1
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 574] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
New spectroscopic and electrochemical insights on a class I superoxide reductase: evidence for an intramolecular electron-transfer pathway. Biochem J 2011; 438:485-94. [DOI: 10.1042/bj20110836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SORs (superoxide reductases) are enzymes involved in bacterial resistance to reactive oxygen species, catalysing the reduction of superoxide anions to hydrogen peroxide. So far three structural classes have been identified. Class I enzymes have two iron-centre-containing domains. Most studies have focused on the catalytic iron site (centre II), yet the role of centre I is poorly understood. The possible roles of this iron site were approached by an integrated study using both classical and fast kinetic measurements, as well as direct electrochemistry. A new heterometallic form of the protein with a zinc-substituted centre I, maintaining the iron active-site centre II, was obtained, resulting in a stable derivative useful for comparison with the native all-iron from. Second-order rate constants for the electron transfer between reduced rubredoxin and the different SOR forms were determined to be 2.8×107 M−1·s−1 and 1.3×106 M−1·s−1 for SORFe(IIII)-Fe(II) and for SORFe(IIII)-Fe(III) forms respectively, and 3.2×106 M−1·s−1 for the SORZn(II)-Fe(III) form. The results obtained seem to indicate that centre I transfers electrons from the putative physiological donor rubredoxin to the catalytic active iron site (intramolecular process). In addition, electrochemical results show that conformational changes are associated with the redox state of centre I, which may enable a faster catalytic response towards superoxide anion. The apparent rate constants calculated for the SOR-mediated electron transfer also support this observation.
Collapse
|
3
|
Lucchetti-Miganeh C, Goudenège D, Thybert D, Salbert G, Barloy-Hubler F. SORGOdb: Superoxide Reductase Gene Ontology curated DataBase. BMC Microbiol 2011; 11:105. [PMID: 21575179 PMCID: PMC3116461 DOI: 10.1186/1471-2180-11-105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 05/16/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Superoxide reductases (SOR) catalyse the reduction of superoxide anions to hydrogen peroxide and are involved in the oxidative stress defences of anaerobic and facultative anaerobic organisms. Genes encoding SOR were discovered recently and suffer from annotation problems. These genes, named sor, are short and the transfer of annotations from previously characterized neelaredoxin, desulfoferrodoxin, superoxide reductase and rubredoxin oxidase has been heterogeneous. Consequently, many sor remain anonymous or mis-annotated. DESCRIPTION SORGOdb is an exhaustive database of SOR that proposes a new classification based on domain architecture. SORGOdb supplies a simple user-friendly web-based database for retrieving and exploring relevant information about the proposed SOR families. The database can be queried using an organism name, a locus tag or phylogenetic criteria, and also offers sequence similarity searches using BlastP. Genes encoding SOR have been re-annotated in all available genome sequences (prokaryotic and eukaryotic (complete and in draft) genomes, updated in May 2010). CONCLUSIONS SORGOdb contains 325 non-redundant and curated SOR, from 274 organisms. It proposes a new classification of SOR into seven different classes and allows biologists to explore and analyze sor in order to establish correlations between the class of SOR and organism phenotypes. SORGOdb is freely available at http://sorgo.genouest.org/index.php.
Collapse
Affiliation(s)
- Céline Lucchetti-Miganeh
- CNRS UMR 6026, ICM, Equipe Sp@rte, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France.
| | | | | | | | | |
Collapse
|
4
|
Brioukhanov AL. Nonheme iron proteins as an alternative system of antioxidant defense in the cells of strictly anaerobic microorganisms: A review. APPL BIOCHEM MICRO+ 2008. [DOI: 10.1134/s0003683808040017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Pereira AS, Tavares P, Folgosa F, Almeida RM, Moura I, Moura JJG. Superoxide Reductases. Eur J Inorg Chem 2007. [DOI: 10.1002/ejic.200700008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alice S. Pereira
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| | - Pedro Tavares
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| | - Filipe Folgosa
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| | - Rui M. Almeida
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| | - Isabel Moura
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| | - José J. G. Moura
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| |
Collapse
|
6
|
Auchère F, Pauleta SR, Tavares P, Moura I, Moura JJG. Kinetics studies of the superoxide-mediated electron transfer reactions between rubredoxin-type proteins and superoxide reductases. J Biol Inorg Chem 2006; 11:433-44. [PMID: 16544159 DOI: 10.1007/s00775-006-0090-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 02/03/2006] [Indexed: 10/24/2022]
Abstract
In this work we present a kinetic study of the superoxide-mediated electron transfer reactions between rubredoxin-type proteins and members of the three different classes of superoxide reductases (SORs). SORs from the sulfate-reducing bacteria Desulfovibrio vulgaris (Dv) and D. gigas (Dg) were chosen as prototypes of classes I and II, respectively, while SOR from the syphilis spirochete Treponema pallidum (Tp) was representative of class III. Our results show evidence for different behaviors of SORs toward electron acceptance, with a trend to specificity for the electron donor and acceptor from the same organism. Comparison of the different kapp values, 176.9+/-25.0 min(-1) in the case of the Tp/Tp electron transfer, 31.8+/-3.6 min(-1) for the Dg/Dg electron transfer, and 6.9+/-1.3 min(-1) for Dv/Dv, could suggest an adaptation of the superoxide-mediated electron transfer efficiency to various environmental conditions. We also demonstrate that, in Dg, another iron-sulfur protein, a desulforedoxin, is able to transfer electrons to SOR more efficiently than rubredoxin, with a kapp value of 108.8+/-12.0 min(-1), and was then assigned as the potential physiological electron donor in this organism.
Collapse
Affiliation(s)
- Françoise Auchère
- REQUIMTE-Centro de Química Fina e Biotecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | | | | | | | | |
Collapse
|
7
|
Kawasaki S, Watamura Y, Ono M, Watanabe T, Takeda K, Niimura Y. Adaptive responses to oxygen stress in obligatory anaerobes Clostridium acetobutylicum and Clostridium aminovalericum. Appl Environ Microbiol 2006; 71:8442-50. [PMID: 16332833 PMCID: PMC1317462 DOI: 10.1128/aem.71.12.8442-8450.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium acetobutylicum and Clostridium aminovalericum, both obligatory anaerobes, grow normally after growth conditions are changed from anoxic to microoxic, where the cells consume oxygen proficiently. In C. aminovalericum, a gene encoding a previously characterized H2O-forming NADH oxidase, designated noxA, was cloned and sequenced. The expression of noxA was strongly upregulated within 10 min after the growth conditions were altered to a microoxic state, indicating that C. aminovalericum NoxA is involved in oxygen metabolism. In C. acetobutylicum, genes suggested to be involved in oxygen metabolism and genes for reactive oxygen species (ROS) scavenging were chosen from the genome database. Although no clear orthologue of C. aminovalericum NoxA was found, Northern blot analysis identified many O2-responsive genes (e.g., a gene cluster [CAC2448 to CAC2452] encoding an NADH rubredoxin oxidoreductase-A-type flavoprotein-desulfoferrodoxin homologue-MerR family-like protein-flavodoxin, an operon [CAC1547 to CAC1549] encoding a thioredoxin-thioredoxin reductase-glutathione peroxidase-like protein, an operon [CAC1570 and CAC1571] encoding two glutathione peroxidase-like proteins, and genes encoding thiol peroxidase, bacterioferritin comigratory proteins, and superoxide dismutase) whose expression was quickly and synchronously upregulated within 10 min after flushing with 5% O2. The corresponding enzyme activities, such as NAD(P)H-dependent peroxide (H2O2 and alkyl hydroperoxides) reductase, were highly induced, indicating that microoxic growth of C. acetobutylicum is associated with the expression of a number of genes for oxygen metabolism and ROS scavenging.
Collapse
Affiliation(s)
- Shinji Kawasaki
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Setagaya-ku, Tokyo 156-8502, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Rusnak F, Ascenso C, Moura I, Moura JJG. Superoxide reductase activities of neelaredoxin and desulfoferrodoxin metalloproteins. Methods Enzymol 2002; 349:243-58. [PMID: 11912914 DOI: 10.1016/s0076-6879(02)49339-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Superoxide reductases have now been well characterized from several organisms. Unique biochemical features include the ability of the reduced enzyme to react with O2- but not dioxygen (reduced SORs are stable in an aerobic atmosphere for hours). Future biochemical assays that measure the reaction of SOR with O2- should take into account the difficulties of assaying O2- directly and the myriad of redox reactions that can take place between components in the assay, for example, direct electron transfer between cytochrome c and Dfx. Future prospects include further delineation of the reaction mechanisms, characterization of the putative (hydro)peroxo intermediate, and studies that uncover the components between reduced pyridine nucleotides and SOR in the metabolic pathway responsible for O2- detoxification.
Collapse
Affiliation(s)
- Frank Rusnak
- Section of Hematology Research, Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
9
|
Apiyo D, Jones K, Guidry J, Wittung-Stafshede P. Equilibrium unfolding of dimeric desulfoferrodoxin involves a monomeric intermediate: iron cofactors dissociate after polypeptide unfolding. Biochemistry 2001; 40:4940-8. [PMID: 11305909 DOI: 10.1021/bi002653y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report the conformational stability of homodimeric desulfoferrodoxin (dfx) from Desulfovibrio desulfuricans (ATCC 27774). The dimer is formed by two dfx monomers linked through beta-strand interactions in two domains; in addition, each monomer contains two different iron centers: one Fe-(S-Cys)(4) center and one Fe-[S-Cys+(N-His)(4)] center. The dissociation constant for dfx was determined to be 1 microM (DeltaG = 34 kJ/mol of dimer) from the concentration dependence of aromatic residue emission. Upon addition of the chemical denaturant guanidine hydrochloride (GuHCl) to dfx, a reversible fluorescence change occurred at 2-3 M GuHCl. This transition was dependent upon protein concentration, in accord with a dimer to monomer reaction [DeltaG(H(2)O) = 46 kJ/mol of dimer]. The secondary structure did not disappear, according to far-UV circular dichroism (CD), until 6 M GuHCl was added; this transition was reversible (for incubation times of < 1 h) and independent of dfx concentration [DeltaG(H(2)O) = 50 kJ/mol of monomer]. Thus, dfx equilibrium unfolding is at least three-state, involving a monomeric intermediate with native-like secondary structure. Only after complete polypeptide unfolding (and incubation times of > 1 h) did the iron centers dissociate, as monitored by disappearance of ligand-to-metal charge transfer absorption, fluorescence of an iron indicator, and reactivity of cysteines to Ellman's reagent. Iron dissociation took place over several hours and resulted in an irreversibly denatured dfx. It appears as if the presence of the iron centers, the amino acid composition, and, to a lesser extent, the dimeric structure are factors that aid in facilitating dfx's unusually high thermodynamic stability for a mesophilic protein.
Collapse
Affiliation(s)
- D Apiyo
- Chemistry Department and Molecular and Cellular Biology Graduate Program, Tulane University, New Orleans, Louisiana 70118, USA
| | | | | | | |
Collapse
|
10
|
Das A, Coulter ED, Kurtz DM, Ljungdahl LG. Five-gene cluster in Clostridium thermoaceticum consisting of two divergent operons encoding rubredoxin oxidoreductase- rubredoxin and rubrerythrin-type A flavoprotein- high-molecular-weight rubredoxin. J Bacteriol 2001; 183:1560-7. [PMID: 11160086 PMCID: PMC95040 DOI: 10.1128/jb.183.5.1560-1567.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A five-gene cluster encoding four nonheme iron proteins and a flavoprotein from the thermophilic anaerobic bacterium Clostridium thermoaceticum (Moorella thermoacetica) was cloned and sequenced. Based on analysis of deduced amino acid sequences, the genes were identified as rub (rubredoxin), rbo (rubredoxin oxidoreductase), rbr (rubrerythrin), fprA (type A flavoprotein), and a gene referred to as hrb (high-molecular-weight rubredoxin). Northern blot analysis demonstrated that the five-gene cluster is organized as two subclusters, consisting of two divergently transcribed operons, rbr-fprA-hrb and rbo-rub. The rbr, fprA, and rub genes were expressed in Escherichia coli, and their encoded recombinant proteins were purified. The molecular masses, UV-visible absorption spectra, and cofactor contents of the recombinant rubrerythrin, rubredoxin, and type A flavoprotein were similar to those of respective homologs from other microorganisms. Antibodies raised against Desulfovibrio vulgaris Rbr reacted with both native and recombinant Rbr from C. thermoaceticum, indicating that this protein was expressed in the native organism. Since Rbr and Rbo have been recently implicated in oxidative stress protection in several anaerobic bacteria and archaea, we suggest a similar function of these proteins in oxygen tolerance of C. thermoaceticum.
Collapse
Affiliation(s)
- A Das
- Center for Biological Resource Recovery and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229, USA
| | | | | | | |
Collapse
|
11
|
Coulter ED, Emerson JP, Kurtz DM, Cabelli DE. Superoxide Reactivity of Rubredoxin Oxidoreductase (Desulfoferrodoxin) fromDesulfovibriovulgaris: A Pulse Radiolysis Study. J Am Chem Soc 2000. [DOI: 10.1021/ja005583r] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Jovanović T, Ascenso C, Hazlett KR, Sikkink R, Krebs C, Litwiller R, Benson LM, Moura I, Moura JJ, Radolf JD, Huynh BH, Naylor S, Rusnak F. Neelaredoxin, an iron-binding protein from the syphilis spirochete, Treponema pallidum, is a superoxide reductase. J Biol Chem 2000; 275:28439-48. [PMID: 10874033 DOI: 10.1074/jbc.m003314200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Treponema pallidum, the causative agent of venereal syphilis, is a microaerophilic obligate pathogen of humans. As it disseminates hematogenously and invades a wide range of tissues, T. pallidum presumably must tolerate substantial oxidative stress. Analysis of the T. pallidum genome indicates that the syphilis spirochete lacks most of the iron-binding proteins present in many other bacterial pathogens, including the oxidative defense enzymes superoxide dismutase, catalase, and peroxidase, but does possess an orthologue (TP0823) for neelaredoxin, an enzyme of hyperthermophilic and sulfate-reducing anaerobes shown to possess superoxide reductase activity. To analyze the potential role of neelaredoxin in treponemal oxidative defense, we examined the biochemical, spectroscopic, and antioxidant properties of recombinant T. pallidum neelaredoxin. Neelaredoxin was shown to be expressed in T. pallidum by reverse transcriptase-polymerase chain reaction and Western blot analysis. Recombinant neelaredoxin is a 26-kDa alpha(2) homodimer containing, on average, 0.7 iron atoms/subunit. Mössbauer and EPR analysis of the purified protein indicates that the iron atom exists as a mononuclear center in a mixture of high spin ferrous and ferric oxidation states. The fully oxidized form, obtained by the addition of K(3)(Fe(CN)(6)), exhibits an optical spectrum with absorbances at 280, 320, and 656 nm; the last feature is responsible for the protein's blue color, which disappears upon ascorbate reduction. The fully oxidized protein has a A(280)/A(656) ratio of 10.3. Enzymatic studies revealed that T. pallidum neelaredoxin is able to catalyze a redox equilibrium between superoxide and hydrogen peroxide, a result consistent with it being a superoxide reductase. This finding, the first description of a T. pallidum iron-binding protein, indicates that the syphilis spirochete copes with oxidative stress via a primitive mechanism, which, thus far, has not been described in pathogenic bacteria.
Collapse
Affiliation(s)
- T Jovanović
- Section of Hematology Research, Department of Biochemistry and Molecular Biology, and Biomedical Mass Spectrometry and Functional Proteomics Facility, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Devreese B, Brigé A, Backers K, Van Driessche G, Meyer TE, Cusanovich MA, Van Beeumen JJ. Primary structure characterization of a Rhodocyclus tenuis diheme cytochrome c reveals the existence of two different classes of low-potential diheme cytochromes c in purple phototropic bacteria. Arch Biochem Biophys 2000; 381:53-60. [PMID: 11019819 DOI: 10.1006/abbi.2000.1971] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complete amino acid sequence of a 26-kDa low redox potential cytochrome c-551 from Rhodocyclus tenuis was determined by a combination of Edman degradation and mass spectrometry. There are 240 residues including two heme binding sites at positions 41, 44, 128, and 132. There is no evidence for gene doubling. The only known homolog of Rc. tenuis cytochrome c-551 is the diheme cytochrome c-552 from Pseudomonas stutzeri which contains 268 residues and heme binding sites at nearly identical positions. There is 44% overall identity between the Rc. tenuis and Ps. stutzeri cytochromes with 10 internal insertions and deletions. The Ps. stutzeri cytochrome is part of a denitrification gene cluster, whereas Rc. tenuis is incapable of denitrification, suggesting different functional roles for the cytochromes. Histidines at positions 45 and 133 are the fifth heme ligands and conserved histidines at positions 29, 209, and 218 and conserved methionines at positions 114 and 139 are potential sixth heme ligands. There is no obvious homology to the low-potential diheme cytochromes characterized from other purple bacterial species such as Rhodobacter sphaeroides. There are therefore at least two classes of low-potential diheme cytochromes c found in phototrophic bacteria. There is no more than 11% helical secondary structure in Rc. tenuis cytochrome c-551 suggesting that there is no relationship to class I or class II c-type cytochromes.
Collapse
Affiliation(s)
- B Devreese
- Department of Biochemistry, Physiology, and Microbiology, University of Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
14
|
Lombard M, Fontecave M, Touati D, Nivière V. Reaction of the desulfoferrodoxin from Desulfoarculus baarsii with superoxide anion. Evidence for a superoxide reductase activity. J Biol Chem 2000; 275:115-21. [PMID: 10617593 DOI: 10.1074/jbc.275.1.115] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Desulfoferrodoxin is a small protein found in sulfate-reducing bacteria that contains two independent mononuclear iron centers, one ferric and one ferrous. Expression of desulfoferrodoxin from Desulfoarculus baarsii has been reported to functionally complement a superoxide dismutase deficient Escherichia coli strain. To elucidate by which mechanism desulfoferrodoxin could substitute for superoxide dismutase in E. coli, we have purified the recombinant protein and studied its reactivity toward O-(2). Desulfoferrodoxin exhibited only a weak superoxide dismutase activity (20 units mg(-1)) that could hardly account for its antioxidant properties. UV-visible and electron paramagnetic resonance spectroscopy studies revealed that the ferrous center of desulfoferrodoxin could specifically and efficiently reduce O-(2), with a rate constant of 6-7 x 10(8) M(-1) s(-1). In addition, we showed that membrane and cytoplasmic E. coli protein extracts, using NADH and NADPH as electron donors, could reduce the O-(2) oxidized form of desulfoferrodoxin. Taken together, these results strongly suggest that desulfoferrodoxin behaves as a superoxide reductase enzyme and thus provide new insights into the biological mechanisms designed for protection from oxidative stresses.
Collapse
Affiliation(s)
- M Lombard
- Laboratoire de Chimie et Biochimie des Centres Redox Biologiques, DBMS-CEA/CNRS/Université Joseph Fourier, 17 Avenue des Martyrs, 38054 Grenoble, Cedex 9, France
| | | | | | | |
Collapse
|
15
|
Romão CV, Liu MY, Le Gall J, Gomes CM, Braga V, Pacheco I, Xavier AV, Teixeira M. The superoxide dismutase activity of desulfoferrodoxin from Desulfovibrio desulfuricans ATCC 27774. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:438-43. [PMID: 10215854 DOI: 10.1046/j.1432-1327.1999.00278.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Desulfoferrodoxin (Dfx), a small iron protein containing two mononuclear iron centres (designated centre I and II), was shown to complement superoxide dismutase (SOD) deficient mutants of Escherichia coli [Pianzzola, M.J., Soubes M. & Touati, D. (1996) J. Bacteriol. 178, 6736-6742]. Furthermore, neelaredoxin, a protein from Desulfovibrio gigas containing an iron site similar to centre II of Dfx, was recently shown to have a significant SOD activity [Silva, G., Oliveira, S., Gomes, C.M., Pacheco, I., Liu, M.Y., Xavier, A.V., Teixeira, M., Le Gall, J. & Rodrigues-Pousada, C. (1999) Eur. J. Biochem. 259, 235-243]. Thus, the SOD activity of Dfx isolated from the sulphate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 was studied. The protein exhibits a SOD activity of 70 U x mg-1, which increases approximately 2.5-fold upon incubation with cyanide. Cyanide binds specifically to Dfx centre II, yielding a low-spin iron species with g-values at 2.27 (g perpendicular) and 1.96 (g parallel). Upon reaction of fully oxidized Dfx with the superoxide generating system xanthine/xanthine oxidase, Dfx centres I and II become partially reduced, suggesting that Dfx operates by a redox cycling mechanism, similar to those proposed for other SODs. Evidence for another SOD in D. desulfuricans is also presented - this enzyme is inhibited by cyanide, and N-terminal sequence data strongly indicates that it is an analogue to Cu,Zn-SODs isolated from other sources. This is the first indication that a Cu-containing protein may be present in a sulphate-reducing bacterium.
Collapse
Affiliation(s)
- C V Romão
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Partugal
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Simple and Complex Iron-Sulfur Proteins in Sulfate Reducing Bacteria. ADVANCES IN INORGANIC CHEMISTRY 1999. [DOI: 10.1016/s0898-8838(08)60083-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Affiliation(s)
- A L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA
| | | | | |
Collapse
|
18
|
Voordouw JK, Voordouw G. Deletion of the rbo gene increases the oxygen sensitivity of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Appl Environ Microbiol 1998; 64:2882-7. [PMID: 9687445 PMCID: PMC106787 DOI: 10.1128/aem.64.8.2882-2887.1998] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The rbo gene of Desulfovibrio vulgaris Hildenborough encodes rubredoxin oxidoreductase (Rbo), a 14-kDa iron sulfur protein; forms an operon with the gene for rubredoxin; and is preceded by the gene for the oxygen-sensing protein DcrA. We have deleted the rbo gene from D. vulgaris with the sacB mutagenesis procedure developed previously (R. Fu and G. Voordouw, Microbiology 143:1815-1826, 1997). The absence of the rbo-gene in the resulting mutant, D. vulgaris L2, was confirmed by PCR and protein blotting with Rbo-specific polyclonal antibodies. D. vulgaris L2 grows like the wild type under anaerobic conditions. Exposure to air for 24 h caused a 100-fold drop in CFU of L2 relative to the wild type. The lag times of liquid cultures of inocula exposed to air were on average also greater for L2 than for the wild type. These results demonstrate that Rbo, which is not homologous with superoxide dismutase or catalase, acts as an oxygen defense protein in the anaerobic, sulfate-reducing bacterium D. vulgaris Hildenborough and likely also in other sulfate-reducing bacteria and anaerobic archaea in which it has been found.
Collapse
Affiliation(s)
- J K Voordouw
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
19
|
Devreese B, Costa C, Demol H, Papaefthymiou V, Moura I, Moura JJ, Van Beeumen J. The primary structure of the split-Soret cytochrome c from Desulfovibrio desulfuricans ATCC 27774 reveals an unusual type of diheme cytochrome c. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:445-51. [PMID: 9346301 DOI: 10.1111/j.1432-1033.1997.00445.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The complete amino acid sequence of the unusual diheme split-Soret cytochrome c from the sulphate-reducing Desulfovibrio desulfuricans strain ATCC 27774 has been determined using classical chemical sequencing techniques and mass spectrometry. The 247-residue sequence shows almost no similarity with any other known diheme cytochrome c, but the heme-binding site of the protein is similar to that of the cytochromes c3 from the sulphate reducers. The cytochrome-c-like domain of the protein covers only the C-terminal part of the molecule, and there is evidence for at least one more domain containing four cysteine residues, which might bind another cofactor, possibly a non-heme iron-containing cluster. This domain is similar to a sequence fragment of the genome of Archaeoglobus fulgidus, which confirms the high conservation of the genes involved in sulfate reduction.
Collapse
Affiliation(s)
- B Devreese
- Department of Biochemistry, Physiology and Microbiology, University of Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
20
|
Lumppio HL, Shenvi NV, Garg RP, Summers AO, Kurtz DM. A rubrerythrin operon and nigerythrin gene in Desulfovibrio vulgaris (Hildenborough). J Bacteriol 1997; 179:4607-15. [PMID: 9226272 PMCID: PMC179298 DOI: 10.1128/jb.179.14.4607-4615.1997] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Rubrerythrin is a nonheme iron protein of unknown function isolated from Desulfovibrio vulgaris (Hildenborough). We have sequenced a 3.3-kbp Sal1 fragment of D. vulgaris chromosomal DNA containing the rubrerythrin gene, rbr, identified additional open reading frames (ORFs) adjacent to rbr, and shown that these ORFs are part of a transcriptional unit containing rbr. One ORF, designated fur, lies just upstream of rbr and encodes a 128-amino-acid-residue protein which shows homology to Fur (ferric uptake regulatory) proteins from other purple bacteria. The other ORF, designated rdl, lies just downstream of rbr and encodes a 74-residue protein with significant sequence homology to rubredoxins but with a different number and spacing of cysteine residues. Overexpression of rdl in Escherichia coli yielded a protein, Rdl, which has spectroscopic properties and iron content consistent with one Fe3+(SCys)4 site per polypeptide but is clearly distinct from both rubrerythrin and a related protein, nigerythrin. Northern analysis indicated that fur, rbr, and rdl were each present on a transcript of 1.3 kb; i.e., these three genes are cotranscribed. Because D. vulgaris nigerythrin appears to be closely related to rubrerythrin, and its function is also unknown, we cloned and sequenced the gene encoding nigerythrin, ngr. The amino acid sequence of nigerythrin is 33% identical to that of rubrerythrin, and all residues which furnish iron ligands to both the FeS4 and diiron-oxo sites in rubrerythrin are conserved in nigerythrin. Despite the close resemblance of these two proteins, ngr was found to be no closer than 7 kb to rbr on the D. vulgaris chromosome, and Northern analysis showed that, in contrast to rbr, ngr is not cotranscribed with other genes. Possible redox-linked functions for rubrerythrin and nigerythrin in iron homeostasis are proposed.
Collapse
Affiliation(s)
- H L Lumppio
- Department of Microbiology and Center for Metalloenzyme Studies, University of Georgia, Athens 30602, USA
| | | | | | | | | |
Collapse
|
21
|
Kitamura M, Koshino Y, Kamikawa Y, Kohno K, Kojima S, Miura K, Sagara T, Akutsu H, Kumagai I, Nakaya T. Cloning and expression of the rubredoxin gene from Desulfovibrio vulgaris (Miyazaki F)--comparison of the primary structure of desulfoferrodoxin. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1351:239-47. [PMID: 9116039 DOI: 10.1016/s0167-4781(96)00203-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A gene encoding rubredoxin from Desulfovibrio vulgaris (Miyazaki F) was cloned and overexpressed in Escherichia coli. A 1.1-kilobase pair DNA fragment, isolated from D. vulgaris (Miyazaki F) by double digestion with SmaI and SalI, contained two genes, the rubredoxin gene (rub) and the desulfoferrodoxin gene (rbo) which was situated upstream of rub. The deduced amino acid sequence of desulfoferrodoxin was homologous to those from other strains and Cys residues that are responsible to bind irons were also conserved. The expression system for rub was constructed under the control of the T7 promoter in E. coli. The purified protein was soluble and had a characteristic visible absorption spectrum. Inductively coupled plasma-atomic emission analysis and electron paramagnetic resonance analysis of the recombinant rubredoxin revealed the presence of an iron ion in a distorted tetrahedral geometry that was the same as native D. vulgaris rubredoxin. In vitro NADH reduction analysis indicated that recombinant rubredoxin was active, and its redox potential was determined as -5 mV.
Collapse
Affiliation(s)
- M Kitamura
- Department of Bioapplied Chemistry, Faculty of Engineering, Osaka City University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|