1
|
Cliff MJ, Bowler MW, Varga A, Marston JP, Szabó J, Hounslow AM, Baxter NJ, Blackburn GM, Vas M, Waltho JP. Transition state analogue structures of human phosphoglycerate kinase establish the importance of charge balance in catalysis. J Am Chem Soc 2010; 132:6507-16. [PMID: 20397725 DOI: 10.1021/ja100974t] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition state analogue (TSA) complexes formed by phosphoglycerate kinase (PGK) have been used to test the hypothesis that balancing of charge within the transition state dominates enzyme-catalyzed phosphoryl transfer. High-resolution structures of trifluoromagnesate (MgF(3)(-)) and tetrafluoroaluminate (AlF(4)(-)) complexes of PGK have been determined using X-ray crystallography and (19)F-based NMR methods, revealing the nature of the catalytically relevant state of this archetypal metabolic kinase. Importantly, the side chain of K219, which coordinates the alpha-phosphate group in previous ground state structures, is sequestered into coordinating the metal fluoride, thereby creating a charge environment complementary to the transferring phosphoryl group. In line with the dominance of charge balance in transition state organization, the substitution K219A induces a corresponding reduction in charge in the bound aluminum fluoride species, which changes to a trifluoroaluminate (AlF(3)(0)) complex. The AlF(3)(0) moiety retains the octahedral geometry observed within AlF(4)(-) TSA complexes, which endorses the proposal that some of the widely reported trigonal AlF(3)(0) complexes of phosphoryl transfer enzymes may have been misassigned and in reality contain MgF(3)(-).
Collapse
Affiliation(s)
- Matthew J Cliff
- The Krebs Institute & The Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Hsu CH, Liou JY, Dutschman GE, Cheng YC. Phosphorylation of Cytidine, Deoxycytidine, and Their Analog Monophosphates by Human UMP/CMP Kinase Is Differentially Regulated by ATP and Magnesium. Mol Pharmacol 2004; 67:806-14. [PMID: 15550676 DOI: 10.1124/mol.104.006098] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human UMP/CMP kinase (cytidylate kinase; EC 2.7.4.14) is responsible for phosphorylation of CMP, UMP, and deoxycytidine monophosphate (dCMP) and also plays an important role in the activation of pyrimidine analogs, some of which are clinically useful anticancer or antiviral drugs. Previous kinetic data using recombinant or highly purified human UMP/CMP kinase showed that dCMP, as well as pyrimidine analog monophosphates, were much poorer substrates than CMP or UMP for this enzyme. This implies that other unidentified mechanisms must be involved to make phosphorylation of dCMP or pyrimidine analog monophosphates inside cells by this enzyme possible. Here, we reevaluated the optimal reaction conditions for human recombinant human UMP/CMP kinase to phosphorylate dCMP and CMP (referred as dCMPK and CMPK activities). We found that ATP and magnesium were important regulators of the kinase activities of this enzyme. Free magnesium enhanced dCMPK activity but inhibited CMPK activity. Free ATP or excess ATP/magnesium, on the other hand, inhibited dCMPK but not CMPK reactions. The differential regulation of dCMPK versus CMPK activities by ATP or magnesium was also seen in other 2'-deoxypyrimidine analog monophosphates (deoxyuridine monophosphate, 5-fluorodeoxyuridine monophosphate, 1-beta-D-arabinofuranosylcytosine monophosphate, and gemcitabine monophosphate) versus their ribose-counterparts (UMP and 5-fluorouridine monophosphate), in a similar manner. The data suggest that the active sites of human UMP/CMP kinase for dCMP and for CMP cannot be identical. Furthermore, enzyme inhibition studies demonstrated that CMP could inhibit dCMP phosphorylation in a noncompetitive manner, with Ki values much higher than its own Km values. We thus propose novel models for the phosphorylation action of human UMP/CMP kinase.
Collapse
Affiliation(s)
- Chih-Hung Hsu
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., SHM B226, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
3
|
Segura-Peña D, Sekulic N, Ort S, Konrad M, Lavie A. Substrate-induced conformational changes in human UMP/CMP kinase. J Biol Chem 2004; 279:33882-9. [PMID: 15163660 DOI: 10.1074/jbc.m401989200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human UMP/CMP kinase plays a crucial role in supplying precursors for nucleic acid synthesis by catalyzing the conversion of UMP, CMP, and dCMP into their diphosphate form. In addition, this kinase is an essential component of the activation cascade of medicinally relevant nucleoside analog prodrugs such as AraC, gemcitabine, and ddC. During the catalytic cycle the enzyme undergoes large conformational changes from open in the absence of substrates to closed in the presence of both phosphoryl donor and phosphoryl acceptor. Here we report the crystal structure of the substrate-free, open form of human UMP/CMP kinase. Comparison of the open structure with the closed state previously reported for the similar Dictyostelium discoideum UMP/CMP kinase reveals the conformational changes that occur upon substrate binding. We observe a classic example of induced fit where substrate-induced conformational changes in hinge residues result in rigid body movements of functional domains to form the catalytically competent state. In addition, a homology model of the human enzyme in the closed state based on the structure of D. discoideum UMP/CMP kinase aids to rationalize the substrate specificity of the human enzyme.
Collapse
Affiliation(s)
- Dario Segura-Peña
- University of Illinois at Chicago, Department of Biochemistry and Molecular Genetics, Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|
4
|
Rudolph MG, Veit TJ, Reinstein J. The novel fluorescent CDP-analogue (Pbeta)MABA-CDP is a specific probe for the NMP binding site of UMP/CMP kinase. Protein Sci 1999; 8:2697-704. [PMID: 10631985 PMCID: PMC2144228 DOI: 10.1110/ps.8.12.2697] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Direct thermodynamic and kinetic investigations of the binding of nucleotides to the nucleoside monophosphate (NMP) site of NMP kinases have not been possible so far because a spectroscopic probe was not available. By coupling a fluorescent N-methylanthraniloyl- (mant) group to the beta-phosphate of CDP via a butyl linker, a CDP analogue [(Pbeta)MABA-CDP] was obtained that still binds specifically to the NMP site of UmpKdicty, because the base and the ribose moieties, which are involved in specific interactions, are not modified. This allows the direct determination of binding constants for its substrates in competition experiments.
Collapse
Affiliation(s)
- M G Rudolph
- Max-Planck-Institut für Molekulare Physiologie, Abetilung Physikalische Biochemie, Dormund, Germany
| | | | | |
Collapse
|
5
|
Gruen M, Becker C, Beste A, Reinstein J, Scheidig AJ, Goody RS. 2'Halo-ATP and -GTP analogues: rational phasing tools for protein crystallography. Protein Sci 1999; 8:2524-8. [PMID: 10595559 PMCID: PMC2144188 DOI: 10.1110/ps.8.11.2524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The solution of the crystallographic macromolecular phase problem requires incorporation of heavy atoms into protein crystals. Several 2'-halogenated nucleotides have been reported as potential universal phasing tools for nucleotide binding proteins. However, only limited data are available dealing with the effect of 2'-substitution on recognition by the protein. We have determined equilibrium dissociation constants of 2'-halogenated ATP analogues for the ATP binding proteins UMP/CMP kinase and the molecular chaperone DnaK. Whereas the affinities to UMP/CMP kinase are of the same order of magnitude as for unsubstituted ATP, the affinities to DnaK are drastically decreased to undetectable levels. For 2'-halogenated GTP analogues, the kinetics of interaction were determined for the small GTPases p21ras(Y32W) (fluorescent mutant) and RabS. The rates of association were found to be within about one order of magnitude of those for the nonsubstituted nucleotides, whereas the rates of dissociation were accelerated by factors of approximately 100 (p21ras) or approximately 10(5) (Rab5), and the resulting equilibrium dissociation constants are in the nm or microM range, respectively. The data demonstrate that 2'halo-ATP and -GTP are substrates or ligands for all proteins tested except the chaperone DnaK. Due to the very high affinities of a large number of GTP binding proteins to guanine nucleotides, even a 10(5)-fold decrease in affinity as observed for Rab5 places the equilibrium dissociation constant in the microM range, so that they are still well suited for crystallization of the G-protein:nucleotide complex.
Collapse
Affiliation(s)
- M Gruen
- Max-Planck-Institut für molekulare Physiologie, Abteilung Physikalische Biochemie, Dortmund, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Williams DM, Jakeman DL, Vyle JS, Williamson MP, Blackburn GM. Synthesis and binding of stable bisubstrate ligands for phosphoglycerate kinase. Bioorg Med Chem Lett 1998; 8:2603-8. [PMID: 9873589 DOI: 10.1016/s0960-894x(98)00466-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Stable bisubstrate ligands of phosphoglycerate kinase (PGK) have been synthesized with AMP or ADP conjugated to hydrolytically-stable, symmetrical analogues of 1,3-bisphosphoglycerate and their binding to yeast PGK evaluated. Their Kds decrease with net negative charge, with a penta-anionic analogue 7 showing highest affinity-in accordance with its approximation to the transition state for the reaction catalysed by PGK.
Collapse
Affiliation(s)
- D M Williams
- Krebs Institute, Department of Chemistry, University of Sheffield, UK
| | | | | | | | | |
Collapse
|
7
|
Lavie A, Konrad M, Brundiers R, Goody RS, Schlichting I, Reinstein J. Crystal structure of yeast thymidylate kinase complexed with the bisubstrate inhibitor P1-(5'-adenosyl) P5-(5'-thymidyl) pentaphosphate (TP5A) at 2.0 A resolution: implications for catalysis and AZT activation. Biochemistry 1998; 37:3677-86. [PMID: 9521686 DOI: 10.1021/bi9720787] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The crystal structure of yeast thymidylate kinase (TmpK) complexed with the bisubstrate inhibitor P1-(5'-adenosyl) P5-(5'-thymidyl) pentaphosphate (TP5A) was determined at 2.0 A resolution. In this complex, TmpK adopts a closed conformation with a region (LID) of the protein closing upon the substrate and forming a helix. The interactions of TmpK and TP5A strongly suggest that arginine 15, which is located in the phosphate binding loop (P-loop) sequence, plays a catalytic role by interacting with an oxygen atom of the transferred phosphoryl group. Unlike other nucleoside monophosphate kinases where basic residues from the LID region participate in stabilizing the transition state, TmpK lacks such residues in the LID region. We attribute this function to Arg 15 of the P-loop. TmpK plays an important role in the phosphorylation of the AIDS prodrug AZT. The structures of TmpK with dTMP and with AZT-MP [Lavie, A., et al. (1997) Nat. Struct. Biol. 4, 601-604] implicate the movement of Arg15 in response to AZT-MP binding as an important factor in the 200-fold reduced catalytic rate with AZT-MP. TmpK from Escherichia coli lacks this arginine in its P-loop while having basic residues in the LID region. This suggested that, if such a P-loop movement were to occur in the E. coli TmpK upon AZT-MP binding, it should not have such a detrimental effect on catalysis. This hypothesis was tested, and as postulated, E. coli TmpK phosphorylates AZT-MP only 2.5 times slower than dTMP.
Collapse
Affiliation(s)
- A Lavie
- Department of Physical Biochemistry, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Pelicano H, Maury G, Elalaoui A, Shafiee M, Imbach JL, Goody RS, Divita G. Study of the substrate-binding properties of bovine liver adenosine kinase and inhibition by fluorescent nucleoside analogues. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:930-7. [PMID: 9342249 DOI: 10.1111/j.1432-1033.1997.00930.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adenosine kinase (AK) catalyzes the phosphorylation of adenosine to AMP with ATP as phosphate donor. Intrinsic fluorescence of bovine liver AK was shown previously to be a sensitive probe to quantify the binding of substrates to the enzyme [Elaloui, A., Divita, G., Maury, G., Imbach, J.-L. & Goody, R. S. (1994) Eur. J Biochem. 221, 839-846]. AK contains two catalytic, sites: a high-affinity site, which binds adenosine and AMP selectively; and a site for ATP and ADP. In the present work, these two sites were characterized by combining the quenching of protein fluorescence induced by the binding of the ligands and the fluorescence enhancement observed upon binding of the N-methylanthraniloyl-derivated nucleotides or adenosine. A new fluorescent analog of adenosine, 5'-N-methylanthraniloyl-adenosine, was synthesized and shown to bind selectively to the high-affinity adenosine-binding site with an affinity similar to that of adenosine (Kd 1 microM). In contrast, 2'(3')-N-methylanthraniloyl derivatives of ATP, adenosine (5')tetraphospho(5')adenosine (Ap4A), and adenosine (5')pentaphospho(5')adenosine (Ap5A), bind to the enzyme at the ATP site. Methylantraniloyl derivatives of ATP and adenosine were used as tools for selective characterization of a series of adenosine analogues. The bisubstrate inhibitors Ap4A and Ap5A bind to the ATP site with high affinity and apparently not to the adenosine site, thus acting more as ATP analogues than true bisubstrate ligands. The binding properties of a series of adenosine analogues were strongly dependent on the structural modifications on adenosine. The analogues modified at positions 2' or 3' show similar affinities for AK as that of adenosine, whereas adenosine analogues modified at the base present a relatively low affinity for the enzyme.
Collapse
Affiliation(s)
- H Pelicano
- Université de Montpellier II Sciences et Techniques du Languedoc, URA 488 du CNRS, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Schlichting I, Reinstein J. Structures of active conformations of UMP kinase from Dictyostelium discoideum suggest phosphoryl transfer is associative. Biochemistry 1997; 36:9290-6. [PMID: 9280438 DOI: 10.1021/bi970974c] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
UMP/CMP kinase from Dictyostelium discoideum (UmpKdicty) catalyzes the specific transfer of the terminal phosphate of ATP to UMP or CMP. Crystal structures of UmpKdicty with substrates and the transition state analogs AlF3 or BeF2 that lock UmpKdicty in active conformations were solved. The positions of the catalytic Mg2+ and the highly conserved lysine of the P loop are virtually invariant in the different structures. In contrast, catalytic arginines move to stabilize charges that develop during this reaction. The location of the arginines indicates formation of negative charges during the reaction at the transferred phosphoryl group, but not at the phosphate bridging oxygen atoms. This is consistent with an associative phosphoryl transfer mechanism but not with a dissociative one.
Collapse
Affiliation(s)
- I Schlichting
- Max-Planck-Institut für molekulare Physiologie, Abteilung physikalische Biochemie, Rheinlanddamm 201, D-44139 Dortmund, Germany
| | | |
Collapse
|
10
|
Scheffzek K, Kliche W, Wiesmüller L, Reinstein J. Crystal structure of the complex of UMP/CMP kinase from Dictyostelium discoideum and the bisubstrate inhibitor P1-(5'-adenosyl) P5-(5'-uridyl) pentaphosphate (UP5A) and Mg2+ at 2.2 A: implications for water-mediated specificity. Biochemistry 1996; 35:9716-27. [PMID: 8703943 DOI: 10.1021/bi960642s] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The three-dimensional structure of the UMP/CMP kinase (UK) from the slime mold Dictyostelium discoideum complexed with the specific and asymmetric bisubstrate inhibitor P1-(5'-adenosyl) P5-(5'-uridyl) pentaphosphate (UP5A) has been determined at a resolution of 2.2 A. The structure of the enzyme, which has up to 41% sequence homology with known adenylate kinases (AK), represents a closed conformation with the flexible monophosphate binding domain (NMP site) being closed over the uridyl moiety of the dinucleotide. Two water molecules were found within hydrogen-bonding distance to the uracil base. The key residue for the positioning and stabilization of those water molecules appears to be asparagine 97, a residue that is highly specific for AK-homologous UMP kinases, but is almost invariably a glutamine in adenylate kinases. Other residues in this region are highly conserved among AK-related NMP kinases. The catalytic Mg2+ ion is coordinated with octahedral geometry to four water molecules and two oxygens of the phosphate chain of UP5A but has no direct interactions with the protein. The comparison of the geometry of the UKdicty.UP5A.Mg2+ complex with the previously reported structure of the UKyeast.ADP.ADP complex [Müller-Dieckmann & Schulz (1994) J. Mol. Biol. 236, 361-367] suggests that UP5A in our structure mimics an ADP.Mg.UDP biproduct inhibitor rather than an ATP. MG.UMP bisubstrate inhibitor.
Collapse
Affiliation(s)
- K Scheffzek
- Max-Planck-Institut für Medizinische Forschung, Abteilung Biophysik, Heidelberg, Germany
| | | | | | | |
Collapse
|
11
|
Bucurenci N, Sakamoto H, Briozzo P, Palibroda N, Serina L, Sarfati RS, Labesse G, Briand G, Danchin A, Bărzu O, Gilles AM. CMP kinase from Escherichia coli is structurally related to other nucleoside monophosphate kinases. J Biol Chem 1996; 271:2856-62. [PMID: 8576266 DOI: 10.1074/jbc.271.5.2856] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
CMP kinase from Escherichia coli is a monomeric protein of 225 amino acid residues. The protein exhibits little overall sequence similarities with other known NMP kinases. However, residues involved in binding of substrates and/or in catalysis were found conserved, and sequence comparison suggested conservation of the global fold found in adenylate kinases or in several CMP/UMP kinases. The enzyme was purified to homogeneity, crystallized, and analyzed for its structural and catalytic properties. The crystals belong to the hexagonal space group P6(3), have unit cell parameters a = b = 82.3 A and c = 60.7 A, and diffract x-rays to a 1.9 A resolution. The bacterial enzyme exhibits a fluorescence emission spectrum with maximum at 328 nm upon excitation at 295 nm, which suggests that the single tryptophan residue (Trp30) is located in a hydrophobic environment. Substrate specificity studies showed that CMP kinase from E. coli is active with ATP, dATP, or GTP as donors and with CMP, dCMP, and arabinofuranosyl-CMP as acceptors. This is in contrast with CMP/UMP kinase from Dictyostelium discoideum, an enzyme active on CMP or UMP but much less active on the corresponding deoxynucleotides. Binding of CMP enhanced the affinity of E. coli CMP kinase for ATP or ADP, a particularity never described in this family of proteins that might explain inhibition of enzyme activity by excess of nucleoside monophosphate.
Collapse
Affiliation(s)
- N Bucurenci
- Unité de Biochimie des Régulations Cellulaires, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|