Gravot A, Larbat R, Hehn A, Lièvre K, Gontier E, Goergen JL, Bourgaud F. Cinnamic acid 4-hydroxylase mechanism-based inactivation by psoralen derivatives: cloning and characterization of a C4H from a psoralen producing plant-Ruta graveolens-exhibiting low sensitivity to psoralen inactivation.
Arch Biochem Biophys 2004;
422:71-80. [PMID:
14725859 DOI:
10.1016/j.abb.2003.12.013]
[Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cinnamate 4-hydroxylase (C4H, EC 1.14.13.11) complete cDNA was cloned from the leaves of Ruta graveolens, a psoralen producing plant. The recombinant enzyme (classified CYP73A32) was expressed in Saccharomyces cerevisiae. Mechanism-based inactivation was investigated using various psoralen derivatives. Only psoralen and 8-methoxypsoralen were found to inactivate C4H. The inactivation was dependent on the presence of NADPH, time of pre-incubation, and inhibitor concentration. Inactivation stoichiometry was 0.9 (+/-0.2) for CYP73A1 and 1.1 (+/-0.2) for CYP73A32. SDS-PAGE analysis demonstrated that [3H]psoralen was irreversibly bound to the C4H apoprotein. K(i) and k(inact) for psoralen and 8-methoxypsoralen inactivation on the two C4H revealed a lower sensitivity for CYP73A32 compared to CYP73A1. Inactivation kinetics were also determined for CYP73A10, a C4H from another furocoumarin-producing plant, Petroselinum crispum. This enzyme was found to behave like CYP73A32, with a weak sensitivity to psoralen and 8-MOP inactivation. Cinnamic acid hydroxylation is a key step in the biosynthesis of phenylpropanoid compounds, psoralen derivatives included. Our results suggest a possible evolution of R. graveolens and P. crispum C4H that might tolerate substantial levels of psoralen derivatives in the cytoplasmic compartment without a depletive effect on C4H and the general phenylpropanoid metabolism.
Collapse