA. Fractionation of ribosomes by sucrose density centrifugation and subsequent dot-blot Northern analysis revealed that antioxidants reduced incorporation of c-fos mRNA into the heaviest polyribosomes, suggesting redox regulation of c-fos mRNA translation. Serum treatment of monolayers produced a small but reproducibly significant rise in superoxide dismutase-inhibitable reduction of ferricytochrome c by myocyte monolayers. Serum-induced ferricytochrome c reduction, cellular proliferation, and c-Fos elevation were decreased by the flavoprotein-dependent enzyme inhibitor dipheyleneiodonium. Growth responses to fetal bovine serum and superoxide dismutase-inhibitable reduction of ferricytochrome c were not different between cultured tracheal myocytes from wild-type versus gp91 phagocyte oxidase null mice. These results suggest that mitogen stimulation of airway smooth muscle induces signal transduction of cell proliferation that is in part dependent on generation of partially reduced oxygen species, generated by an NADH or NADPH oxidoreductase that is different from the oxidase in phagocytic cells.
Collapse
Affiliation(s)
- S S Brar
- Department of Internal Medicine, Carolinas Medical Center, Charlotte, North Carolina 28232, USA
| | | | | | | | | | | |
Collapse
|
16
|
Identification of the Poly(C) Binding Protein in the Complex Associated With the 3′ Untranslated Region of Erythropoietin Messenger RNA. Blood 1999. [DOI: 10.1182/blood.v93.6.2111.406k24_2111_2120] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypoxia regulates expression of erythropoietin (EPO), a glycoprotein that stimulates erythrocytosis, at the level of transcription and also possibly at the level of messenger RNA (mRNA) stability. A pyrimidine-rich region within the EPO mRNA 3′ untranslated region was implicated in regulation of EPO mRNA stability element and shown to bind protein factors. In the present study we wished to identify the protein factor binding to the pyrimidine-rich sequence in the EPO mRNA stability element. Using mobility shift assays, ultraviolet light cross-linking, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and electroelution of protein factors from the gel slices corresponding to the ribonucleoprotein complexes, we found that two isoforms of a 40 kD poly(C) binding protein (PCBP, also known as CP or hnRNPE), PCBP1, and PCBP2 are present in that complex. In Hep3B or HepG2 cells hypoxia induces neither expression of PCBP nor formation of the ribonucleoprotein complex associated with EPO mRNA that involves PCBP.
Collapse
|
17
|
Ehleben W, Porwol T, Fandrey J, Acker H. The influence of phenobarbital on cytochromes and reactive oxygen species in erythropoietin producing HepG2 cells. FEBS Lett 1998; 440:343-7. [PMID: 9872399 DOI: 10.1016/s0014-5793(98)01477-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light absorption photometry of HepG2 cells treated with phenobarbital for enhancing the content of cytochrome P-450 and the synthesis of erythropoietin revealed an influence on all cytochromes detectable in the wavelength range between 400 and 620 nm. No correlation was found between specific changes of cytochrome P-450 absorption and increased EPO synthesis as proposed earlier by Fandrey et al. (Life Sci. (1990) 47, 127-134). In the present study, however, the increased erythropoietin synthesis could be related to a decreased intracellular hydroxyl radical level described as crucial for the oxygen regulated gene expression (Kietzmann et al., Biochem. J. (1998) 335, 425-432; Porwol et al., Eur. J. Biochem. (1998) 256, 16-23).
Collapse
Affiliation(s)
- W Ehleben
- Max Planck Institut für molekulare Physiologie, Dortmund, Germany
| | | | | | | |
Collapse
|
18
|
Xu C, Siu CS, Pasco DS. DNA binding activity of the aryl hydrocarbon receptor is sensitive to redox changes in intact cells. Arch Biochem Biophys 1998; 358:149-56. [PMID: 9750175 DOI: 10.1006/abbi.1998.0851] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The potential involvement of vicinal dithiols in the transformation of the aryl hydrocarbon (Ah) receptor from its ligand binding to DNA binding form in Hepa-1 cells was explored through the use of diamide and phenylarsine oxide (PAO), which have been shown to specifically form a stable ring complex with vicinal sulfhydryl groups in selected proteins. Pretreatment with diamide and PAO rapidly prevented the inducer-dependent formation of the Ah receptor/xenobiotic response element complex detected by electrophoretic mobility shift assays and suppressed Ah receptor-mediated transcription. Diamide and PAO also inhibited DNA binding activity of the nuclear Ah receptor subsequent to its translocation to the nucleus but to a lesser extent than that observed with pretreatment conditions. The Ah receptor exhibited much higher sensitivity to cellular redox changes than Sp1, a transcription factor previously shown to be very sensitive to redox regulation. Diamide added to nuclear extracts inhibited Ah receptor DNA binding more than when it was added in intact cells. In contrast, Ah receptor DNA binding activity was more sensitive to PAO when it was added to intact cells than when it was added to nuclear extracts. Finally, dithiol 2,3-dimercaptopropanol was over 100 times more effective than monothiol 2-mercaptoethanol in reversing the PAO-dependent inhibition of Ah receptor DNA binding activity. This suggests that vicinal sulfhydryl residues may be involved in DNA binding of the Ah receptor.
Collapse
Affiliation(s)
- C Xu
- Department of Pharmacognosy, University of Mississippi, University, Mississippi, 38677, USA
| | | | | |
Collapse
|
19
|
Scandurro AB, Beckman BS. Common proteins bind mRNAs encoding erythropoietin, tyrosine hydroxylase, and vascular endothelial growth factor. Biochem Biophys Res Commun 1998; 246:436-40. [PMID: 9610379 DOI: 10.1006/bbrc.1998.8639] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hypoxia-inducible genes erythropoietin (Epo), tyrosine hydroxylase (TH), and vascular endothelial growth factor (VEGF) are regulated post-transcriptionally by proteins binding to specific regions located in the 3' untranslated region (UTR) of their mRNAs. To determine whether trans-factors binding to this region in all three of these RNAs are similar, we generated riboprobes containing the 3' UTR of erythropoietin, tyrosine hydroxylase, and vascular endothelial growth factor mRNA and assayed them by electrophoretic mobility shift assay (EMSA) and UV cross-linking experiments. Each riboprobe formed similar shifted protein complexes using human hepatoma cell (Hep3B) cytoplasmic lysates in the EMSA. Hep3B proteins bound to each probe could be cross-competed by the specific unlabeled Epo, TH, or VEGF riboprobes. By contrast, a non-specific 3' UTR riboprobe did not compete for binding with the Epo, TH, or VEGF RNA shifted protein complexes. UV cross-linking studies revealed proteins of similar molecular weights for the Epo, TH, and VEGF RNA shifted protein complexes. Taken together, these results suggest a common posttranscriptional regulatory mechanism for hypoxia-inducible genes.
Collapse
Affiliation(s)
- A B Scandurro
- Department of Pharmacology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.
| | | |
Collapse
|
20
|
Damert A, Ikeda E, Risau W. Activator-protein-1 binding potentiates the hypoxia-induciblefactor-1-mediated hypoxia-induced transcriptional activation of vascular-endothelial growth factor expression in C6 glioma cells. Biochem J 1997; 327 ( Pt 2):419-23. [PMID: 9359410 PMCID: PMC1218810 DOI: 10.1042/bj3270419] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The endothelial cell-specific mitogen vascular-endothelial growth factor (VEGF) plays a key role in both physiological and pathological angiogenesis. The up-regulation of VEGF expression in response to reduced oxygen tension occurs through transcriptional and post-transcriptional mechanisms. To investigate the molecular mechanisms of transcriptional activation by hypoxia (1% oxygen), fine mapping of a hypoxia-responsive region of the human VEGF promoter was carried out using luciferase reporter-gene constructs in C6 glioma cells. Here, we report that the binding site of hypoxia-inducible factor 1 (HIF1) is crucial for the hypoxic induction of VEGF gene expression. However, an enhancer subfragment containing the HIF1 binding site was not sufficient to confer full hypoxia responsiveness. Addition of upstream sequences restored the full sensitivity to hypoxia induction. This potentiating effect is due to activator protein 1 binding. The 'potentiating' sequences are unable to confer hypoxia responsiveness on their own. Our results strongly suggest that in C6 glioma cells a complex array of trans-acting factors facilitates full transcriptional induction of VEGF gene expression by hypoxia.
Collapse
Affiliation(s)
- A Damert
- Max-Planck-Institut für physiologische und klinische Forschung, W.G. Kerckhoff-Institut, Abteilung Molekulare Zellbiologie, Parkstrasse 1, 61231 Bad Nauheim, Germany
| | | | | |
Collapse
|
21
|
Abstract
Superoxide (O2-) is the compound obtained when oxygen is reduced by one electron. For a molecule with an unpaired electron, O2- is surprisingly inert, its chief reaction being a dismutation in which it reacts with itself to form H2O2 and oxygen. The involvement of O2- in biological systems was first revealed by the discovery in 1969 of superoxide dismutase, an enzyme that catalyzes the dismutation of O2-. Since then it has been found that biological systems produce a bewildering variety of reactive oxidants, all but a few arising ultimately from O2-. These oxidants include O2- itself, H2O2 and alkyl peroxides, hydroxyl radical and other reactive oxidizing radicals, oxidized halogens and halamines, singlet oxygen, and peroxynitrite. These various oxidants are able to damage molecules in their environment, and are therefore very dangerous. They are thought to participate in the pathogenesis of a number of common diseases, including among others malignancy, by their ability to mutate the genome, and atherosclerosis, by their capacity for oxidizing lipoproteins. Their properties are put to good use, however, in host defense, where they serve as microbicidal and parasiticidal agents, and in biological signalling, where their liberation in small quantities results in redox-mediated changes in the functions of enzymes and other proteins.
Collapse
Affiliation(s)
- B M Babior
- Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
22
|
Scandurro AB, Rondon IJ, Wilson RB, Tenenbaum SA, Garry RF, Beckman BS. Interaction of erythropoietin RNA binding protein with erythropoietin RNA requires an association with heat shock protein 70. Kidney Int 1997; 51:579-84. [PMID: 9027743 DOI: 10.1038/ki.1997.83] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Synthesis of erythropoietin (Epo), the glycoprotein hormone that regulates red blood cell formation, is induced in response to low oxygen stress (hypoxia), and is regulated at both transcriptional and post-transcriptional levels. We have previously described an Epo RNA binding protein (ERBP) which specifically binds to the 3'-untranslated region of Epo mRNA and is likely involved in the regulation of Epo mRNA stability. Since heat shock proteins (hsps) are induced in response to a variety of stresses, including hypoxia, we tested the possibility that hsps are involved in ERBP-Epo RNA complex formation. When human anti-hsp70 antibody was added to ERBP-containing human hepatoma cell (Hep3B) lysates, the ERBP-Epo RNA complex was inhibited in an electrophoretic mobility band shift assay. In addition, the anti-hsp70 antibody-inhibited complex could be rescued if lysates were pretreated with purified inducible hsp70, but not with bovine serum albumin (BSA). In vivo studies using quercetin to inhibit hsp70 induction support the notion that hsp70 is involved in ERBP-Epo RNA complex formation. Taken together, these findings suggest involvement of hsp70 in ERBP-Epo mRNA complex formation, and our model suggests a novel role for hsps in the regulation of EPO mRNA stability.
Collapse
Affiliation(s)
- A B Scandurro
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | | | | | | | | |
Collapse
|
23
|
Schalinske KL, Eisenstein RS. Phosphorylation and activation of both iron regulatory proteins 1 and 2 in HL-60 cells. J Biol Chem 1996; 271:7168-76. [PMID: 8636154 DOI: 10.1074/jbc.271.12.7168] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Iron regulatory proteins (IRPs) are RNA-binding proteins that post-transcriptionally regulate synthesis of iron uptake (transferrin receptor) and storage (ferritin) proteins. Our previous work demonstrating that IRP1 is phosphorylated by protein kinase C supported the hypothesis that factors in addition to iron modulate IRP function. We have investigated changes in activity and expression of both IRP1 and IRP2 during phorbol 12-myristate 13-acetate (PMA)-induced differentiation of HL-60 cells. In contrast to IRP1, IRP2 was highly phosphorylated in untreated cells. PMA stimulated phosphorylation of IRP1 and IRP2 by at least 2-3-fold without affecting incorporation of [35S]methionine into the proteins. IRP1 and IRP2 isolated from PMA-treated cells displayed different phosphopeptides. Phosphorylation of IRPs was associated with a 2-fold increase in high affinity RNA binding activity without altering KD, and this was accompanied by a 50% increase in transferrin receptor mRNA abundance. PMA acted on a latent pool of binding activity that is present in a nonaconitase oxidized form and is largely composed of a stable but inactive species of IRP2. Desferal and hemin modulated iron-responsive element binding activity in HL-60 cells without affecting the phosphorylation state of IRP1. Hemin appeared to reduce the abundance of phosphorylated IRP2. Thus, multiple factors affect the function of both IRPs and indicate that extracellular agents may program changes in cellular iron metabolism by altering the phosphorylation state of these regulatory RNA-binding proteins.
Collapse
Affiliation(s)
- K L Schalinske
- Department of Nutritional Sciences, University of Wisconsin, Madison, 53706-1571, USA
| | | |
Collapse
|