1
|
Tiwari J, Sur S, Naseem A, Rani S, Malik S. Photoperiodic modulation of melatonin receptor and immune genes in migratory redheaded bunting. Comp Biochem Physiol A Mol Integr Physiol 2023; 279:111381. [PMID: 36724811 DOI: 10.1016/j.cbpa.2023.111381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
The transcriptional regulation of innate immune function across annual life history states (LHS) remains obscure in avian migrants. We, therefore, investigated this in a migratory passerine songbird, redheaded bunting (Emberiza bruniceps), which exhibits long-distance vernal migration from India to Central Asia. We exposed the birds (N = 10) to differential photoperiodic conditions to induce a non-migratory (NM), pre-migratory (PM), migratory (MIG), and refractory (REF) state, and performed gene expression assays of melatonin receptors (MEL1A and MEL1B), and innate immunity-linked genes (IL1B, IL6, TLR4, and NFKB) in spleen and blood. We found a significant reduction in splenic mass and volume, and a parallel increase in fat accumulation, and testicular growth in birds under migratory state. The gene expression assay revealed an upregulation of MEL1A and MEL1B mRNA levels in both the tissues in MIG. Additionally, we found a nocturnal increase of splenic IL1B expression, and IL1B, IL6, and TLR4 expression in the blood. The mRNA expression of melatonin receptors and proinflammatory cytokine showed a positive correlation. These results suggest that melatonin relays the photoperiodic signal to peripheral immune organs, which shows LHS-dependent changes in mRNA expression of immune genes.
Collapse
Affiliation(s)
- Jyoti Tiwari
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India. https://twitter.com/JyotiTiwari2711
| | - Sayantan Sur
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India. https://twitter.com/sayantansur008
| | - Asma Naseem
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Sangeeta Rani
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Shalie Malik
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India.
| |
Collapse
|
2
|
Names GR, Krause JS, Schultz EM, Angelier F, Parenteau C, Ribout C, Hahn TP, Wingfield JC. Relationships between avian malaria resilience and corticosterone, testosterone and prolactin in a Hawaiian songbird. Gen Comp Endocrinol 2021; 308:113784. [PMID: 33862049 DOI: 10.1016/j.ygcen.2021.113784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/23/2021] [Accepted: 04/09/2021] [Indexed: 01/19/2023]
Abstract
Glucocorticoids, androgens, and prolactin regulate metabolism and reproduction, but they also play critical roles in immunomodulation. Since the introduction of avian malaria to Hawaii a century ago, low elevation populations of the Hawaii Amakihi (Chlorodrepanis virens) that have experienced strong selection by avian malaria have evolved increased resilience (the ability to recover from infection), while high elevation populations that have undergone weak selection remain less resilient. We investigated how variation in malaria selection has affected corticosterone, testosterone, and prolactin hormone levels in Amakihi during the breeding season. We predicted that baseline corticosterone and testosterone (which have immunosuppressive functions) would be reduced in low elevation and malaria-infected birds, while stress-induced corticosterone and prolactin (which have immunostimulatory functions) would be greater in low elevation and malaria-infected birds. As predicted, prolactin was significantly higher in malaria-infected than uninfected females (although more robust sample sizes would help to confirm this relationship), while testosterone trended higher in malaria-infected than uninfected males and, surprisingly, neither baseline nor stress-induced CORT varied with malaria infection. Contrary to our predictions, stress-induced corticosterone was significantly lower in low than high elevation birds while testosterone in males and prolactin in females did not vary by elevation, suggesting that Amakihi hormone modulation across elevation is determined by variables other than disease selection (e.g., timing of breeding, energetic challenges). Our results shed new light on relationships between introduced disease and hormone modulation, and they raise new questions that could be explored in experimental settings.
Collapse
Affiliation(s)
- Gabrielle R Names
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Jesse S Krause
- Department of Biology, University of Nevada Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Elizabeth M Schultz
- Department of Biology, Wittenberg University, 200 W Ward Street, Springfield, OH 45504, USA
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79360 France
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79360 France
| | - Cécile Ribout
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79360 France
| | - Thomas P Hahn
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
3
|
Sur S, Sharma A, Bhardwaj SK, Kumar V. Involvement of steroid and antioxidant pathways in spleen-mediated immunity in migratory birds. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110790. [PMID: 32800933 DOI: 10.1016/j.cbpa.2020.110790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
Abstract
The molecular underpinnings of the spleen-mediated immune functions during the period of heightened energetic needs in the year are not known in avian migrants. We investigated this, in Palearctic-Indian migratory male redheaded buntings, which exhibited vernal (spring) premigratory / early testicular maturation states under artificial long days. This was evidenced by increased dio2 and decreased dio3 mRNA expression in the hypothalamus, elevated levels of circulating corticosterone and testosterone, and enlarged testes in long-day-photostimulated birds, as compared to unstimulated controls under short days. The concomitant decrease in both mass and volume of the spleen, and increase in the heterophil/ lymphocyte ratio suggested the parallel innate immunity effects in photostimulated buntings. Importantly, we found increased mRNA expression of genes coding for the cytokines (il15 and il34), steroid receptors (nr3c2) and oxidative stress marker enzymes (gpx1 and sod1) in the spleen, suggesting the activation of both immune and antioxidant molecular pathways during the early photostimulated state. However, the splenic expressions of il1β, il6, tgfβ, ar and nos2 genes were not significantly different between long-day stimulated and short-day unstimulated birds. The negative correlation of plasma corticosterone levels with spleen mass further indicated a role of corticosterone in the modulation of the spleen function, probably via nr3c2 gene encoded mineralocorticoid receptors. These results suggest the activation of the spleen-mediated innate immunity in anticipation of the heightened energetic stress state of the photostimulated spring migratory/breeding period in migratory songbirds.
Collapse
Affiliation(s)
- Sayantan Sur
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Aakansha Sharma
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | | | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
4
|
Simkins JW, Joseph AE, Bonier F, Benowitz-Fredericks ZM. Prenatal aromatase inhibition alters postnatal immunity in domestic chickens (Gallus gallus). Gen Comp Endocrinol 2020; 294:113497. [PMID: 32360542 DOI: 10.1016/j.ygcen.2020.113497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 04/19/2020] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
In birds, exposure to exogenous testosterone during embryonic development can suppress measures of immune function; however, it is unclear whether these effects are due to direct or indirect action via aromatization. Estradiol (E2) is synthesized from testosterone by the enzyme aromatase, and this conversion is a necessary step in many signaling pathways that are ostensibly testosterone-dependent. Many lines of evidence in mammals indicate that E2 can affect immune function. We tested the hypothesis that some of the immunomodulatory effects observed in response to in ovo testosterone exposure in birds are mediated by conversion to E2 by aromatase, by using fadrozole to inhibit aromatization of endogenous testosterone during a crucial period of embryonic immune system development in domestic chickens (Gallus gallus). We then measured total IgY antibody count, response to PHA challenge, mass of thymus and bursa of Fabricius, and plasma testosterone post-hatch on days 3 and 18. Because testosterone has a reputation for immunosuppression, we predicted that if modulation of an immune measure by testosterone is dependent on aromatization, then inhibition of estrogen production by fadrozole treatment would lead to elevated measures of that parameter. Conversely, if testosterone inhibits an immune measure directly, then fadrozole treatment would likely not alter that parameter. Fadrozole treatment reduced circulating E2 in female embryos, but had no effect on males or on testosterone in either sex. Fadrozole-treated chicks had decreased day 3 plasma IgY antibody titers and a strong trend towards increased day 18 thymic mass. Furthermore, fadrozole treatment generated a positive relationship between testosterone and thymic mass in males, and tended to increase day 18 IgY levels for a given bursal mass in females. There was no effect on PHA response, bursal mass, or plasma testosterone at either age post-hatch. The alteration of several indicators of immune function in fadrozole-treated chicks implicates aromatization as a relevant pathway through which developmental exposure to testosterone can affect immunity in birds.
Collapse
Affiliation(s)
- J W Simkins
- Bucknell University, Department of Biology, 1 Dent Drive, Lewisburg, PA, USA.
| | - A E Joseph
- Bucknell University, Department of Biology, 1 Dent Drive, Lewisburg, PA, USA.
| | - F Bonier
- Queen's University, Department of Biology, 116 Barrie Street, Kingston, ON K7L 3N6, Canada.
| | | |
Collapse
|
5
|
Rohwer S, Rohwer VG. Breeding and multiple waves of primary molt in common ground doves of coastal Sinaloa. PeerJ 2018; 6:e4243. [PMID: 29379683 PMCID: PMC5787347 DOI: 10.7717/peerj.4243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/18/2017] [Indexed: 11/24/2022] Open
Abstract
For adult Common Ground Doves from Sinaloa we demonstrate that the primaries are a single molt series, which sometimes feature two (in one case three) waves of feather replacement. Such stepwise primary replacement is found in many large birds but, at 40 g, this dove is much the smallest species reported to have multiple waves of replacement proceeding through its primaries simultaneously. Pre-breeding juvenile Common Ground Doves never feature two waves of primary replacement. Juveniles usually have more than two adjacent feathers growing simultaneously and replace their primaries in about 100 days. In contrast adults, which extensively overlap molt and breeding, usually grow just a single primary at a time, and require at least 145 days to replace their primaries. Molt arrests are thought to drive the generation of new waves of primary replacement in a diversity of large birds. For adult Common Ground Doves, we found molt arrests to be strongly associated with active crop glands, suggesting that the demands of parental care cause arrests in primary replacement in this dove. For those adults with two primary molt waves, initiation of an inner wave was most frequently observed once the outer wave had reached P10. Thus, unlike reports for large birds, Common Ground Doves usually suppress the initiation of a new wave of molt starting at P1 when the preceding wave arrests before reaching the distal primaries. This assures that relatively fresh inner primaries are not replaced redundantly, overcoming a serious flaw in stepwise molting in large birds (Rohwer, 1999).
Collapse
Affiliation(s)
- Sievert Rohwer
- Burke Museum of Natural History and Culture and Department of Biology, University of Washington, Seattle, WA, United States of America
| | - Vanya G Rohwer
- Museum of Vertebrates, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
6
|
Verburg-van Kemenade BML, Cohen N, Chadzinska M. Neuroendocrine-immune interaction: Evolutionarily conserved mechanisms that maintain allostasis in an ever-changing environment. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:2-23. [PMID: 27296493 DOI: 10.1016/j.dci.2016.05.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 05/02/2023]
Abstract
It has now become accepted that the immune system and neuroendocrine system form an integrated part of our physiology. Immunological defense mechanisms act in concert with physiological processes like growth and reproduction, energy intake and metabolism, as well as neuronal development. Not only are psychological and environmental stressors communicated to the immune system, but also, vice versa, the immune response and adaptation to a current pathogen challenge are communicated to the entire body, including the brain, to evoke adaptive responses (e.g., fever, sickness behavior) that ensure allocation of energy to fight the pathogen. This phenomenon is evolutionarily conserved. Hence it is both interesting and important to consider the evolutionary history of this bi-directional neuroendocrine-immune communication to reveal phylogenetically ancient or relatively recently acquired mechanisms. Indeed, such considerations have already disclosed an extensive "common vocabulary" of information pathways as well as molecules and their receptors used by both the neuroendocrine and immune systems. This review focuses on the principal mechanisms of bi-directional communication and the evidence for evolutionary conservation of the important physiological pathways involved.
Collapse
Affiliation(s)
- B M Lidy Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept. of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
| | - Nicholas Cohen
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| |
Collapse
|
7
|
Li J, Cao J, Wang Z, Dong Y, Chen Y. Melatonin plays a critical role in inducing B lymphocyte proliferation of the bursa of Fabricius in broilers via monochromatic lights. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 142:29-34. [DOI: 10.1016/j.jphotobiol.2014.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
|
8
|
Chen K, Tsay S, Chiou P, Sun C, Weng B. Effects of caponization and different forms of exogenous androgen implantation on immunity in male chicks. Poult Sci 2010; 89:887-94. [DOI: 10.3382/ps.2009-00524] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Panshikar S, Haldar C. Immune responses of Indian Jungle Bush Quail,P. asiatica, to different photoperiodic regimens during the reproductively inactive phase. BIOL RHYTHM RES 2009. [DOI: 10.1080/09291010701875328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Quinn MJ, McKernan M, Lavoie ET, Ottinger MA. Immunotoxicity of trenbolone acetate in Japanese quail. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:88-93. [PMID: 17162502 DOI: 10.1080/15287390600755026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Trenbolone acetate is a synthetic androgen that is currently used as a growth promoter in many meat-exporting countries. Despite industry laboratories classifying trenbolone as nonteratogenic, data showed that embryonic exposure to this androgenic chemical altered development of the immune system in Japanese quail. Trenbolone is lipophilic, persistent, and released into the environment in manure used as soil fertilizer. This is the first study to date to assess this chemical's immunotoxic effects in an avian species. A one-time injection of trenbolone into yolks was administered to mimic maternal deposition, and subsequent effects on the development and function of the immune system were determined in chicks and adults. Development of the bursa of Fabricius, an organ responsible for development of the humoral arm of the immune system, was disrupted, as indicated by lower masse, and smaller and fewer follicles at day 1 of hatch. Morphological differences in the bursas persisted in adults, although no differences in either two measures of immune function were observed. Total numbers of circulating leukocytes were reduced and heterophil-lymphocyte ratios were elevated in chicks but not adults. This study shows that trenbolone acetate is teratogenic and immunotoxic in Japanese quail, and provides evidence that the quail immune system may be fairly resilient to embryonic endocrine-disrupting chemical-induced alterations following no further exposure posthatch.
Collapse
Affiliation(s)
- Michael James Quinn
- U.S. Army Center for Health Promotion and Preventive Medicine, Aberdeen Proving Ground, Maryland 21010, USA.
| | | | | | | |
Collapse
|
11
|
Razia S, Maegawa Y, Tamotsu S, Oishi T. Histological changes in immune and endocrine organs of quail embryos: exposure to estrogen and nonylphenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2006; 65:364-71. [PMID: 16246420 DOI: 10.1016/j.ecoenv.2005.07.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Revised: 07/10/2005] [Accepted: 07/31/2005] [Indexed: 05/05/2023]
Abstract
Effects of 17beta-estradiol and p-nonylphenol were examined in the immune and endocrine organs of Japanese quail embryos. The test compounds were injected into the yolk of embryonated eggs. Injection of estrogen resulted in (1) disappearance of lymphoid cells and flattened development of plicae in the bursa of Fabricius, (2) decreased area of thyroid follicles and height of simple cuboidal epithelial cells in the thyroid, (3) increased follicular appearance of the thymus, and (4) development of an ovotestis in male embryos. Injection of nonylphenol did not induce flattened plicae in the bursa of Fabricius or development of an ovotestis in male embryos, but it increased the disappearance of lymphoid cells from the lymphoid follicles in the bursa, decreased the height of simple cuboidal epithelial cells surrounding the thyroid follicle, and increased the follicle-like structure in the thymus in male embryos. These results suggest that nonylphenol has estrogenic effects, but these are low compared to those of estrogen itself.
Collapse
Affiliation(s)
- Sultana Razia
- Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan
| | | | | | | |
Collapse
|
12
|
Embryonic Effects of Androgen Active Endocrine Disrupting Chemicals on Avian Immune and Reproductive Systems. J Poult Sci 2006. [DOI: 10.2141/jpsa.43.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Singh SS, Haldar C. Melatonin prevents testosterone-induced suppression of immune parameters and splenocyte proliferation in Indian tropical jungle bush quail, Perdicula asiatica. Gen Comp Endocrinol 2005; 141:226-32. [PMID: 15804509 DOI: 10.1016/j.ygcen.2005.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2004] [Revised: 11/22/2004] [Accepted: 01/11/2005] [Indexed: 10/25/2022]
Abstract
During reproductive inactive phase (winter months) peripheral high melatonin and low testosterone was noted in male Indian tropical bird, Perdicula asiatica. During this phase exogenous testosterone (1 mg/100 g Bwt./day) suppressed the immune parameters [spleen weight, total leukocyte count (TLC), lymphocyte count (LC), and percent stimulation ratio (% SR)] and depleted splenic cellular density, while melatonin (25 microg/100g Bwt./day) restored the immune parameters and splenic cellular density to the level of control birds. In vitro suppression of splenocyte proliferation by testosterone (3 ng/ml) was also reversed by melatonin (500 pg/ml) supplementation. Therefore, high melatonin in circulation during the reproductive inactive phase acts as immunostimulator and is of high adaptive significance to this bird for survival during the adverse conditions of season and reproductive phase.
Collapse
Affiliation(s)
- Shiv Shankar Singh
- Pineal Research Lab, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India
| | | |
Collapse
|
14
|
|
15
|
|
16
|
Oishi T, Obara Y. Formoguanamine-induced blindness and photoperiodic responses in the Japanese quail,Coturnix coturnix japonica. J Biosci 1994. [DOI: 10.1007/bf02703183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|