1
|
The Surprising Story of Fusicoccin: A Wilt-Inducing Phytotoxin, a Tool in Plant Physiology and a 14-3-3-Targeted Drug. Biomolecules 2021; 11:biom11091393. [PMID: 34572605 PMCID: PMC8470340 DOI: 10.3390/biom11091393] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Fusicoccin is the α glucoside of a carbotricyclic diterpene, produced by the fungus Phomopsis amygdali (previously classified as Fusicoccum amygdali), the causal agent of almond and peach canker disease. A great interest in this molecule started when it was discovered that it brought about an irreversible stomata opening of higher plants, thereby inducing the wilting of their leaves. Since then, several studies were carried out to elucidate its biological activity, biosynthesis, structure, structure-activity relationships and mode of action. After sixty years of research and more than 1800 published articles, FC is still the most studied phytotoxin and one of the few whose mechanism of action has been elucidated in detail. The ability of FC to stimulate several fundamental plant processes depends on its ability to activate the plasma membrane H+-ATPase, induced by eliciting the association of 14-3-3 proteins, a class of regulatory molecules widespread in eukaryotes. This discovery renewed interest in FC and prompted more recent studies aimed to ascertain the ability of the toxin to influence the interaction between 14-3-3 proteins and their numerous client proteins in animals, involved in the regulation of basic cellular processes and in the etiology of different diseases, including cancer. This review covers the different aspects of FC research partially treated in different previous reviews, starting from its discovery in 1964, with the aim to outline the extraordinary pathway which led this very uncommon diterpenoid to evolve from a phytotoxin into a tool in plant physiology and eventually into a 14-3-3-targeted drug.
Collapse
|
2
|
|
3
|
Camoni L, Visconti S, Aducci P, Marra M. From plant physiology to pharmacology: fusicoccin leaves the leaves. PLANTA 2019; 249:49-57. [PMID: 30467630 DOI: 10.1007/s00425-018-3051-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
This review highlights 50 years of research on the fungal diterpene fusicoccin, during which the molecule went from a tool in plant physiology research to a pharmacological agent in treating animal diseases. Fusicoccin is a phytotoxic glycosylated diterpene produced by the fungus Phomopsis amygdali, a pathogen of almond and peach plants. Widespread interest in this molecule started when it was discovered that it is capable of causing stomate opening in all higher plants, thereby inducing wilting of leaves. Thereafter, FC became, and still is, a tool in plant physiology, due to its ability to influence a number of fundamental processes, which are dependent on the activation of the plasma membrane H+-ATPase. Molecular studies carried out in the last 20 years clarified details of the mechanism of proton pump stimulation, which involves the fusicoccin-mediated irreversible stabilization of the complex between the H+-ATPase and activatory 14-3-3 proteins. More recently, FC has been shown to influence cellular processes involving 14-3-3 binding to client proteins both in plants and animals. In this review, we report the milestones achieved in more than 50 years of research in plants and highlight recent advances in animals that have allowed this diterpene to be used as a 14-3-3 targeted drug.
Collapse
Affiliation(s)
- Lorenzo Camoni
- Department of Biology, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy.
| | - Sabina Visconti
- Department of Biology, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Patrizia Aducci
- Department of Biology, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Mauro Marra
- Department of Biology, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
4
|
Camoni L, Di Lucente C, Pallucca R, Visconti S, Aducci P. Binding of phosphatidic acid to 14-3-3 proteins hampers their ability to activate the plant plasma membrane H+-ATPase. IUBMB Life 2012; 64:710-6. [DOI: 10.1002/iub.1058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/10/2012] [Indexed: 11/12/2022]
|
5
|
Visconti S, Camoni L, Marra M, Aducci P. Role of the 14-3-3 C-terminal region in the interaction with the plasma membrane H+-ATPase. PLANT & CELL PHYSIOLOGY 2008; 49:1887-1897. [PMID: 19001422 DOI: 10.1093/pcp/pcn172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The 14-3-3 proteins are a family of proteins present in a number of isoforms in all eukaryotes and involved in the control of many cellular functions. Regulation of different activities is achieved by binding to phosphorylated targets through a conserved mechanism. Although in many systems isoform specificity has been demonstrated, the underlying molecular basis is still unclear. The sequences of 14-3-3 isoforms are highly conserved, divergence occurring at the N- and C-terminal regions. Recently it has been suggested that the C-terminal domain of 14-3-3 may regulate protein binding to the targets. Here we study the role of the C-terminal region of maize isoform GF14-6 in the interaction with the plant plasma membrane H(+)-ATPase. Results obtained demonstrate that removal of the last 22 amino acids residues of GF14-6 increases binding to H(+)-ATPase and stimulation of its activity. C-terminal deletion, moreover, reduces 14-3-3 sensitivity to cations. We also show that a peptide reproducing the GF14-6 C-terminus is able to bind to the C-terminal domain of H(+)-ATPase and to stimulate the enzyme activity. The implications of these findings for a integrated model of 14-3-3 interaction with H(+)-ATPase are discussed.
Collapse
Affiliation(s)
- Sabina Visconti
- Department of Biology, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy
| | | | | | | |
Collapse
|
6
|
Garufi A, Visconti S, Camoni L, Aducci P. Polyamines as physiological regulators of 14-3-3 interaction with the plant plasma membrane H+-ATPase. PLANT & CELL PHYSIOLOGY 2007; 48:434-40. [PMID: 17251201 DOI: 10.1093/pcp/pcm010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Polyamines are abundant polycationic compounds involved in many plant physiological processes such as cell division, dormancy breaking, plant morphogenesis and response to environmental stresses. In this study, we investigated the possible role of these polycations in modulating the association of 14-3-3 proteins with the H(+)-ATPase. In vivo experiments demonstrate that, among the different polyamines, spermine brings about 2-fold stimulation of the H(+)-ATPase activity and this effect is due to an increase in 14-3-3 levels associated with the enzyme. In vivo administration of polyamine synthesis inhibitors causes a small but statistically significant decrease of the H(+)-ATPase phosphohydrolytic activity, demonstrating a physiological role for the polyamines in regulating the enzyme activity. Spermine stimulates the activity of the H(+)-ATPase AHA1 expressed in yeast, in the presence of exogenous 14-3-3 proteins, with a calculated S(50) of 70 microM. Moreover, spermine enhances the in vitro interaction of 14-3-3 proteins with the H(+)-ATPase and notably induces 14-3-3 association with the unphosphorylated C-terminal domain of the proton pump. Comparison of spermine with Mg(2+), necessary for binding of 14-3-3 proteins to different target proteins, shows that the polyamine effect is stronger than and additive to that of the divalent cation.
Collapse
Affiliation(s)
- Alessandra Garufi
- Department of Biology, University of Rome Tor Vergata, via della Ricerca Scientifica, I-00133 Rome, Italy
| | | | | | | |
Collapse
|
7
|
Camoni L, Marra M, Garufi A, Visconti S, Aducci P. The maize root plasma membrane H(+)-ATPase is regulated by a sugar-induced transduction pathway. PLANT & CELL PHYSIOLOGY 2006; 47:743-7. [PMID: 16614095 DOI: 10.1093/pcp/pcj046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
H(+)-ATPase, the key enzyme for the energization of ion and nutrient transport across the plasma membrane, is activated by phosphorylation-dependent 14-3-3 binding. Since the involvement of 14-3-3 proteins in sugar sensing-regulated processes has recently emerged, here we address the question as to whether sugar sensing plays a role in the regulation of H(+)-ATPase. The data reported here show that sugar depletion inhibits the association of 14-3-3 proteins with H(+)-ATPase by hampering phosphorylation of the 14-3-3 binding site of the enzyme. By using non-metabolizable disaccharides, we show that H(+)-ATPase regulation by 14-3-3 proteins can involve a specific sugar perception and transduction mechanism.
Collapse
Affiliation(s)
- Lorenzo Camoni
- Department of Biology, University of Rome 'Tor Vergata', via della Ricerca Scientifica, 00133 Rome, Italy
| | | | | | | | | |
Collapse
|
8
|
Gutiérrez-Nájera N, Muñoz-Clares RA, Palacios-Bahena S, Ramírez J, Sánchez-Nieto S, Plasencia J, Gavilanes-Ruíz M. Fumonisin B1, a sphingoid toxin, is a potent inhibitor of the plasma membrane H+-ATPase. PLANTA 2005; 221:589-596. [PMID: 15703925 DOI: 10.1007/s00425-004-1469-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 11/15/2004] [Indexed: 05/24/2023]
Abstract
Fumonisin B(1) (FB(1)) is an amphipathic toxin produced by the pathogenic fungus Fusarium verticillioides which causes stem, root and ear rot in maize (Zea mays L.). In this work, we studied the action of FB(1) on the plasma membrane H(+)-ATPase (EC 3.6.1.34) from germinating maize embryos, and on the fluidity and lipid peroxidation of these membranes. In maize embryos the toxin at 40 microM inhibited root elongation by 50% and at 30 microM decreased medium acidification by about 80%. Irrespective of the presence and absence of FB(1), the H(+)-ATPase in plasma membrane vesicles exhibited non-hyperbolic saturation kinetics by ATPH-Mg, with Hill number of 0.67. Initial velocity studies revealed that FB(1) is a total uncompetitive inhibitor of this enzyme with an inhibition constant value of 17.5+/-1 microM. Thus FB(1) decreased V(max) and increased the apparent affinity of the enzyme for ATP-Mg to the same extent. Although FB(1) increased the fluidity at the hydrophobic region of the membrane, no correlation was found with its effect on enzyme activity, since both effects showed different FB(1)-concentration dependence. Peroxidation of membrane lipids was not affected by the toxin. Our results suggest that, under in vivo conditions, the plasma membrane H(+)-ATPase is a potentially important target of the toxin, as it is inhibited not only by FB(1) but also by its structural analogs, the sphingoid intermediates, which accumulate upon the inhibition of sphinganine N-acyltransferase by this toxin.
Collapse
Affiliation(s)
- Nora Gutiérrez-Nájera
- Departamento de Bioquímica, Conj E. Facultad de Química, UNAM Cd Universitaria, 04510 México DF, México
| | | | | | | | | | | | | |
Collapse
|
9
|
Giacometti S, Camoni L, Albumi C, Visconti S, De Michelis MI, Aducci P. Tyrosine phosphorylation inhibits the interaction of 14-3-3 proteins with the plant plasma membrane H+-ATPase. PLANT BIOLOGY (STUTTGART, GERMANY) 2004; 6:422-31. [PMID: 15248125 DOI: 10.1055/s-2004-820933] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Interaction of 14-3-3 proteins with their targets depends not only on the phosphorylation status of the target but also on that of 14-3-3 (Fu et al., 2000). In this work we demonstrated that the maize 14-3-3 isoform GF14-6 is a substrate of the tyrosine kinase insulin growth factor receptor 1. By means of site-directed mutants of GF14-6, we identified Tyr-137 as the specific tyrosine residue phosphorylated by the insulin growth factor receptor 1. Phosphorylation of GF14-6 on Tyr-137 lowered its affinity for a peptide mimicking the 14-3-3 binding site of the plant plasma membrane H+-ATPase. Moreover, phosphorylation in planta of 14-3-3 tyrosine residues, resulting from incubation with the tyrosine phosphatase inhibitor, phenylarsine oxide, decreased their association to the H+-ATPase.
Collapse
Affiliation(s)
- S Giacometti
- Dipartimento di Biologia "L. Gorini", Università di Milano, CNR Istituto di Biofisica - Sezione di Milano, via G. Celoria 26, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Visconti S, Camoni L, Fullone MR, Lalle M, Marra M, Aducci P. Mutational analysis of the interaction between 14-3-3 proteins and plant plasma membrane H+-ATPase. J Biol Chem 2003; 278:8172-8. [PMID: 12509351 DOI: 10.1074/jbc.m211039200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we report on mutational studies performed to investigate the mechanism of binding of 14-3-3 proteins to the plasma membrane H(+)-ATPase of plant cells. In fact, although the molecular basis of the interaction between 14-3-3 and the known mode-1 and mode-2 consensus sequences are well characterized, no information is available regarding the association with the H(+)-ATPase, which contains the novel binding site YTV totally unrelated to the 14-3-3 canonical motifs. To this purpose, different mutants of the maize 14-3-3 GF14-6 isoform were produced and used in interaction studies with the plasma membrane H(+)-ATPase and with a peptide reproducing the 14-3-3 binding site of the enzyme. The ability of 14-3-3 mutants to stimulate H(+)-ATPase activity was also tested. To investigate the mechanism of fusicoccin-dependent interaction, binding experiments between 14-3-3 proteins and mutants of the extreme portion of the H(+)-ATPase C terminus were also carried out. The results demonstrate that mutations of Lys(56) and Val(185) within the amphipathic groove disrupt the ability of GF14-6 to interact with H(+)-ATPase and to stimulate its activity. Moreover, substitution of Asp(938) and Asp(940) in the MHA2 H(+)-ATPase C terminus greatly decreased association with GF14-6, thereby demonstrating a crucial role of negatively charged residues in the fusicoccin-dependent interaction.
Collapse
Affiliation(s)
- Sabina Visconti
- Department of Biology, University of Rome Tor Vergata, via della Ricerca Scientifica, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Camoni L, Visconti S, Marra M, Aducci P. Adenosine 5'-monophosphate inhibits the association of 14-3-3 proteins with the plant plasma membrane H(+)-ATPase. J Biol Chem 2001; 276:31709-12. [PMID: 11423544 DOI: 10.1074/jbc.m104194200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although a well ascertained evidence proves that the activity of the plant plasma membrane H(+)-ATPase is regulated by 14-3-3 proteins, information about physiological factors modulating the phosphorylation-dependent association between 14-3-3 proteins and the proton pump is largely incomplete. In this paper we show that the 5'-AMP-mimetic, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), inhibits the fusicoccin-promoted proton extrusion in maize roots. We also demonstrate that 5'-AMP inhibits the association of 14-3-3 proteins with the C-terminal domain of the H(+)-ATPase in an overlay assay as well as the 14-3-3-dependent stimulation of the Arabidopsis thaliana H(+)-ATPase AHA1 isoform expressed in yeast membranes. Finally, by means of affinity chromatography with immobilized 5'-AMP and trinitrophenyl-AMP fluorescence analysis, we demonstrate that the 14-3-3 isoform GF14-6 from maize is able to bind 5'-AMP. The possible role of 5'-AMP as a general regulator of 14-3-3 functions in the plant cell is discussed.
Collapse
Affiliation(s)
- L Camoni
- Department of Biology, University of Rome Tor Vergata, via della Ricerca Scientifica, I-00133, Rome, Italy
| | | | | | | |
Collapse
|
12
|
Morsomme P, Boutry M. The plant plasma membrane H(+)-ATPase: structure, function and regulation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1465:1-16. [PMID: 10748244 DOI: 10.1016/s0005-2736(00)00128-0] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The proton-pumping ATPase (H(+)-ATPase) of the plant plasma membrane generates the proton motive force across the plasma membrane that is necessary to activate most of the ion and metabolite transport. In recent years, important progress has been made concerning the identification and organization of H(+)-ATPase genes, their expression, and also the kinetics and regulation of individual H(+)-ATPase isoforms. At the gene level, it is now clear that H(+)-ATPase is encoded by a family of approximately 10 genes. Expression, monitored by in situ techniques, has revealed a specific distribution pattern for each gene; however, this seems to differ between species. In the near future, we can expect regulatory aspects of gene expression to be elucidated. Already the expression of individual plant H(+)-ATPases in yeast has shown them to have distinct enzymatic properties. It has also allowed regulatory aspects of this enzyme to be studied through random and site-directed mutagenesis, notably its carboxy-terminal region. Studies performed with both plant and yeast material have converged towards deciphering the way phosphorylation and binding of regulatory 14-3-3 proteins intervene in the modification of H(+)-ATPase activity. The production of high quantities of individual functional H(+)-ATPases in yeast constitutes an important step towards crystallization studies to derive structural information. Understanding the specific roles of H(+)-ATPase isoforms in whole plant physiology is another challenge that has been approached recently through the phenotypic analysis of the first transgenic plants in which the expression of single H(+)-ATPases has been up- or down-regulated. In conclusion, the progress made recently concerning the H(+)-ATPase family, at both the gene and protein level, has come to a point where we can now expect a more integrated investigation of the expression, function and regulation of individual H(+)-ATPases in the whole plant context.
Collapse
Affiliation(s)
- P Morsomme
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Croix du Sud, 2-20, 1348, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
13
|
Camoni L, Iori V, Marra M, Aducci P. Phosphorylation-dependent interaction between plant plasma membrane H(+)-ATPase and 14-3-3 proteins. J Biol Chem 2000; 275:9919-23. [PMID: 10744665 DOI: 10.1074/jbc.275.14.9919] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The H(+)-ATPase is a key enzyme for the establishment and maintenance of plasma membrane potential and energization of secondary active transport in the plant cell. The phytotoxin fusicoccin induces H(+)-ATPase activation by promoting the association of 14-3-3 proteins. It is still unclear whether 14-3-3 proteins can represent natural regulators of the proton pump, and factors regulating 14-3-3 binding to the H(+)-ATPase under physiological conditions are unknown as well. In the present study in vivo and in vitro evidence is provided that 14-3-3 proteins can associate with the H(+)-ATPase from maize roots also in a fusicoccin-independent manner and that the interaction depends on the phosphorylation status of the proton pump. Furthermore, results indicate that phosphorylation of H(+)-ATPase influences also the fusicoccin-dependent interaction of 14-3-3 proteins. Finally, a protein phosphatase 2A able to impair the interaction between H(+)-ATPase and 14-3-3 proteins was identified and partially purified from maize root.
Collapse
Affiliation(s)
- L Camoni
- Department of Biology, University of Rome "Tor Vergata," via della Ricerca Scientifica, I-00133, Rome, Italy
| | | | | | | |
Collapse
|
14
|
Fullone MR, Visconti S, Marra M, Fogliano V, Aducci P. Fusicoccin effect on the in vitro interaction between plant 14-3-3 proteins and plasma membrane H+-ATPase. J Biol Chem 1998; 273:7698-702. [PMID: 9516476 DOI: 10.1074/jbc.273.13.7698] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 17-amino acid peptide was selectively cleaved from the highly variant C terminus of the 33-kDa 14-3-3 isoform occurring in fusicoccin receptor preparations from maize and was sequenced. The determined C-terminal sequence was identical to that of the already known maize 14-3-3 homolog GF14-6, thus prompting the use of recombinant GF14-6 in an in vitro protein-protein interaction study. The cDNA of GF14-6 was expressed in Escherichia coli as a 32P-phosphorylatable glutathione S-transferase fusion protein and was used as a probe in overlay experiments with H+-ATPase partially purified from maize roots. The results demonstrated that the recombinant protein specifically bound to H+-ATPase. The binding was dependent on Mg2+ and was strongly increased by fusicoccin. Controlled trypsin digestion of H+-ATPase abolished the association with GF14-6, a finding that was suggestive of an interaction with the C terminus of the enzyme. To confirm this result, the C-terminal domain of H+-ATPase was expressed as a glutathione S-transferase fusion peptide and was used in overlay experiments. GF14-6 was also able to bind to the isolated C terminus, but only in the presence of fusicoccin.
Collapse
Affiliation(s)
- M R Fullone
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Università di Roma "La Sapienza," Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | | | | | | | | |
Collapse
|
15
|
Olivari C, Meanti C, De Michelis MI, Rasi-Caldogno F. Fusicoccin binding to its plasma membrane receptor and the activation of the plasma membrane H(+)-ATPase. IV. Fusicoccin induces the association between the plasma membrane H(+)-ATPase and the fusicoccin receptor. PLANT PHYSIOLOGY 1998; 116:529-537. [PMID: 9489010 PMCID: PMC35110 DOI: 10.1104/pp.116.2.529] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/1997] [Accepted: 10/17/1997] [Indexed: 05/22/2023]
Abstract
Different approaches were utilized to investigate the mechanism by which fusicoccin (FC) induces the activation of the H(+)-ATPase in plasma membrane (PM) isolated from radish (Raphanus sativus L.) seedlings treated in vivo with (FC-PM) or without (C-PM) FC. Treatment of FC-PM with different detergents indicated that PM H(+)-ATPase and the FC-FC-binding-protein (FCBP) complex were solubilized to a similar extent. Fractionation of solubilized FC-PM proteins by a linear sucrose-density gradient showed that the two proteins comigrated and that PM H(+)-ATPase retained the activated state induced by FC. Solubilized PM proteins were also fractionated by a fast-protein liquid chromatography anion-exchange column. Comparison between C-PM and FC-PM indicated that in vivo treatment of the seedlings with FC caused different elution profiles; PM H(+)-ATPase from FC-PM was only partially separated from the FC-FCBP complex and eluted at a higher NaCl concentration than did PM H(+)-ATPase from C-PM. Western analysis of fast-protein liquid chromatography fractions probed with an anti-N terminus PM H(+)-ATPase antiserum and with an anti-14-3-3 antiserum indicated an FC-induced association of FCBP with the PM H(+)-ATPase. Analysis of the activation state of PM H(+)-ATPase in fractions in which the enzyme was partially separated from FCBP suggested that the establishment of an association between the two proteins was necessary to maintain the FC-induced activation of the enzyme.
Collapse
Affiliation(s)
- C Olivari
- Dipartimento di Biologia, Università di Milano, Italy.
| | | | | | | |
Collapse
|