1
|
Seale AP, Itoh T, Moriyama S, Takahashi A, Kawauchi H, Sakamoto T, Fujimoto M, Riley LG, Hirano T, Grau EG. Isolation and characterization of a homologue of mammalian prolactin-releasing peptide from the tilapia brain and its effect on prolactin release from the tilapia pituitary. Gen Comp Endocrinol 2002; 125:328-39. [PMID: 11884078 DOI: 10.1006/gcen.2001.7727] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the tilapia (Oreochromis mossambicus), as in many teleosts, prolactin (PRL) plays a major role in osmoregulation in freshwater. Recently, PRL-releasing peptides (PrRPs) have been characterized in mammals. Independently, a novel C-terminal RF (arginine-phenylalanine) amide peptide (Carrasius RF amide; C-RFa), which is structurally related to mammalian PrRPs, has been isolated from the brain of the Japanese crucian carp. The putative PrRP was purified from an acid extract of tilapia brain by affinity chromatography with antibody against synthetic C-RFa and HPLC on a reverse-phase ODS-120 column. The tilapia PrRP cDNA was subsequently cloned by polymerase chain reaction. The cDNA consists of 619 bp encoding a preprohormone of 117 amino acids. Sequence comparison of the isolated peptide and the preprohormone revealed that tilapia PrRP contains 20 amino acids and is identical to C-RFa. Incubation of the tilapia pituitary with synthetic C-RFa (100 nM) significantly stimulated the release of two forms of tilapia PRL (PRL188 and PRL177). However, the effect of C-RFa was less pronounced than the marked increase in PRL release in response to hyposmotic medium. The ability of C-RFa to stimulate PRL release appears to be specific, since C-RFa failed to stimulate growth hormone release from the pituitary in organ culture. In contrast, rat and human PrRPs had no effect on PRL release. C-RFa was equipotent with chicken GnRH in stimulating PRL release in the pituitary preincubated with estradiol 17beta. Circulating levels of PRL were significantly increased 1 h after intraperitoneal injection of 0.1 microg/g of C-RFa in female tilapia in freshwater but not in males. These results suggest that C-RFa is physiologically involved in the control of PRL secretion in tilapia.
Collapse
Affiliation(s)
- A P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii 96744, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Ogasawara T, Sakamoto T, Hirano T. Prolactin Kinetics during Freshwater Adaptation of Mature Chum Salmon, Oncorhynchus keta. Zoolog Sci 1996. [DOI: 10.2108/zsj.13.443] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Parwez I, Sherwani FA, Goswami SV. Osmoregulation in the stenohaline freshwater catfish, Heteropneustes fossilis (Bloch) in deionized water. FISH PHYSIOLOGY AND BIOCHEMISTRY 1994; 13:173-181. [PMID: 24202316 DOI: 10.1007/bf00004342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/19/1994] [Indexed: 06/02/2023]
Abstract
Transfer of the stenohaline catfish, Heteropneustes fossilis from tap water (TW) to deionized water (DW) resulted in an increase in the glomerular filtration rate, urine volume and osmolar and free water clearance. In a closed system, where the DW was renewed only once a day, no change in the plasma osmolality was evident for up to 14 days. When DW was renewed four times a day for 25 days, a significant reduction in the plasma osmolality was observed within 24h. When the fish were transferred back to TW, plasma osmolality increased to normal freshwater level within 24h. These observations suggest the existence of highly efficient branchial mechanisms for active uptake of salts from an exceedingly dilute ambient medium. The fact that prolactin-secreting cells as well as corticotrophs in the pituitary of the fish in DW were highly stimulated suggests the involvement of the hormones in the adaptive responses of the catfish to DW.
Collapse
Affiliation(s)
- I Parwez
- Department of Zoology, Aligarh Muslim University, Aligarh, 202 002, India
| | | | | |
Collapse
|
4
|
Sakamoto T, McCormick SD, Hirano T. Osmoregulatory actions of growth hormone and its mode of action in salmonids: A review. FISH PHYSIOLOGY AND BIOCHEMISTRY 1993; 11:155-164. [PMID: 24202472 DOI: 10.1007/bf00004562] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Osmoregulatory actions of growth hormone (GH) and its mode of action in salmonids are reviewed. We present evidence suggesting that insulin-like growth factor I (IGF-I) mediates some of the actions of GH on seawater acclimation. Plasma concentration and turnover of GH rise following exposure to seawater. Exogenous GH (in vivo) increases gill Na(+),K(+)-ATPase activity and the number of gill chloride cells, and inhibits an increase in plasma osmolarity and ions following transfer of fish to seawater. A single class of high affinity GH receptors is present in the liver, gill, intestine, and kidney. The levels of IGF-I mRNA in the liver, gill and kidney increased after GH-injection. After transfer to seawater, IGF-I mRNA increased in the gill and kidney following the rise in plasma GH, although no significant change was seen in the liver. Injection of IGF-I improved the ability of the fish to maintain plasma sodium levels after transfer to seawater. GH treatment also sensitizes the interrenal to adrenocorticotropin (ACTH), increasing cortisol secretion. Both cortisol and IGF-I may be involved in mediating the action of GH in seawater adaptation, although studies on the effect of GH on osmoregulatory physiology of non-salmonid species are limited. An integrated model of the osmoregulatory actions of GH is presented, and areas in need of research are outlined.
Collapse
Affiliation(s)
- T Sakamoto
- Laboratory of Physiology, Ocean Research Institute, University of Tokyo, Nakano, Tokyo, 164, Japan
| | | | | |
Collapse
|
5
|
Pérez-Sánchez J, Weil C, Le Bail PY. Effects of human insulin-like growth factor-I on release of growth hormone by rainbow trout (Oncorhynchus mykiss) pituitary cells. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1992; 262:287-90. [PMID: 1640199 DOI: 10.1002/jez.1402620308] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A recombinant human IGF-I (rhIGF-I) was applied to primary cultures of rainbow trout pituitary cells. In wells containing 3 x 10(4) and 6 x 10(4) cells/well, rhIGF-I inhibited basal GH release both in short (6 h) and long (12 and 24 h) exposures. The decline in GH release was dose-dependent over the range of 0.01 and 100 mM. The combination of rhIGF-I and low concentrations of synthetic somatostatin (SRIF) enhanced the inhibitory effect of rhIGF-I in an additive manner. Any appreciable effect of rhIGF-I on PRL release was not evidenced. To our knowledge, this report demonstrates for the first time the participation of IGFs on the inhibitory component of fish GH regulation.
Collapse
|
6
|
Abstract
A highly specific and homologous radioimmunoassay (RIA) for the measurement of prolactin (PRL) in the plasma and the pituitary of the eel was developed using a rabbit antiserum to eel PRL. PRL was purified from the pituitary of Japanese eel (Anguilla japonica). Pituitary extracts and plasma from the Japanese and European eels exhibited displacement curves parallel to the eel PRL standard. Plasma and pituitary extracts from chum salmon, rainbow trout, Japanese charr, tilapia, goldfish, and carp, as well as plasma from hypophysectomized eel, showed negligible cross-reactivity. PRL and growth hormone (GH) preparations from chum salmon, tilapia, and sheep, carp PRL, and eel GH did not cross-react with the antibody. The RIA sensitivity was less than 0.1 ng eel PRL per milliliter. Intra- and interassay coefficients of variations were 2.4 and 11.8%, respectively. The immunoreactive PRL levels in plasma and pituitary of the eel adapted to 50% seawater were significantly lower than those of the eel in fresh water. Plasma PRL levels increased maximally 2 days after transfer from seawater to fresh water, as would be expected from the well-established role of PRL in freshwater adaptation in several euryhaline teleosts.
Collapse
Affiliation(s)
- R Suzuki
- Ocean Research Institute, University of Tokyo, Japan
| | | |
Collapse
|
7
|
Takahashi A, Yasuda A, Kawauchi H, Hirano T. Development and validation of a competitive enzyme immunoassay for chum salmon prolactin: a comparison to radioimmunoassay. Gen Comp Endocrinol 1990; 80:372-80. [PMID: 1705233 DOI: 10.1016/0016-6480(90)90186-p] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An enzyme immunoassay (EIA), based on a competitive assay system, for the measurement of prolactin (PRL) in the pituitary of salmonid fishes and of hormone released in medium from incubated pituitary was developed using a rabbit antiserum to chum salmon PRL (PRL, a combination of PRL I and PRL II). Chum salmon PRL was coupled to horseradish peroxidase (HRP). The incubation procedure for the antigen-antibody reaction was analogous to that in the radioimmunoassay (RIA) for PRL. The antibody-bound HRP-PRL was separated by a double antibody method. The enzyme activity in the precipitate was followed by a colorimetric method, in which 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) and o-phenylenediamine were used as substrates. PRL, PRL I, and PRL II showed exactly the same competitive curves in the EIA system. PRL (127-158) showed the highest cross-reactivity among the fragments of PRL examined. Low cross-reactivity was seen with other hormones isolated from chum salmon pituitary. The displacement curves for pituitary extracts from several salmonids, including chum salmon, coho salmon, and rainbow trout, were parallel to that of the PRL standard, whereas those from the carp and tilapia showed negligible cross-reactivity. A parallel displacement curve to the PRL standard was also seen with incubation medium of the pars distalis of the chum salmon pituitary. Plasma from chum salmon, coho salmon, and rainbow trout gave nonspecific HRP activity in the EIA. The values of PRL-EIA were significantly correlated (y = 0.99x + 1.06, r = 0.942, P less than 0.05, n = 24) with those obtained in PRL-RIA.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Takahashi
- Laboratory of Molecular Endocrinology, School of Fisheries Sciences, Kitasato University, Iwate, Japan
| | | | | | | |
Collapse
|
8
|
Luo DS, McKeown BA, Rivier J, Vale W. In vitro responses of rainbow trout (Oncorhynchus mykiss) somatotrophs to carp growth hormone-releasing factor (GRF) and somatostatin. Gen Comp Endocrinol 1990; 80:288-98. [PMID: 1981568 DOI: 10.1016/0016-6480(90)90173-j] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To study the hypothalamic control of growth hormone (GH) release in lower vertebrates, we employed an in vitro technique using a monolayer cell culture system of rainbow trout pituitary glands. Two newly purified carp brain growth hormone-releasing factors, carp GRF(1-45) and carp GRF(1-29), and synthetic somatostatin-14 (SST-14) were applied to the cultured pituitary cells. The results indicate that: (1) The carp GRFs had a dose-related potency in stimulating growth hormone release. The dose of half maximum effect (ED50) for carp GRF(1-45) was 0.107 nM, and an equal potency for carp GRF(1-29) was 0.388 nM. (2) SST-14 inhibited GH release having a dose-dependent potency with an ED50 of 0.186 nM. (3) Osmotic pressure did not influence SST-14 inhibited GH secretion but did affect spontaneous GH release. (4) The response of cultured cells was not affected by length of incubation period with SST-14 or carp GRF but was affected by cell density.
Collapse
Affiliation(s)
- D S Luo
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | |
Collapse
|
9
|
Farbridge KJ, McDonald-Jones G, McLean CL, Lowry PJ, Etches RJ, Leatherland JF. The development of monoclonal antibodies against salmon (Oncorhynchus kisutch and O. keta) pituitary hormones and their immunohistochemical identification. Gen Comp Endocrinol 1990; 79:361-74. [PMID: 2272459 DOI: 10.1016/0016-6480(90)90066-u] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Monoclonal antibodies (MCAs) directed against several salmon pituitary hormones were generated by the fusion of myeloma cells with spleen cells from mice that had been immunized with either chum salmon (Oncorhynchus keta) growth hormone (GH) or prolactin (PRL), or one of two purified protein preparations from coho salmon (O. kisutch) pituitaries. Hybridoma were cloned by limiting dilution and screened for MCA production using immunohistochemical procedures. MCAs were generated that bound specifically to GH, PRL, or gonadotropic cells. MCAs were generated that bound to either fine granular material or large globular inclusions in the cytoplasm of the "classical" strongly PAS-positive globular gonadotropic cell type found in mature fish. This suggests that these MCAs are directed against gonadotropin II (GTH II). A MCA was also generated that bound both granular and globular material in the globular gonadotrops and granular material in the weakly PAS-positive vesicular gonadotrops in pituitaries from mature fish and to a cell type in immature rainbow trout pituitaries which is tentatively identified as the gonadotropin I (GTH I) cell type. This MCA did not bind to thyrotrops in immature rainbow trout pituitaries.
Collapse
Affiliation(s)
- K J Farbridge
- Department of Zoology, University of Guelph, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Kelley KM, Nishioka RS, Bern HA. In vitro effect of osmotic pressure and cortisol on prolactin cell physiology in the coho salmon (Oncorhynchus kisutch) during the parr-smolt transformation. ACTA ACUST UNITED AC 1990. [DOI: 10.1002/jez.1402540111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Suzuki R, Kishida M, Hirano T. Growth hormone secretion during longterm incubation of the pituitary of the Japanese eel, Anguilla japonica. FISH PHYSIOLOGY AND BIOCHEMISTRY 1990; 8:159-165. [PMID: 24221949 DOI: 10.1007/bf00004443] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Growth hormone (GH) secretion from organ-cultured pituitaries of the eel (Anguilla japonica) was studied during incubation in a defined medium for 2 weeks, using a homologous radioimmunoassay which does not distinguish between the two molecular forms of eel GH. The total amount of GH secreted increased gradually during the incubation period; so that the amount of GH released on day 14 was about 30 times greater than that on day 1. On day 14, the proportion of GH released relative to the total amount of GH present (the sum of GH released into the medium and residual content in the pituitary) was 96% and the amount produced on day 14 was 4 times greater than the content in the unincubated pituitary. Somatostatin (SRIF, 1.8 × 10(-7) M) inhibited the increase in GH release. On day 7, the proportion of GH released by pituitaries treated with SRIF (28%) was less than that released by the control pituitary (91%). There was no significant difference in GH release between the pituitaries incubated in isotonic medium (300 mOsm) and those in hypotonic medium (240 mOsm) for 2 weeks except for the first 3 days, when the pituitaries in hypotonic medium secreted significantly greater amounts of GH than those incubated under isotonic condition. Hypertonic medium (350 mOsm) had no effect on GH release except for significant inhibition on days 6 and 14. When secretion of the two forms of GH (GH I and II) was examined after separation by polyacrylamide gel electrophoresis followed by densitometry, slightly more GH I tended to be secreted than GH II during the culture period, although the effects of SRIF and osmolality of the media on GH I release were similar to those on GH II. It is concluded that GH secretion and production in the eel is mainly under the inhibitory control of hypothalamus, and that osmolality has a minimum influence on the GH release.
Collapse
Affiliation(s)
- R Suzuki
- Ocean Research Institute, University of Tokyo, Nakano, Tokyo, 164, Japan
| | | | | |
Collapse
|
12
|
Gonnet F, Barret A, Grouselle D, Prunet P. Hypothalamic control of prolactin release in the rainbow trout,Salmo gairdneri: in vitro studies. FISH PHYSIOLOGY AND BIOCHEMISTRY 1989; 7:301-308. [PMID: 24221786 DOI: 10.1007/bf00004721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Hypothalamic control of prolactin (PRL) release in immature rainbow troutSalmo gairdneri was investigated using anin vitro perifusion system of the rostral pars distalis. Hypothalamic extract of trout induced a dose-dependent stimulation of PRL release. A similar effect was observed when infusing the medium from a 24h static incubation of the hypothalamus. Extracts from different control tissues (muscle, liver, gut) did not changein vitro release, thus confirming the specificity of this stimulatory effect. Hypothalamic extract from adult male rat, known to contain PRL release inhibiting factors, stimulatedin vitro PRL secretion in rainbow trout. This suggests that PRL cells are predominantly influenced by PRL releasing factors. Measurement of TRH and serotonin content in trout hypothalamus indicated consistent physiological levels of these two factors. HPLC studies of hypothalamic extract showed that immunoreactive - TRH eluted at the same place as labelled TRH standard. Moreover, pizotifen, a serotonin antagonist, partially inhibited the stimulation observed with trout hypothalamic extract. These results suggest that, in immature rainbow trout, PRL release is under stimulatory hypothalamic control and that serotonin and probably TRH play a major role in this control.
Collapse
Affiliation(s)
- F Gonnet
- Laboratoire de Physiologie des Poissons, INRA, Campus de Beaulieu, 35042, Rennes Cedex, France
| | | | | | | |
Collapse
|