1
|
Martínez-Moreno CG, Arámburo C. Growth hormone (GH) and synaptogenesis. VITAMINS AND HORMONES 2020; 114:91-123. [PMID: 32723552 DOI: 10.1016/bs.vh.2020.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Growth hormone (GH) is known to exert several roles during development and function of the nervous system. Initially, GH was exclusively considered a pituitary hormone that regulates body growth and metabolism, but now its alternative extrapituitary production and pleiotropic functions are widely accepted. Through excess and deficit models, the critical role of GH in nervous system development and adult brain function has been extensively demonstrated. Moreover, neurotrophic actions of GH in neural tissues include pro-survival effects, neuroprotection, axonal growth, synaptogenesis, neurogenesis and neuroregeneration. The positive effects of GH upon memory, behavior, mood, sensorimotor function and quality of life, clearly implicate a beneficial action in synaptic physiology. Experimental and clinical evidence about GH actions in synaptic function modulation, protection and restoration are revised in this chapter.
Collapse
Affiliation(s)
- Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México.
| |
Collapse
|
2
|
Arámburo C, Alba-Betancourt C, Luna M, Harvey S. Expression and function of growth hormone in the nervous system: a brief review. Gen Comp Endocrinol 2014; 203:35-42. [PMID: 24837495 DOI: 10.1016/j.ygcen.2014.04.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/18/2014] [Accepted: 04/19/2014] [Indexed: 12/23/2022]
Abstract
There is increasing evidence that growth hormone (GH) expression is not confined exclusively to the pituitary somatotrophs as it is synthesized in many extrapituitary locations. The nervous system is one of those extrapituitary sites. In this brief review we summarize data that substantiate the expression, distribution and characterization of neural GH and detail its roles in neural function, including cellular growth, proliferation, differentiation, neuroprotection and survival, as well as its functional roles in behavior, cognition and neurotransmission. Although systemic GH may exert some of these effects, it is increasingly evident that locally expressed neural GH, acting through intracrine, autocrine or paracrine mechanisms, may also be causally involved as a neurotrophic factor.
Collapse
Affiliation(s)
- Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, México.
| | - Clara Alba-Betancourt
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, México
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, México
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
3
|
Ávila-Mendoza J, Carranza M, Pérez-Rueda E, Luna M, Arámburo C. Characterization of pituitary growth hormone and its receptor in the green iguana (Iguana iguana). Gen Comp Endocrinol 2014; 203:281-95. [PMID: 24769041 DOI: 10.1016/j.ygcen.2014.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 10/25/2022]
Abstract
Pituitary growth hormone (GH) has been studied in most vertebrate groups; however, only a few studies have been carried out in reptiles. Little is known about pituitary hormones in the order Squamata, to which the green iguana (gi) belongs. In this work, we characterized the hypophysis of Iguana iguana morphologically. The somatotrophs (round cells of 7.6-10 μm containing 250- to 300-nm secretory granules where the giGH is stored) were found, by immunohistochemistry and in situ hybridization, exclusively in the caudal lobe of the pars distalis, whereas the lactotrophs were distributed only in the rostral lobe. A pituitary giGH-like protein was obtained by immuno-affinity chromatography employing a heterologous antibody against chicken GH. giGH showed molecular heterogeneity (22, 44, and 88 kDa by SDS-PAGE/Western blot under non-reducing conditions and at least four charge variants (pIs 6.2, 6.5, 6.9, 7.4) by isoelectric focusing. The pituitary giGH cDNA (1016 bp), amplified by PCR and RACE, encodes a pre-hormone of 218 aa, of which 190 aa correspond to the mature protein and 28 aa to the signal peptide. The giGH receptor cDNA was also partially sequenced. Phylogenetic analyses of the amino acid sequences of giGH and giGHR homologs in vertebrates suggest a parallel evolution and functional relationship between the GH and its receptor.
Collapse
Affiliation(s)
- José Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230, Mexico
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230, Mexico
| | - Ernesto Pérez-Rueda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Campus Morelos, Cuernavaca, Mor. 62210, Mexico
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230, Mexico
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230, Mexico.
| |
Collapse
|
4
|
Luna M, Rodríguez-Méndez AJ, Luna-Acosta JL, Carranza M, Arámburo C. Expression and function of chicken bursal growth hormone (GH). Gen Comp Endocrinol 2013; 190:182-7. [PMID: 23684966 DOI: 10.1016/j.ygcen.2013.04.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/27/2013] [Accepted: 04/30/2013] [Indexed: 11/22/2022]
Abstract
Growth hormone (GH) has several effects on the immune system. Our group has shown that GH is produced in the chicken bursa of Fabricius (BF) where it may act as an autocrine/paracrine modulator that participates in B-cell differentiation and maturation. The time course of GH mRNA and protein expression in the BF suggests that GH may be involved in development and involution of the BF, since GH is known to be present mainly in B lymphocytes and epithelial cells. In addition, as GH is anti-apoptotic in other tissues, we assessed the possibility that GH promotes cell survival in the BF. This work focused on determining the mechanism by which GH can inhibit apoptosis of B cells and if the PI3K/Akt pathway is activated. Bursal cell cultures were treated with a range of GH concentrations (0.1-100nM). The addition of 10nM GH significantly increased viability (16.7±0.6%) compared with the control and decreased caspase-3 activity to 40.6±6.5% of the control. Together, these data indicate that GH is produced locally in the BF and that the presence of exogenous GH in B cell cultures has antiapoptotic effects and increases B cell survival, probably through the PI3k/Akt pathway.
Collapse
Affiliation(s)
- Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico.
| | | | | | | | | |
Collapse
|
5
|
Martínez-Moreno CG, Palma L, Carranza M, Harvey S, Arámburo C, Luna M. Cellular and intracellular distribution of growth hormone in the adult chicken testis. Gen Comp Endocrinol 2011; 172:344-57. [PMID: 21458459 DOI: 10.1016/j.ygcen.2011.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/21/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
Abstract
Endocrine actions of growth hormone (GH) have been implicated during the development of adult testicular function in several mammalian species, and recently intracrine, autocrine, and paracrine effects have been proposed for locally expressed GH. Previous reports have shown the distribution of GH mRNA and the molecular heterogeneity of GH protein in both adult chicken testes and vas deferens. This study provides evidence of the presence and distribution of GH and its receptor (GHR) during all stages of spermatogenesis in adult chicken testes. This hormone and its receptor are not restricted to the cytoplasm; they are also found in the nuclei of spermatogonia, spermatocytes, and spermatids. The pattern of GH isoforms was characterized in the different, isolated germ cell subpopulations, and the major molecular variant in all subpopulations was 17 kDa GH, as reported in other chicken extra-pituitary tissues. Another molecular variant, the 29 kDa moiety, was found mainly in the enriched spermatocyte population, suggesting that it acts at specific developmental stages. The co-localization of GH with the proliferative cell nuclear antigen PCNA (a DNA replication marker present in spermatogonial cells) was demonstrated by immunohistochemistry. These results show for the first time that GH and GHR are present in the nuclei of adult chicken germinal cells, and suggest that GH could participate in proliferation and differentiation during the complex process of spermatogenesis.
Collapse
Affiliation(s)
- C G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Mexico
| | | | | | | | | | | |
Collapse
|
6
|
Alba-Betancourt C, Arámburo C, Avila-Mendoza J, Ahumada-Solórzano SM, Carranza M, Rodríguez-Méndez AJ, Harvey S, Luna M. Expression, cellular distribution, and heterogeneity of growth hormone in the chicken cerebellum during development. Gen Comp Endocrinol 2011; 170:528-40. [PMID: 21094646 DOI: 10.1016/j.ygcen.2010.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 11/06/2010] [Accepted: 11/14/2010] [Indexed: 11/27/2022]
Abstract
Although growth hormone (GH) is mainly synthesized and secreted by pituitary somatotrophs, it is now well established that the GH gene can be expressed in many extrapituitary tissues, including the central nervous system (CNS). Here we studied the expression of GH in the chicken cerebellum. Cerebellar GH expression was analyzed by in situ hybridization and cDNA sequencing, as well as by immunohistochemistry and confocal microscopy. GH heterogeneity was studied by Western blotting. We demonstrated that the GH gene was expressed in the chicken cerebellum and that its nucleotide sequence is closely homologous to pituitary GH cDNA. Within the cerebellum, GH mRNA is mainly expressed in Purkinje cells and in cells of the granular layer. GH-immunoreactivity (IR) is also widespread in the cerebellum and is similarly most abundant in the Purkinje and granular cells as identified by specific neuronal markers and histochemical techniques. The GH concentration in the cerebellum is age-related and higher in adult birds than in embryos and juveniles. Cerebellar GH-IR, as determined by Western blot under reducing conditions, is associated with several size variants (of 15, 23, 26, 29, 35, 45, 50, 55, 80 kDa), of which the 15 kDa isoform predominates (>30% among all developmental stages). GH receptor (GHR) mRNA and protein are also present in the cerebellum and are similarly mainly present in Purkinje and granular cells. Together, these data suggest that GH and GHR are locally expressed within the cerebellum and that this hormone may act as a local autocrine/paracrine factor during development of this neural tissue.
Collapse
Affiliation(s)
- C Alba-Betancourt
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Luna M, Barraza N, Berumen L, Carranza M, Pedernera E, Harvey S, Arámburo C. Heterogeneity of growth hormone immunoreactivity in lymphoid tissues and changes during ontogeny in domestic fowl. Gen Comp Endocrinol 2005; 144:28-37. [PMID: 15936023 DOI: 10.1016/j.ygcen.2005.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 04/12/2005] [Accepted: 04/18/2005] [Indexed: 10/25/2022]
Abstract
Growth hormone (GH) expression is not confined to the pituitary and occurs in many extrapituitary tissues. Here, we describe the presence of GH-like moieties in chicken lymphoid tissues and particularly in the bursa of Fabricius. GH-immunoreactivity (GH-IR), determined by ELISA, was found in thymus, spleen, and in bursa of young chickens, but at concentrations <1% of those in the pituitary gland. Although the GH concentration in the spleen and bursa was approximately 0.82 and 0.23% of that in the pituitary at 9-weeks of age, because of their greater mass, the total GH content in the spleen, bursa, and in thymus were 236, 5.18, and 31.5%, respectively, of that in the pituitary gland. This GH-IR was associated with several proteins of different molecular size, as in the pituitary gland, when analyzed by SDS-PAGE under reducing conditions. While most of the GH-IR in the pituitary was associated with the 26 kDa monomer (40%), the putatively glycosylated 29 kDa variant (16%), the 52 kDa dimer (14%) and the 15 kDa submonomeric isoform (16%), GH-IR in the lymphoid tissues was primarily associated (27-36%) with a 17 kDa moiety, although bands of 14, 26, 29, 32, 37, 40, and 52 kDa were also identified in these tissues. The heterogeneity pattern and relative abundance of bursal GH-IR bands were determined during development between embryonic day 13 (ED13) and 9-weeks of age. The relative proportion of the 17 kDa GH-like band was higher (45-58%) in posthatched birds than in the 15 and 18-day old embryos (21 and 19%, respectively). The 26 kDa isoform was minimally present in embryos (<4% of total GH-IR) but in posthatched chicks it increased to 12-20%. Conversely, while GH-IR of 37, 40, and 45 kDa were abundantly present in embryonic bursa ( approximately 30% at ED13 and approximately 52-55% at ED15 and ED18, respectively), in neonatal chicks and juveniles they accounted for less than 5%. These ontogenic changes were comparable to those previously reported for similar GH-IR proteins in the chicken testis during development. In summary, these results demonstrate age-related and tissue-specific changes in the content and composition of GH in immune tissues of the chicken, in which GH is likely to be an autocrine or paracrine regulator.
Collapse
Affiliation(s)
- M Luna
- Department of Cellular and Molecular Neurobiology, Institute of Neurobiology, Campus UNAM-UAQ Juriquilla, Universidad Nacional Autónoma de México, A.P. 1-1141, Querétaro, 76001, Mexico.
| | | | | | | | | | | | | |
Collapse
|
8
|
Berumen LC, Luna M, Carranza M, Martínez-Coria H, Reyes M, Cárabez A, Arámburo C. Chicken growth hormone: further characterization and ontogenic changes of an N-glycosylated isoform in the anterior pituitary gland. Gen Comp Endocrinol 2004; 139:113-23. [PMID: 15504388 DOI: 10.1016/j.ygcen.2004.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Accepted: 07/22/2004] [Indexed: 11/19/2022]
Abstract
Glycosylation is one of the post-translational modifications that growth hormone (GH) can undergo. This has been reported for human, rat, mouse, pig, chicken and buffalo GH. The nature and significance of GH glycosylation remains to be elucidated. This present study further characterizes glycosylated chicken GH (G-cGH) and examines changes in the pituitary concentration of G-cGH during embryonic development and post hatching growth. G-cGH was purified from chicken pituitaries by affinity chromatography (Concanavalin A-Sepharose and monoclonal antibody bound to Sepharose). Immunoreactive G-cGH has a MW of 26 kDa or 29 kDa as determined by SDS-PAGE, respectively, under non-reducing and reducing conditions. Evidence that it is N-glycosylated comes from its susceptibility to peptide N-glycosidase F, and its resistance to O-glycosidase. Based on the ability of G-cGH to bind Concanavalin A or wheat germ agglutinin but not other lectins and its susceptibility to peptide N-glycosidase F, a hybrid or biantennary type glycopeptide (GlcNac2, Man) structure is proposed. Some G-cGH can be observed in the pituitary at most ages examined (from 15-day embryo to adult). Moreover, electron microscopy revealed the presence of both immuno-reactive GH and Concanavalin A-reactive sites in the same secretory granules in the somatotrope. There were marked changes in the level and relative proportion of G-cGH in the pituitary gland during development and growth, the proportion of G-cGH rising during late embryonic development (e.g., between 15 and 18 days of development) and with further increases between 9 weeks and 15 weeks old. G-cGH was able to bind to chicken liver membrane preparations with less affinity than non-glycosylated monomer; on the other hand, however, G-cGH stimulated cell proliferation on Nb2 lymphoma bioassay whereas the non-glycosylated monomer was uncapable to do it.
Collapse
Affiliation(s)
- L C Berumen
- Department of Cellular and Molecular Neurobiology, Institute of Neurobiology, Campus UNAM-UAQ Juriquilla, Universidad Nacional Autónoma de México, AP 1-1141, Querétaro, Qro. 76001, Mexico
| | | | | | | | | | | | | |
Collapse
|
9
|
Luna M, Huerta L, Berumen L, Martínez-Coria H, Harvey S, Arámburo C. Growth hormone in the male reproductive tract of the chicken: heterogeneity and changes during ontogeny and maturation. Gen Comp Endocrinol 2004; 137:37-49. [PMID: 15094334 DOI: 10.1016/j.ygcen.2004.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 02/10/2004] [Accepted: 02/11/2004] [Indexed: 11/25/2022]
Abstract
Growth hormone (GH) gene expression is not confined to pituitary somatotrophs and occurs in many extrapituitary tissues. In this study, we describe the presence of GH moieties in the chicken testis. GH-immunoreactivity (GH-IR), determined by ELISA, was found in the testis of immature and mature chickens, but at concentrations <1% of those in the pituitary gland. The immunoassayable GH concentration in the testis was unchanged between 4 and 66 weeks of age, and approximately 10-fold higher than that at 1-week of age and 25-fold higher than that in 1-day-old chicks and perinatal (embryonic day 18) embryos. This immunoreactivity was associated with several proteins of different molecular size, as in the pituitary gland, when analyzed by SDS-PAGE under reducing conditions. However, while most of the GH-IR in the pituitary ( approximately 40 and 15%, respectively) is associated with monomer (26 kDa) or dimer (52 kDa) GH moieties GH-IR in the testis is primarily (30-50%) associated with a 17 kDa moiety. GH bands between 32 and 45 kDa are also relatively more abundant in the testis than in the pituitary. During ontogeny the relative abundance of a 14 kDa GH and 40 kDa GH moieties in the testis significantly declined, whereas the relative abundance of the 17 and 45 kDa moieties increased with advancing age. In adult birds, GH-IR was widespread and intense in the seminiferous tubules. Although the GH-IR was not present in the basal compartment of Sertoli cells, nor in spermatogonia and primary spermatocytes, it was abundantly present in secondary spermatocytes and spermatids in the luminal compartments of the tubules as well as in some surrounding myocytes and interstitial cells. In summary, immunoreactive GH moieties are present in the chicken testis but at concentrations far less than in the pituitary. Age-related changes in the relative abundance of testicular GH variants may be related to local (autocrine/paracrine) actions of testicular GH. The localization of GH in spermatocytes and spermatids suggests hitherto unsuspected roles in gamete development.
Collapse
Affiliation(s)
- M Luna
- Department of Cellular and Molecular Neurobiology, Institute of Neurobiology, Campus UNAM-UAQ Juriquilla, Universidad Nacional Autónoma de México, A.P. 1-1141, Querétaro, Qro. 76001, México
| | | | | | | | | | | |
Collapse
|
10
|
Martínez-Coria H, López-Rosales LJ, Carranza M, Berumen L, Luna M, Arámburo C. Differential secretion of chicken growth hormone variants after growth hormone-releasing hormone stimulation in vitro. Endocrine 2002; 17:91-102. [PMID: 12041920 DOI: 10.1385/endo:17:2:91] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2001] [Revised: 12/18/2001] [Accepted: 12/19/2000] [Indexed: 11/11/2022]
Abstract
Variants of growth hormone (GH) are present in most vertebrates. Chicken GH (cGH) undergoes posttranslational modifications that contribute to its structural diversity. Although the 22-kDa form of GH is the most abundant, some other variants have discrete bioactivities that may not be shared by others. The proportion of cGH variants changes during ontogeny, suggesting that they are regulated differentially. The effect of growth hormone-releasing hormone (GHRH) on the release of cGH variants was studied in both pituitary gland and primary cell cultures, employing sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blotting, and densitometry. GHRH (2 nM, 2 h) stimulated the secretion of most of the size variants of cGH although the amplitude of increase was not equal for each one. A differential effect on the secretion of GH size variants, particularly on the 22- (monomer) and 26-kDa (putatively glycosylated) cGH isoforms was found in both systems. In the whole pituitary culture, the proportion of the 26-kDa immunoreactive cGH increased 35% while the 22 kDa decreased 31% after GHRH treatment in comparison with the controls. In the primary cell culture system, the proportion of the glycosylated variant increased 43% whereas the monomer and the dimer decreased 22.26 and 29%, respectively, after GHRH stimulation. Activators of intracellular signals such as 1 mM 8-bromo-cAMP and 1 microM phorbol myristate acetate had a similar effect to that obtained with GHRH. The data support the hypothesis that GH variants may be under differential control and that GHRH promotes the release of a glycosylated cGH variant that has an extended half-life in circulation.
Collapse
Affiliation(s)
- Hilda Martínez-Coria
- Department of Neuroendocrinology, Centro de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Arámburo C, Luna M, Carranza M, Reyes M, Martínez-Coria H, Scanes CG. Growth hormone size variants: changes in the pituitary during development of the chicken. PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE. SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE (NEW YORK, N.Y.) 2000; 223:67-74. [PMID: 10632963 DOI: 10.1046/j.1525-1373.2000.22309.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is considerable evidence for the existence of structural variants of growth hormone (GH). The chicken is a useful model for investigating GH heterogeneity as both size and charge immunoreactive-(ir) variants have been observed in the pituitary and plasma. The present study examined the size distribution of ir-GH in the pituitary gland of chicken, from late embryogenesis through adulthood. Pituitaries were homogenized in the presence of protease inhibitor, and the GH size variants were separated by SDS-PAGE, transferred by Western blotting, immunostained with a specific antiserum to chicken GH, and quantitated by chemiluminescence followed by laser densitometry (chemiluminescent assay). Under nonreducing conditions ir-GH bands of 15, 22, 25, 44, 50, 66, 80, 98, 105 and >110 kDa were observed. Both the relative proportion of the GH size variants and the total pituitary content varied with developmental stage and age. The proportion of the 15-kDa fragment was greatest in the embryonic stage, and then it decreased. The proportion of the monomeric 22-kDa form was lowest at 18 days of embryogenesis (dE) and highest at 20 dE. In contrast, the high MW forms (>/=66 kDa) were lowest in embryos, and they increased (P < 0.05) after hatching. The 22-, 44-, 66-, and 80-kDa forms were assayed for activity by radioreceptor assay following isolation by semipreparative SDS-PAGE. Only the 22-kDa GH variant showed radioreceptor activity. Under reducing conditions for SDS-PAGE, ir-GH bands of 13, 15, 18, 23, 26, 36, 39, 44, 48, 59 and 72 kDa were oberved, but most of the high MW form disappeared. There was a concomitant increase in the proportion of the monomeric band and of several submonomeric forms. The present data indicate that the expression, processing, and/or release of some if not all size variants are under some differential control during growth and development of the chicken.
Collapse
Affiliation(s)
- C Arámburo
- Centro de Neurobiología, Campus UNAM-UAQ Juriquilla, Universidad Nacional Autónoma de México, Querétaro, México.
| | | | | | | | | | | |
Collapse
|
13
|
Foster DN, Proudman JA, Harmon SA, Foster LK. Baculovirus-mediated expression of chicken growth hormone. Comp Biochem Physiol B Biochem Mol Biol 1997; 117:233-9. [PMID: 9226883 DOI: 10.1016/s0305-0491(97)00046-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A full-length chicken growth hormone (cGH) cDNA was placed downstream from the Autograph californica nuclear polyhedron virus, AcNPV, polyhedron gene promoter and expressed in Sf9 insect cells. Secreted recombinant cGH levels averaged 2-10 micrograms/ml from day 5-10 postinfection. The recombinant cGH analyzed by SDS-PAGE gels and Western blotting consisted of a doublet with M(r) of 26.5 and 23.5 kDa. Analysis by 2-D electrophoresis of partially-purified recombinant cGH and purified native cGH revealed similar immunoreactive charge isoforms and M(r) variants. The recombinant hormone was biologically active in a homologous radioreceptor assay. The results show that cGH expressed in insect cells is biologically and immunologically active, and that a variety of isoforms are secreted which exhibit size and charge properties similar to those of pituitary-derived cGH.
Collapse
Affiliation(s)
- D N Foster
- Department of Animal Science, University of Minnesota, St. Paul 55108, USA
| | | | | | | |
Collapse
|
14
|
Proudman JA, Krishnan KA, Maruyama K. Ontogeny of pituitary and serum growth hormone in growing turkeys as measured by radioimmunoassay and radioreceptor assay. Poult Sci 1995; 74:1201-8. [PMID: 7479496 DOI: 10.3382/ps.0741201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Some mammalian studies have revealed a wide discrepancy in pituitary and circulating growth hormone (GH) measurements determined by immunological and biological assay methods. Recent studies demonstrating that avian GH exists in numerous isoforms raise concerns that immunological measurement of GH may not accurately reflect the amount of biologically active hormone present. We sampled eight different male turkeys of a commercial strain weekly until 6 wk of age, and then biweekly until 20 wk. Total pituitary GH content and serum GH concentration were measured by avian GH RIA and radioreceptor assay (RRA). The highest mean serum GH concentration occurred at 3 wk, and the ontogeny of serum GH content from 1 to 8 wk was similar whether measured by RIA or RRA. Pituitary GH content was highest at 6 wk, but RIA and RRA estimates differed markedly throughout the study. Pituitary content of biologically active GH, as estimated by RRA, exceeded that of immunologically active GH from 2 to 10 wk, whereas the reverse was true at 14, 18, and 20 wk. We conclude that this avian GH RIA accurately measures bioactive circulating turkey GH, but that the pituitary of the young turkey may contain bioactive GH isoforms that have poor immunological activity in our RIA.
Collapse
Affiliation(s)
- J A Proudman
- Germplasm and Gamete Physiology Laboratory, USDA, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | | | | |
Collapse
|
15
|
Abstract
It has been described that pituitary growth hormone shows molecular and functional heterogeneity. In birds, size and charge variants of chicken growth hormone (cGH) have been shown in the chicken pituitary gland and in purified preparations of the hormone. Here we demonstrate the existence of cGH molecular isoforms in chicken serum, thus suggesting that they are secreted from the gland. The isolation of total cGH present in sera was performed by immunoaffinity chromatography employing a specific monoclonal antibody against cGH. Different analytical electrophoretic methods (SDS-polyacrylamide gel electrophoresis, isoelectric focusing, bidimensional polyacrylamide gel electrophoresis) followed by Western blot and immunostaining were employed to characterize the serum cGH isoforms, and compared to those present in a fresh pituitary extract. Several identical immunoreactive bands comigrated in both serum and the gland extract in the different systems (SDS-PAGE, MW 16, 22, 26, 29, 52, 62, 66 kDa; IEF, pIs 8.1, 7.5, 7.1, 6.8, 6.2), thus revealing a high correspondence of molecular isoforms of the hormone in the two tissues. Additionally, a glycosylated variant of chicken growth hormone (G-cGH) was also revealed in the serum after concanavalin A-Sepharose chromatography.
Collapse
Affiliation(s)
- J L Montiel
- Departamento de Fisiología, Universidad Nacional Autónoma de México, D.F
| | | | | |
Collapse
|
16
|
Arámburo C, Navarrette S, Montiel JL, Sánchez R, Berghman LR. Purification and electrophoretic analysis of glycosylated chicken growth hormone (G-cGH): evidence of G-cGH isoforms. Gen Comp Endocrinol 1991; 84:135-46. [PMID: 1778403 DOI: 10.1016/0016-6480(91)90073-f] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It has been shown that chicken growth hormone (cGH) exhibits functional and molecular heterogeneity. Mass and charge variants have been described in fresh pituitary extracts and in pure preparations of the hormone. In an attempt to further study the molecular heterogeneity of cGH we have purified the glycosylated variant of this hormone by affinity chromatography and analyzed it by different electrophoretic methods. Purification was achieved by homogeneizing chicken pituitaries in a protease inhibitor solution (0.5 mM PMSF and aprotinin, 50 KIU/ml); the supernatant of the alkaline extract (pH 9.5) was precipitated with 0.15 M ammonium sulfate and metaphosphoric acid, pH 4.0. The supernatant from this step was further precipitated with 80% ammonium sulfate, pH 6.5. After dialysis and lyophilization, the extract was chromatographed in a Con A-Sepharose column. The fraction eluted with 10 mM alpha-methylmannoside (which contained the glycoproteins) was passed through an immunoaffinity column (anticGH). Glycosylated cGH (G-cGH) was obtained pure after this step. Pure G-cGH was analyzed by nondenaturing electrophoresis (ND-PAGE), SDS-PAGE, isoelectrofocusing (IEF), and bidimensional electrophoresis (2D-PAGE) followed by Western blot and staining either with a specific antibody or with peroxidated Con A. Results showed that monomeric G-cGH has a MW of 29 kDa (under reducing conditions) and is heterogeneous, showing at least three important charge variants with pIs 6.5, 6.7, and 7.2. Mass variants of G-cGH were also detected under nonreducing conditions. Bidimensional analysis revealed that the charge variants had a similar MW (29 kDa).
Collapse
Affiliation(s)
- C Arámburo
- Departamento de Fisiología, Universidad Nacional Autónoma de México, D.F
| | | | | | | | | |
Collapse
|