1
|
Biswas S, Bieber K, Manz RA. IL-10 revisited in systemic lupus erythematosus. Front Immunol 2022; 13:970906. [PMID: 35979356 PMCID: PMC9376366 DOI: 10.3389/fimmu.2022.970906] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
IL-10 is a cytokine with pleiotropic functions, particularly known for its suppressive effects on various immune cells. Consequently, it can limit the pathogenesis of inflammatory diseases, such as multiple sclerosis (MS), inflammatory bowel disease, Crohn’s disease, and Epidermolysis bullosa acquisita, among others. Recent evidence however indicates that it plays dual roles in Systemic lupus Erythematosus (SLE) where it may inhibit pro-inflammatory effector functions but seems to be also a main driver of the extrafollicular antibody response, outside of germinal centers (GC). In line, IL-10 promotes direct differentiation of activated B cells into plasma cells rather than stimulating a GC response. IL-10 is produced by B cells, myeloid cells, and certain T cell subsets, including extrafollicular T helper cells, which are phenotypically distinct from follicular helper T cells that are relevant for GC formation. In SLE patients and murine lupus models extrafollicular T helper cells have been reported to support ongoing extrafollicular formation of autoreactive plasma cells, despite the presence of GCs. Here, we discuss the role of IL-10 as driver of B cell responses, its impact on B cell proliferation, class switch, and plasma cells.
Collapse
Affiliation(s)
- Swayanka Biswas
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- *Correspondence: Swayanka Biswas,
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
2
|
|
3
|
Schwizer F, Okamoto Y, Heinisch T, Gu Y, Pellizzoni MM, Lebrun V, Reuter R, Köhler V, Lewis JC, Ward TR. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chem Rev 2017; 118:142-231. [PMID: 28714313 DOI: 10.1021/acs.chemrev.7b00014] [Citation(s) in RCA: 500] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The incorporation of a synthetic, catalytically competent metallocofactor into a protein scaffold to generate an artificial metalloenzyme (ArM) has been explored since the late 1970's. Progress in the ensuing years was limited by the tools available for both organometallic synthesis and protein engineering. Advances in both of these areas, combined with increased appreciation of the potential benefits of combining attractive features of both homogeneous catalysis and enzymatic catalysis, led to a resurgence of interest in ArMs starting in the early 2000's. Perhaps the most intriguing of potential ArM properties is their ability to endow homogeneous catalysts with a genetic memory. Indeed, incorporating a homogeneous catalyst into a genetically encoded scaffold offers the opportunity to improve ArM performance by directed evolution. This capability could, in turn, lead to improvements in ArM efficiency similar to those obtained for natural enzymes, providing systems suitable for practical applications and greater insight into the role of second coordination sphere interactions in organometallic catalysis. Since its renaissance in the early 2000's, different aspects of artificial metalloenzymes have been extensively reviewed and highlighted. Our intent is to provide a comprehensive overview of all work in the field up to December 2016, organized according to reaction class. Because of the wide range of non-natural reactions catalyzed by ArMs, this was done using a functional-group transformation classification. The review begins with a summary of the proteins and the anchoring strategies used to date for the creation of ArMs, followed by a historical perspective. Then follows a summary of the reactions catalyzed by ArMs and a concluding critical outlook. This analysis allows for comparison of similar reactions catalyzed by ArMs constructed using different metallocofactor anchoring strategies, cofactors, protein scaffolds, and mutagenesis strategies. These data will be used to construct a searchable Web site on ArMs that will be updated regularly by the authors.
Collapse
Affiliation(s)
- Fabian Schwizer
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yasunori Okamoto
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Tillmann Heinisch
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yifan Gu
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Michela M Pellizzoni
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Vincent Lebrun
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Raphael Reuter
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Valentin Köhler
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Jared C Lewis
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Thomas R Ward
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| |
Collapse
|
4
|
Nastri F, Chino M, Maglio O, Bhagi-Damodaran A, Lu Y, Lombardi A. Design and engineering of artificial oxygen-activating metalloenzymes. Chem Soc Rev 2016; 45:5020-54. [PMID: 27341693 PMCID: PMC5021598 DOI: 10.1039/c5cs00923e] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many efforts are being made in the design and engineering of metalloenzymes with catalytic properties fulfilling the needs of practical applications. Progress in this field has recently been accelerated by advances in computational, molecular and structural biology. This review article focuses on the recent examples of oxygen-activating metalloenzymes, developed through the strategies of de novo design, miniaturization processes and protein redesign. Considerable progress in these diverse design approaches has produced many metal-containing biocatalysts able to adopt the functions of native enzymes or even novel functions beyond those found in Nature.
Collapse
Affiliation(s)
- Flavia Nastri
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
- IBB, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Ambika Bhagi-Damodaran
- Department of Chemistry, University of Illinois at Urbana-Champaign, A322 CLSL, 600 South Mathews Avenue, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, A322 CLSL, 600 South Mathews Avenue, Urbana, IL 61801
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| |
Collapse
|
5
|
Zhu L, Wang W, Zhao H, Xu M, Tada S, Uzawa T, Liu M, Ito Y. A dual functional peptide carrying in vitro selected catalytic and binding activities. Org Biomol Chem 2016; 13:9808-12. [PMID: 26272651 DOI: 10.1039/c5ob01271f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
When minimal functional sequences are used, it is possible to integrate multiple functions on a single peptide chain, like a "single stroke drawing". Here a dual functional peptide was designed by combining in vitro selected catalytic and binding activities. For catalytic activity, we performed in vitro selection for a peptide aptamer binding to hemin by using ribosome display and isolated a peptide that had peroxidase activity in the presence of hemin. By combining the selected catalytic peptide with a peptide antigen, which can be recognized by an antibody, an enzyme-antibody conjugate-like peptide was obtained. This study demonstrates a successful strategy to create dual functionalized peptide chains for use in immunoassays.
Collapse
Affiliation(s)
- Liping Zhu
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Mahy JP, Maréchal JD, Ricoux R. Various strategies for obtaining oxidative artificial hemoproteins with a catalytic oxidative activity: from "Hemoabzymes" to "Hemozymes"? J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424614500813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The design of artificial hemoproteins that could lead to new biocatalysts for selective oxidation reactions using clean oxidants such as O 2 or H 2 O 2 under ecocompatible conditions constitutes a really promising challenge for a wide range of industrial applications. In vivo, such reactions are performed by heme-thiolate proteins, cytochromes P450, that catalyze the oxidation of drugs by dioxygen in the presence of electrons delivered from NADPH by cytochrome P450 reductase. Several strategies were used to design new artificial hemoproteins to mimic these enzymes, that associate synthetic metalloporphyrin derivatives to a protein that is supposed to induce a selectivity in the catalyzed reaction. A first generation of artificial hemoproteins or "hemoabzymes" was obtained by the non-covalent association of synthetic hemes such as N-methyl-mesoporphyrin IX, Fe(III) -α3β-tetra-o-carboxyphenylporphyrin or microperoxidase 8 with monoclonal antibodies raised against these cofactors. The obtained antibody-metalloporphyrin complexes displayed a peroxidase activity and some of them catalyzed the regio-selective nitration of phenols by H 2 O 2/ NO 2 and the stereo-selective oxidation of sulphides by H 2 O 2. A second generation of artificial hemoproteins or "hemozymes", was obtained by the non-covalent association of non-relevant proteins with metalloporphyrin derivatives. Several strategies were used, the most successful of which, named "host-guest" strategy involved the non-covalent incorporation of metalloporphyrin derivatives into easily affordable proteins. The artificial hemoproteins obtained were found to be able to perform efficiently the stereoselective oxidation of organic compounds such as sulphides and alkenes by H 2 O 2 and KHSO 5.
Collapse
Affiliation(s)
- Jean-Pierre Mahy
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 CNRS, Laboratoire de Chimie, Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, 91405 Orsay Cedex, France
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdonyola del Vallès, Barcelona, Spain
| | - Rémy Ricoux
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 CNRS, Laboratoire de Chimie, Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, 91405 Orsay Cedex, France
| |
Collapse
|
8
|
Moosavi-Movahedi Z, Gharibi H, Hadi-Alijanvand H, Akbarzadeh M, Esmaili M, Atri MS, Sefidbakht Y, Bohlooli M, Nazari K, Javadian S, Hong J, Saboury AA, Sheibani N, Moosavi-Movahedi AA. Caseoperoxidase, mixed β-casein-SDS-hemin-imidazole complex: a nano artificial enzyme. J Biomol Struct Dyn 2015; 33:2619-32. [PMID: 25562503 DOI: 10.1080/07391102.2014.1003196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A novel peroxidase-like artificial enzyme, named "caseoperoxidase", was biomimetically designed using a nano artificial amino acid apo-protein hydrophobic pocket. This four-component nano artificial enzyme containing heme-imidazole-β-casein-SDS exhibited high activity growth and k(cat) performance toward the native horseradish peroxidase demonstrated by the steady state kinetics using UV-vis spectrophotometry. The hydrophobicity and secondary structure of the caseoperoxidase were studied by ANS fluorescence and circular dichroism spectroscopy. Camel β-casein (Cβ-casein) was selected as an appropriate apo-protein for the heme active site because of its innate flexibility and exalted hydrophobicity. This selection was confirmed by homology modeling method. Heme docking into the newly obtained Cβ-casein structure indicated one heme was mainly incorporated with Cβ-casein. The presence of a main electrostatic site for the active site in the Cβ-casein was also confirmed by experimental methods through Wyman binding potential and isothermal titration calorimetry. The existence of Cβ-casein protein in this biocatalyst lowered the suicide inactivation and provided a suitable protective role for the heme active-site. Additional experiments confirmed the retention of caseoperoxidase structure and function as an artificial enzyme.
Collapse
Affiliation(s)
| | - Hussein Gharibi
- b Faculty of Science, Department of Chemistry , Tarbiat Modares University , Tehran , Iran
| | - Hamid Hadi-Alijanvand
- c Department of Biological Sciences , Institute for Advanced Studies in Basic Sciences (IASBS) , Zanjan , Iran
| | - Mohammad Akbarzadeh
- d Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | - Mansoore Esmaili
- d Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | - Maliheh S Atri
- d Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | - Yahya Sefidbakht
- d Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | - Mousa Bohlooli
- d Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | | | - Soheila Javadian
- b Faculty of Science, Department of Chemistry , Tarbiat Modares University , Tehran , Iran
| | - Jun Hong
- f College of Life Science , Henan University , Kaifeng 475000 , China
| | - Ali A Saboury
- d Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran.,g Center of Excellence in Biothermodynamics, University of Tehran , Tehran , Iran
| | - Nader Sheibani
- h Department of Ophthalmology and Visual Sciences , Biomedical Engineering, University of Wisconsin School of Medicine and Public Health , Madison , WI , USA.,i McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health , Madison , WI , USA
| | - Ali A Moosavi-Movahedi
- d Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran.,g Center of Excellence in Biothermodynamics, University of Tehran , Tehran , Iran.,i McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health , Madison , WI , USA
| |
Collapse
|
9
|
Mahy JP, Maréchal JD, Ricoux R. From “hemoabzymes” to “hemozymes”: towards new biocatalysts for selective oxidations. Chem Commun (Camb) 2015; 51:2476-94. [DOI: 10.1039/c4cc08169b] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two generations of artificial hemoproteins have been obtained: “hemoabzymes”, by non-covalent association of synthetic hemes with monoclonal antibodies raised against these cofactors and “hemozymes”, by non-covalent association of non-relevant proteins with metalloporphyrin derivatives. A review of the different strategies employed as well as their structural and catalytic properties is presented here.
Collapse
Affiliation(s)
- J.-P. Mahy
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- UMR 8182 CNRS
- Laboratoire de Chimie Bioorganique et Bioinorganique
- 91435 Orsay Cedex
- France
| | - J.-D. Maréchal
- Departament de Química
- Universitat Autònoma de Barcelona
- Barcelona
- Spain
| | - R. Ricoux
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- UMR 8182 CNRS
- Laboratoire de Chimie Bioorganique et Bioinorganique
- 91435 Orsay Cedex
- France
| |
Collapse
|
10
|
Wang GX, Zhou Y, Wang M, Bao WJ, Wang K, Xia XH. Structure orientation of hemin self-assembly layer determining the direct electron transfer reaction. Chem Commun (Camb) 2015; 51:689-92. [DOI: 10.1039/c4cc07719a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A strategy was proposed to control the hemin orientation via experimental models, which shows heme plane orientation dependent direct electron transfer and electrocatalysis.
Collapse
Affiliation(s)
- Gui-Xia Wang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Yue Zhou
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Min Wang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Wen-Jing Bao
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| |
Collapse
|
11
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
12
|
Affiliation(s)
- Jared C. Lewis
- Searle
Chemistry Lab, Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
13
|
Crystal structure of two anti-porphyrin antibodies with peroxidase activity. PLoS One 2012; 7:e51128. [PMID: 23240001 PMCID: PMC3519839 DOI: 10.1371/journal.pone.0051128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/30/2012] [Indexed: 01/07/2023] Open
Abstract
We report the crystal structures at 2.05 and 2.45 Å resolution of two antibodies, 13G10 and 14H7, directed against an iron(III)-αααβ-carboxyphenylporphyrin, which display some peroxidase activity. Although these two antibodies differ by only one amino acid in their variable λ-light chain and display 86% sequence identity in their variable heavy chain, their complementary determining regions (CDR) CDRH1 and CDRH3 adopt very different conformations. The presence of Met or Leu residues at positions preceding residue H101 in CDRH3 in 13G10 and 14H7, respectively, yields to shallow combining sites pockets with different shapes that are mainly hydrophobic. The hapten and other carboxyphenyl-derivatized iron(III)-porphyrins have been modeled in the active sites of both antibodies using protein ligand docking with the program GOLD. The hapten is maintained in the antibody pockets of 13G10 and 14H7 by a strong network of hydrogen bonds with two or three carboxylates of the carboxyphenyl substituents of the porphyrin, respectively, as well as numerous stacking and van der Waals interactions with the very hydrophobic CDRH3. However, no amino acid residue was found to chelate the iron. Modeling also allows us to rationalize the recognition of alternative porphyrinic cofactors by the 13G10 and 14H7 antibodies and the effect of imidazole binding on the peroxidase activity of the 13G10/porphyrin complexes.
Collapse
|
14
|
|
15
|
Oxidation of organic molecules in homogeneous aqueous solution catalyzed by hybrid biocatalysts (based on the Trojan Horse strategy). ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.tetasy.2010.03.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Raffy Q, Ricoux R, Sansiaume E, Pethe S, Mahy JP. Coordination chemistry studies and peroxidase activity of a new artificial metalloenzyme built by the “Trojan horse” strategy. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcata.2009.10.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Tolmacheva AS, Zaksas NP, Buneva VN, Vasilenko NL, Nevinsky GA. Oxidoreductase activities of polyclonal IgGs from the sera of Wistar rats are better activated by combinations of different metal ions. J Mol Recognit 2009; 22:26-37. [PMID: 18837443 DOI: 10.1002/jmr.923] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It was shown that IgGs purified from the sera of healthy Wistar rats contain several different bound Me2+ ions and oxidize 3,3'-diaminobenzidine through a H2O2-dependent peroxidase and H2O2-independent oxidoreductase activity. IgGs have lost these activities after removing the internal metal ions by dialysis against EDTA. External Cu2+ or Fe2+ activated significantly both activities of non-dialysed IgGs containing different internal metals (Fe > or = Pb > or = Zn > or = Cu > or = Al > or = Ca > or = Ni > or = Mn > Co > or = Mg) showing pronounced biphasic dependencies corresponding to approximately 0.1-2 and approximately 2-5 mM of Me2+, while the curves for Mn2+ were nearly linear. Cu2+ alone significantly stimulated both the peroxidase and oxidoreductase activities of dialysed IgGs only at high concentration (> or = 2 mM), while Mn2+ weakly activated peroxidase activity at concentration >3 mM but was active in the oxidoreductase oxidation at a low concentration (<1 mM). Fe2+-dependent peroxidase activity of dialysed IgGs was observed at 0.1-5 mM, but Fe2+ was completely inactive in the oxidoreductase reaction. Mg2+, Ca2+, Zn2+, Al2+ and especially Co2+ and Ni2+ were not able to activate dialysed IgGs, but slightly activated non-dialysed IgGs. The use of the combinations of Cu2+ + Mn2+, Cu2+ + Zn2+, Fe2+ + Mn2+, Fe2+ + Zn2+ led to a conversion of the biphasic curves to hyperbolic ones and in parallel to a significant increase in the activity as compared with Cu2+, Fe2+ or Mn2+ ions taken separately; the rates of the oxidation reactions, catalysed by non-dialysed and dialysed IgGs, became comparable. Mg2+, Co2+ and Ni2+ markedly activated the Cu2+-dependent oxidation reactions catalysed by dialysed IgGs, while Ca2+ inhibited these reactions. A possible role of the second metal in the oxidation reactions is discussed.
Collapse
Affiliation(s)
- Anna S Tolmacheva
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, 10 Lavrentieva Ave., Novosibirsk, Russia
| | | | | | | | | |
Collapse
|
18
|
Liu M, Kagahara T, Abe H, Ito Y. In vitro selection of hemin-binding catalytic RNA. Bioorg Med Chem Lett 2009; 19:1484-7. [DOI: 10.1016/j.bmcl.2009.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/25/2008] [Accepted: 01/08/2009] [Indexed: 12/14/2022]
|
19
|
Liu M, Kagahara T, Abe H, Ito Y. Direct In Vitro Selection of Hemin-Binding DNA Aptamer with Peroxidase Activity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2009. [DOI: 10.1246/bcsj.82.99] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Ricoux R, Dubuc R, Dupont C, Marechal JD, Martin A, Sellier M, Mahy JP. Hemozymes Peroxidase Activity Of Artificial Hemoproteins Constructed From the Streptomyces lividans Xylanase A and Iron(III)-Carboxy-Substituted Porphyrins. Bioconjug Chem 2008; 19:899-910. [DOI: 10.1021/bc700435a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rémy Ricoux
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris XI, 91405 Orsay Cedex, France, Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada, and Unitat de Química Física, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdonyola (Barcelona), Spain
| | - Roger Dubuc
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris XI, 91405 Orsay Cedex, France, Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada, and Unitat de Química Física, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdonyola (Barcelona), Spain
| | - Claude Dupont
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris XI, 91405 Orsay Cedex, France, Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada, and Unitat de Química Física, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdonyola (Barcelona), Spain
| | - Jean-Didier Marechal
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris XI, 91405 Orsay Cedex, France, Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada, and Unitat de Química Física, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdonyola (Barcelona), Spain
| | - Aurore Martin
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris XI, 91405 Orsay Cedex, France, Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada, and Unitat de Química Física, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdonyola (Barcelona), Spain
| | - Marion Sellier
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris XI, 91405 Orsay Cedex, France, Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada, and Unitat de Química Física, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdonyola (Barcelona), Spain
| | - Jean-Pierre Mahy
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris XI, 91405 Orsay Cedex, France, Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada, and Unitat de Química Física, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdonyola (Barcelona), Spain
| |
Collapse
|
21
|
|
22
|
Ikhmyangan EN, Vasilenko NL, Sinitsina OI, Buneva VN, Nevinsky GA. Substrate specificity of rat sera IgG antibodies with peroxidase and oxidoreductase activities. J Mol Recognit 2007; 19:432-40. [PMID: 16835846 DOI: 10.1002/jmr.787] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have recently shown that intact IgGs from the sera of healthy Wistar rats oxidize 3,3'-diaminobenzidine (DAB) in the presence and in the absence of H(2)O(2) similar to horseradish peroxidase (HRP). Here we demonstrate for the first time that the peroxidase and oxidoreductase activities of IgGs can efficiently oxidize not only DAB but also o-phenylendiamine, phenol, p-dihydroquinone, alpha-naphthol, and NADH but, in contrast to HRP, cannot oxidize adrenalin. In contrast to IgGs, HRP cannot oxidize phenol, p-dihydroquinone, or alpha-naphthol in the absence of H(2)O(2). In contrast to plant and mammalian peroxidases, IgGs were more universal in their metal dependence. The specific wide repertoire of polyclonal peroxidase and oxidoreductase IgGs oxidizing various substances could play an important role in protecting the organism from oxidative stress and serve as an additional natural system destroying different toxic, carcinogenic, and mutagenic compounds.
Collapse
Affiliation(s)
- Erdenechimeg N Ikhmyangan
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, 10 Lavrentieva Avenue, Novosibirsk, Russia
| | | | | | | | | |
Collapse
|
23
|
Cheng Z, Li Y. The role of molecular recognition in regulating the catalytic activity of peroxidase-like polymers imprinted by a reductant substrate. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.molcata.2006.04.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Ikhmyangan EN, Vasilenko NL, Buneva VN, Nevinsky GA. Metal ions-dependent peroxidase and oxidoreductase activities of polyclonal IgGs from the sera of Wistar rats. J Mol Recognit 2006; 19:91-105. [PMID: 16416456 DOI: 10.1002/jmr.761] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We present evidence showing that a small fraction of electrophoretically homogeneous IgGs from the sera of healthy Wistar rats is bound with several different Me2+ ions and oxidizes 3,3'-diaminobenzidine through a peroxidase activity in the presence of H2O2 and through an oxidoreductase activity in the absence of H2O2. During purification on Protein A-Sepharose and gel filtration, the polyclonal IgGs partially lose the Me2+ ions. Therefore, in the absence of external metal ions, the specific peroxidase activity of IgGs from the sera of different rats varied in the range 1.6-26% and increased up to 13-198% after addition of Fe2+ or Cu2+ ions as compared with horseradish peroxidase (HRP, taken for 100%). The oxidoreductase activity of HRP is 24-fold lower than its peroxidase activity, while oxidoreductase and peroxidase activities of IgGs are comparable. Oxidoreductase activities of different IgGs in the absence of external metal ions varied from 22 to 800%, and in the presence of Fe2+ or Cu2+ ions, from 37 to 1100% in comparison with the HRP oxidoreductase activity (100%). Chromatography of the IgGs on Chelex-100 leads to the adsorption of a small IgG fraction bound with metal ions and to its separation to many different subfractions demonstrating various affinities to the chelating resin and increased levels of the specific oxidoreductase and peroxidase activities. Antioxidant enzymes such as superoxide dismutases, catalases, and glutathione peroxidases are known to represent critical defense mechanisms for preventing oxidative modifications of DNA, proteins, and lipids. Peroxidase and oxidoreductase activity of antibodies may play an important role in the protection of organisms from oxidative stress and toxic compounds.
Collapse
Affiliation(s)
- Erdenechimeg N Ikhmyangan
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, 10 Lavrentieva Ave., Novosibirsk, Russia
| | | | | | | |
Collapse
|
25
|
Ricoux R, Sauriat-Dorizon H, Girgenti E, Blanchard D, Mahy JP. Hemoabzymes: towards new biocatalysts for selective oxidations. J Immunol Methods 2002; 269:39-57. [PMID: 12379351 DOI: 10.1016/s0022-1759(02)00223-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Catalytic antibodies with a metalloporphyrin cofactor or <<hemoabzymes>>, used as models for hemoproteins like peroxidases and cytochrome P450, represent a promising route to catalysts tailored for selective oxidation reactions. A brief overview of the literature shows that until now, the first strategy for obtaining such artificial hemoproteins has been to produce antiporphyrin antibodies, raised against various free-base, N-substituted Sn-, Pd- or Fe-porphyrins. Five of them exhibited, in the presence of the corresponding Fe-porphyrin cofactor, a significant peroxidase activity, with k(cat)/K(m) values of 3.7 x 10(3) - 2.9 x 10(5) M(-1) min(-1). This value remained, however, low when compared to that of peroxidases. This strategy has also led to a few models of cytochrome P450. The best of them, raised against a water-soluble tin(IV) porphyrin containing an axial alpha-naphtoxy ligand, was reported to catalyze the stereoselective oxidation of aromatic sulfides by iodosyl benzene using a Ru(II)-porphyrin cofactor. The relatively low efficiency of the porphyrin-antibody complexes is probably due, at least in part, to the fact that no proximal ligand of Fe has been induced in those antibodies. We then proposed to use, as a hapten, microperoxidase 8 (MP8), a heme octapeptide in which the imidazole side chain of histidine 18 acts as a proximal ligand of the iron atom. This led to the production of seven antibodies recognizing MP8, the best of them, 3A3, binding it with an apparent binding constant of 10(-7) M. The corresponding 3A3-MP8 complex was found to have a good peroxidase activity characterized by a k(cat)/K(m) value of 2 x 10(6) M(-1) min(-1), which constitutes the best one ever reported for an antibody-porphyrin complex. Active site topology studies suggest that the binding of MP8 occurs through interactions of its carboxylate substituents with amino acids of the antibody and that the protein brings a partial steric hindrance of the distal face of the heme of MP8. Consequently, the use of the 3A3-MP8 complexes for the selective oxidation of substrates, such as sulfides, alkanes and alkenes will be undertaken in the future.
Collapse
Affiliation(s)
- Rémy Ricoux
- Laboratoire de Chimie Bioorganique et Bioinorganique, FRE 2127 CNRS, Institut de Chimie Moléculaire d'Orsay, Bâtiment 420, Université de Paris-sud XI, 91405 Cedex, Orsay, France
| | | | | | | | | |
Collapse
|
26
|
Dias S, Jovic F, Renard PY, Taran F, Créminon C, Mioskowski C, Grassi J. Immunologically driven chemical engineering of antibodies for catalytic activity. J Immunol Methods 2002; 269:81-98. [PMID: 12379354 DOI: 10.1016/s0022-1759(02)00226-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We describe a new strategy for the preparation of catalytic antibodies based on a two-step procedure. Firstly, monoclonal antibodies are selected only if displaying the following binding features: binding both the substrate and a reactive group in such a way that the two groups are in a reactive position towards each other. Secondly, the selected monoclonal antibodies (mAbs) are chemically engineered by covalently binding the reactive group into the binding pocket of the antibody. Using previously isolated monoclonal antibodies, we have focused our studies on the control of this second step.
Collapse
Affiliation(s)
- Sonia Dias
- Service de Pharmacologie et d'Immunologie, DRM/DSV CEA Saclay, 91191 Gif sur Yvette cedex, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Ricoux R, Girgenti E, Sauriat-Dorizon H, Blanchard D, Mahy JP. Regioselective nitration of phenol induced by catalytic antibodies. JOURNAL OF PROTEIN CHEMISTRY 2002; 21:473-7. [PMID: 12523651 DOI: 10.1023/a:1021351120772] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Catalytic antibodies with a metalloporphyrin cofactor represent a new generation of biocatalysts tailored for selective oxidations. Thus monoclonal antibodies, 3A3, were raised against microperoxidase 8 (MP8), and the corresponding 3A3-MP8 complexes were shown previously to have a high peroxidase activity. This paper shows that those complexes also catalyzed efficiently the nitration of phenol into 2- and 4-nitrophenol by NO2- in the presence of H2O2. pH dependence studies suggested that no amino acid from the antibody protein participated in the heterolytic cleavage of the O-O bond of H2O2. The inhibition of the reaction by cyanide and radical scavengers suggested a MP8-mediated peroxidase-like mechanism, involving the reduction of high-valent iron-oxo species by NO2- and phenol producing, respectively, NO2* and phenoxy radicals, which then reacted to give nitrophenols. Finally, the antibody protein appears to have two major roles: (i) it protects MP8 toward oxidative degradations and (ii) it induces a regioselectivity of the reaction toward the formation of 2-nitrophenol.
Collapse
Affiliation(s)
- Rémy Ricoux
- Laboratoire de Chimie Bioorganique et bioinorganique, FRE 2127 CNRS, Institut de Chimie Moleculaire d-Orsay, Bât. 420, Université de Paris-sud XI, 91405, Orsay Cedex, France
| | | | | | | | | |
Collapse
|
28
|
de Lauzon S, Mansuy D, Mahy JP. Coordination chemistry of iron(III)-porphyrin-antibody complexes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:470-80. [PMID: 11856305 DOI: 10.1046/j.0014-2956.2001.02670.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An artificial peroxidase-like hemoprotein has been obtained by associating a monoclonal antibody, 13G10, and its iron(III)-alpha,alpha,alpha,beta-meso-tetrakis(ortho-carboxyphenyl)porphyrin [Fe(ToCPP)] hapten. In this antibody, about two-thirds of the porphyrin moiety is inserted in the binding site, its ortho-COOH substituents being recognized by amino-acids of the protein, and a carboxylic acid side chain of the protein acts as a general acid base catalyst in the heterolytic cleavage of the O-O bond of H2O2, but no amino-acid residue is acting as an axial ligand of the iron. We here show that the iron of 13G10-Fe(ToCPP) is able to bind, like that of free Fe(ToCPP), two small ligands such as CN-, but only one imidazole ligand, in contrast to to the iron(III) of Fe(ToCPP) that binds two. This phenomenon is general for a series of monosubstituted imidazoles, the 2- and 4-alkyl-substituted imidazoles being the best ligands, in agreement with the hydrophobic character of the antibody binding site. Complexes of antibody 13G10 with less hindered iron(III)-tetraarylporphyrins bearing only one [Fe(MoCPP)] or two meso-[ortho-carboxyphenyl] substituents [Fe(DoCPP)] also bind only one imidazole. Finally, peroxidase activity studies show that imidazole inhibits the peroxidase activity of 13G10-Fe(ToCPP) whereas it increases that of 13G10-Fe(DoCPP). This could be interpreted by the binding of the imidazole ligand on the iron atom which probably occurs in the case of 13G10-Fe(ToCPP) on the less hindered face of the porphyrin, close to the catalytic COOH residue, whereas in the case of 13G10-Fe(DoCPP) it can occur on the other face of the porphyrin. The 13G10-Fe(DoCPP)-imidazole complex thus constitutes a nice artificial peroxidase-like hemoprotein, with the axial imidazole ligand of the iron mimicking the proximal histidine of peroxidases and a COOH side chain of the antibody acting as a general acid-base catalyst like the distal histidine of peroxidases does.
Collapse
Affiliation(s)
- Solange de Lauzon
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université René Descartes, Paris, France
| | | | | |
Collapse
|
29
|
Teramoto N, Ichinari H, Kawazoe N, Imanishi Y, Ito Y. Peroxidase activity of in vitro-selected 2'-amino RNAs. Biotechnol Bioeng 2001; 75:463-8. [PMID: 11668446 DOI: 10.1002/bit.10078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Peroxidase activities of RNAs containing 2'-amino groups, which were selected as aptamers binding to N-methylmesoporphyrin IX, were investigated. Some clones promoted the oxidation reaction of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) with hydrogen peroxide (H(2)O(2)) in the presence of iron(III)-protoporphyrin (hemin), whereas others did not. Each of them had a different substrate specificity. One of the active clones promoted the oxidation of o-dianisidine and beta-nicotinamide adenine dinucleotide reduced form (NADH) with H(2)O(2) 5 and 15 times faster than hemin only, respectively. On the other hand, one clone that was inactive on oxidation of ABTS exhibited the same level of activity on oxidation of o-dianisidine as that shown by the clone active on ABTS but no activity on NADH. By in vitro selection, we can produce various types of peroxidase-like non-natural RNAs.
Collapse
Affiliation(s)
- N Teramoto
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
30
|
Spinelli S, Frenken LG, Hermans P, Verrips T, Brown K, Tegoni M, Cambillau C. Camelid heavy-chain variable domains provide efficient combining sites to haptens. Biochemistry 2000; 39:1217-22. [PMID: 10684599 DOI: 10.1021/bi991830w] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Camelids can produce antibodies devoid of light chains and CH1 domains (Hamers-Casterman, C. et al. (1993) Nature 363, 446-448). Camelid heavy-chain variable domains (VHH) have high affinities for protein antigens and the structures of two of these complexes have been determined (Desmyter, A. et al. (1996) Nature Struc. Biol. 3, 803-811; Decanniere, K. et al. (1999) Structure 7, 361-370). However, the small size of these VHHs and their monomeric nature bring into question their capacity to bind haptens. Here, we have successfully raised llama antibodies against the hapten azo-dye Reactive Red (RR6) and determined the crystal structure of the complex between a dimer of this hapten and a VHH fragment. The surface of interaction between the VHH and the dimeric hapten is large, with an area of ca. 300 A(2); this correlates well with the low-dissociation constant of 22 nM measured for the monomer. The VHH fragment provides an efficient combining site to the RR6, using its three CDR loops. In particular, CDR1 provides a strong interaction to the hapten through two histidine residues bound to its copper atoms. VHH fragments might, therefore, prove to be valuable tools for selecting, removing, or capturing haptens. They are likely to play a role in biotechnology extending beyond protein recognition alone.
Collapse
Affiliation(s)
- S Spinelli
- Architecture et Fonction des Macromolecules Biologiques, CNRS, UPR-9039, 31 Chemiin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Wang X, Li Y, Chang W. Mimicry of peroxidase by co-immobilization of 1-allylimidazole and hemin on N-isopropylacrylamide-based hydrogel. Anal Chim Acta 1999. [DOI: 10.1016/s0003-2670(99)00625-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Kawamura-Konishi Y, Fujie Y, Suzuki H. Kinetics of formation of antibody-ferric porphyrin complex with peroxidase activity. JOURNAL OF PROTEIN CHEMISTRY 1999; 18:741-5. [PMID: 10691183 DOI: 10.1023/a:1020673316447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The antibody 2B4 combines with ferric mesoporphyrin to form an antibody-ferric mesoporphyrin complex which has a peroxidase activity. Formation of the complex was investigated by measuring the absorption in the Soret region after mixing the antibody and ferric mesoporphyrin. A rapid increase and a gradual decrease in the absorption were observed, and the respective first-order rate constants were obtained. From the dependence of values of the rate constants on the concentration of ferric mesoporphyrin, the complex formation was explained by a plausible mechanism, in which the antibody associated with ferric mesoporphyrin to form the first complex followed by a conformational change to the second complex. The first complex had almost the same peroxidase activity as that of the second complex. Our results suggests that the antibody acquires the peroxidase activity as soon as ferric mesoporphyrin is incorporated into its binding site, and that there will be no protein ligand to the iron center of ferric mesoporphyrin in the complex.
Collapse
Affiliation(s)
- Y Kawamura-Konishi
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan.
| | | | | |
Collapse
|
33
|
de Lauzon S, Desfosses B, Mansuy D, Mahy JP. Studies of the reactivity of artificial peroxidase-like hemoproteins based on antibodies elicited against a specifically designed ortho-carboxy substituted tetraarylporphyrin. FEBS Lett 1999; 443:229-34. [PMID: 9989611 DOI: 10.1016/s0014-5793(98)01703-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The temperature and pH dependence as well as the selectivity of the peroxidase activity of a complex associating a monoclonal antibody 13G10 with its iron(III)-alpha,alpha,alpha,beta-mesotetrakis(ortho-carboxyphenyl) porphyrin (Fe(ToCPP)) hapten have been studied and compared to those of Fe(ToCPP) alone. It first appears that the peroxidase activity of the 13G10-Fe(ToCPP) complex is remarkably thermostable and remains about 5 times higher than that of Fe(ToCPP) alone until at least 80 degrees C. Secondly, this complex is able to use not only H2O2 as oxidant but also a wide range of hydroperoxides such as alkyl, aralkyl and fatty acid hydroperoxides and catalyze their reduction 2-6-fold faster than Fe(ToCPP) alone. It is also able to catalyze the oxidation by H202 of a variety of reducing cosubstrates such as 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), o-phenylenediamine (OPD), 3,3',5,5'-tetramethylbenzidine (TMB) and 3,3'-dimethoxybenzidine 3-8-fold faster than Fe(ToCPP) alone, the bicyclic aromatic ABTS and TMB being the best reducing cosubstrates. Finally, a pH dependence study, between pH 4.6 and 7.5, of the oxidation of ABTS by H2O2 in the presence of either 13G10-Fe(ToCPP) or Fe(ToCPP) shows that Km(H2O2) values vary very similarly for both catalysts, whereas very different variations are found for the k(cat) values. With Fe(ToCPP) as catalyst the k(cat) value remains constant around 100 min(-1) whereas with the 13G10-Fe(ToCPP) complex, it increases sharply below pH 5 to reach 540 min -1 at pH 4.6. This could be due to the participation of a carboxylic acid side chain of the antibody protein, as a general acid-base catalyst, to the heterolytic cleavage of the O-O bond of H2O2 leading to the highly reactive iron(V)-oxo intermediate in the peroxidase mechanism. Accordingly, the modification of the carboxylic acid residues of antibody 13G10 by glycinamide leads to a 50% decrease of the peroxidase activity of the 13G10-Fe(ToCPP) complex.
Collapse
Affiliation(s)
- S de Lauzon
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, URA 400 CNRS, Université Paris V, Paris, France
| | | | | | | |
Collapse
|
34
|
Mahy JP, Desfosses B, de Lauzon S, Quilez R, Desfosses B, Lion L, Mansuy D. Hemoabzymes. Different strategies for obtaining artificial hemoproteins based on antibodies. Appl Biochem Biotechnol 1998; 75:103-27. [PMID: 10214700 DOI: 10.1007/bf02787712] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Besides existing models of chemical or biotechnological origin for hemoproteins like peroxidases and cytochromes P450, catalytic antibodies (Abs) with a metalloporphyrin cofactor represent a promising alternative route to catalysts tailored for selective oxidation reactions. A brief overview of the literature shows that, until now, the first strategy for obtaining such artificial hemoproteins has been to produce antiporphyrin Abs, raised against various free-base, N-substituted, Sn-, Pd-, or Fe-porphyrins. Four of them exhibited, in the presence of the corresponding Fe-porphyrin cofactor, a significant peroxidase activity, with kcat/K(m) values of 10(2) to 5 x 10(3)/M/s. This value remained low when compared to that of peroxidases, probably because neither a proximal ligand of the Fe, nor amino acid residues participating in the catalysis of the heterolytic cleavage of the O-O bond of H2O2, have been induced in those Abs. This strategy has been shown to be insufficient for the elaboration of effective models of cytochromes P450, because only one set of Abs, raised against meso-tetrakis(para-carboxyvinylphenyl)porphyrin, was reported to catalyze the nonstereoselective oxidation of styrene by iodosyl benzene using a Mn-porphyrin cofactor, and attempts to generate Abs having binding sites for both the substrate and the metalloporphyrin cofactor, using as a hapten a porphyrin covalently linked to the substrate, were not successful. A second strategy is then proposed, which involves the chemical labeling of antisubstrate Abs with a metalloporphyrin. As an example, preliminary results are presented on the covalent linkage of an Fe-porphyrin to an antiestradiol Ab, in order to obtain semisynthetic catalytic Abs able to catalyze the selective oxidation of steroids.
Collapse
Affiliation(s)
- J P Mahy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, URA 400 CNRS, Université René Descartes, Paris, France.
| | | | | | | | | | | | | |
Collapse
|