1
|
Nie H, Zhang R, Yu X, Zhang Y, Yan P, Li E, Wang R, Wu X. Molecular cloning, immunological characterization, and expression analysis of gonadotropin-releasing hormone (GnRH) in the brain of the Chinese alligator during different stages of reproductive cycle. Gene 2021; 789:145672. [PMID: 33882325 DOI: 10.1016/j.gene.2021.145672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022]
Abstract
The neurohormone gonadotropin-releasing hormone (GnRH) plays an essential role in the control of reproductive functions in vertebrates. However, the full-length complementary DNA (cDNA) encoding the GnRHs precursor and it role in the reproductive cycles regulating has not been illustrated in crocodilian species. In the present study, full-length cDNAs encoding GnRH1 forms, its predominant localization within brain and peripheral tissues, and GnRH1 peptide concentrations in the hypothalamus and pituitary in relation to seasonal gonadal development of Chinese alligator were investigated. The cDNA of GnRH1 is consisted of 282 bp open reading frame encoding 93 amino acids. The deduced amino acid sequence of alligator GnRH1 contains several conserved regions and shows a closer genetic relationship to the avian species than to other reptile species. The GnRH1 immunopositive cells were not only detected widely in cerebrum, diencephalon, medulla oblongata but also observed in peripheral tissues, these widespread distribution characteristics indicated that GnRH1 possibly possess the multi-functionality in Chinese Alligator. GnRH1 peptide concentration within hypothalamus were observed be the highest in RP group (P < 0.05), in association with an peak value in GSI and emerging of late vitellogenic follicles in the ovary. Taken together, our results suggested that GnRH1 was predominantly involved in the vitellogenesis process of seasonal gonadal development of Chinese Alligator.
Collapse
Affiliation(s)
- Haitao Nie
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Ruidong Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China; College of Life Sciences, Inner Mongolia Normal University, Hohhot, Inner Mongolia 010022, China
| | - Xiaoqin Yu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Yuqian Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Peng Yan
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - En Li
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Renping Wang
- Alligator Research Center of Anhui Province, Xuanzhou 242000, China
| | - Xiaobing Wu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
2
|
Chen R, Guo RH, Zhu HX, Shi ZD. Development of a sandwich ELISA for determining plasma prolactin concentration in domestic birds. Domest Anim Endocrinol 2019; 67:21-27. [PMID: 30660024 DOI: 10.1016/j.domaniend.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/19/2018] [Accepted: 11/15/2018] [Indexed: 12/23/2022]
Abstract
The present study was conducted to establish a sandwich ELISA for the determination of prolactin (PRL) concentrations in the plasma of domestic fowls. The assay uses a recombinant goose PRL as the reference standard, expressed in a eukaryotic system, and as the antigen for raising a polyclonal antibody in rabbit. This rabbit anti-goose PRL polyclonal antibody was used for coating the wells of the ELISA plate, and its biotinylated form served as the detection antibody. An avidin-conjugated horseradish peroxidase was used to bind the detection antibody and to catalyze the chromogenic reaction using 3,3',5,5'-tetramethylbenzidine as the substrate. The assay showed a linear relationship between the optical density and concentration of the standard PRL in the 0 to 12.5 ng/mL range, and the assay was sensitive to a concentration as low as 0.39 ng/mL. The intra- and inter-assay CVs were <7% and 11%, respectively. The response curves of the serially diluted plasma samples from goose, duck, and chicken exhibited similar parallel relationships to that observed for the reference standards. Consistent with previous findings, the assay effectively detected differences in PRL concentration in plasma samples from chicken, duck, and goose at various reproductive stages.
Collapse
Affiliation(s)
- R Chen
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - R H Guo
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - H X Zhu
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Z D Shi
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China.
| |
Collapse
|
3
|
Ottinger MA, Lavoie E, Thompson N, Barton A, Whitehouse K, Barton M, Abdelnabi M, Quinn M, Panzica G, Viglietti-Panzica C. Neuroendocrine and behavioral effects of embryonic exposure to endocrine disrupting chemicals in birds. ACTA ACUST UNITED AC 2007; 57:376-85. [PMID: 18006066 DOI: 10.1016/j.brainresrev.2007.08.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/26/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
Abstract
Endocrine disrupting chemicals (EDCs) exert hormone-like activity in vertebrates and exposure to these compounds may induce both short- and long-term deleterious effects including functional alterations that contribute to decreased reproduction and fitness. An overview of the effects of a number of EDCs, including androgenic and estrogenic compounds, will be considered. Many studies have been conducted in the precocial Japanese quail, which provides an excellent avian model for testing these compounds. Long-term impacts have also been studied by raising a subset of animals through maturation. The EDCs examined included estradiol, androgen active compounds, soy phytoestrogens, and atrazine. Effects on behavior and hypothalamic neuroendocrine systems were examined. All EDCs impaired reproduction, regardless of potential mechanism of action. Male sexual behavior proved to be a sensitive index of EDC exposure and embryonic exposure to a variety of EDCs consistently resulted in impaired male sexual behavior. Several hypothalamic neural systems proved to be EDC responsive, including arginine vasotocin (VT), catecholamines, and gonadotropin releasing hormone system (GnRH-I). Finally, EDCs are known to impact both the immune and thyroid systems; these effects are significant for assessing the overall impact of EDCs on the fitness of avian populations. Therefore, exposure to EDCs during embryonic development has consequences beyond impaired function of the reproductive axis. In conclusion, behavioral alterations have the advantage of revealing both direct and indirect effects of exposure to an EDC and in some cases can provide a valuable clue into functional deficits at different physiological levels.
Collapse
Affiliation(s)
- Mary Ann Ottinger
- Department of Animal and Avian Sciences, University of Maryland College Park, MD 20742, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
MULLER WENDT, GROOTHUIS TONGG, EISING CORINEM, DIJKSTRA COR. An experimental study on the causes of sex-biased mortality in the black-headed gull - the possible role of testosterone. J Anim Ecol 2005. [DOI: 10.1111/j.1365-2656.2005.00964.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Khan MAH, Ferro VA, Stimson WH. Use of a highly specific monoclonal antibody against the central variable amino acid sequence of mammalian gonadotropin releasing hormone to evaluate GnRH-I tissue distribution compared with GnRH-I binding sites in adult male rats. Am J Reprod Immunol 2003; 49:239-48. [PMID: 12852498 DOI: 10.1034/j.1600-0897.2003.01202.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PROBLEM Recent evidence shows the existence of numerous isoforms of gonadotropin releasing hormone (GnRH), with high sequence homology and a core variable region. This raises the issue that previous GnRH distribution studies may have identified a variety of isoforms. This investigation was carried out to confirm the distribution and binding activity of GnRH-I only. METHOD OF STUDY A monoclonal antibody (7B101D10), with specificity for the core region of GnRH-I was used to stain formalin-fixed tissue sections from adult male Sprague-Dawley rats, while a biotinylated GnRH-I sequence was used with avidin-labelled HRP to evaluate regions of GnRH-I binding. RESULTS AND CONCLUSIONS GnRH-I expression was only found in the hypothalamus, cerebellum, anterior/fore brain and in Sertoli cells, while, binding activity was only present in the pituitary, subendocardium and subepicardium, thymic lymphocytes, peripheral blood lymphocytes and neutrophils. There was overlap in the olfactory neurons, liver (Kupffer macrophages and hepatocytes), spleen (lymphocytes and dendritic cells), myocardium and testes (spermatozoa and Leydig cells) and this may be further evidence of the paracrine/autocrine activity of a neuropeptide.
Collapse
|
6
|
Abdelnabi MA, Ottinger MA. Hypothalamic indolamines during embryonic development and effects of steroid exposure. Gen Comp Endocrinol 2003; 130:13-9. [PMID: 12535620 DOI: 10.1016/s0016-6480(02)00524-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The serotonin system has been implicated in the modulation of endocrine and behavioral components of reproduction. In this study, we examined endogenous hypothalamic indolamines during sexual differentiation and long-term effects of exogenous steroids during this time. In Experiment 1, Japanese quail were studied during the last half of embryonic development and early post-hatch. Samples were taken at embryonic day 10 (E10), E12, E14, E16, hatch (day 0), and days 3 and 5, post-hatch. Hypothalamic indolamines, including serotonin (5-HT) and its metabolite, 5-hydroxy indole acetic acid (5-HIAA) were measured by HPLC-EC detection. Females had relatively higher hypothalamic 5-HT at E14 than males, with both sexes showing increasing levels thereafter. By day 5, post-hatch, hypothalamic 5-HT content was higher in males than in females. When turnover was estimated by comparing relative concentrations of 5-HT to 5-HIAA, males were significantly higher at E12 and E14 than females. These data suggest that there are stage specific changes in the serotonin system, as well as sexually dimorphic patterns in the ontogeny and activity of this system. In Experiment 2, we investigated the effects of embryonic steroid hormone treatment on the serotonin system and on male sexual behavior. Birds were treated with either estradiol benzoate (EB), testosterone propionate (TP) or sesame oil (vehicle control) at selected embryonic days (E10, E12, E14, E16, 0, D3, and D5). At 4 weeks post-hatch, birds were transferred to short photoperiod (16D:8L) for 3 weeks to prevent photostimulated reproductive development. At 7 weeks of age, males were implanted with a 20mm silastic capsule filled with testosterone and sexual behavior was tested 1 week later. Brains were collected from both males and females, and preoptic area (POA) indolamines were measured. Steroid treatment at E10 or E12 resulted in the loss of male sexual behavior. Moreover, males treated with EB or TP on E12 also had increased POA 5-HT content as adults, compared to control males. Females treated with EB on either E10 or E 12 also had higher POA 5-HT content than control or TP treated females. These data provide evidence for sexual dimorphism in the hypothalamic 5-HT system at specific stages during embryonic development. Moreover, males were sensitive to exogenous EB and TP on E12, whereas females appeared to be affected by EB only and appeared to be sensitive to steroid effects over a longer period of time in development. Moreover, exogenous steroids at E12 in males also correlated with impaired sexual behavioral. These data suggest that long-term effects of embryonic steroid exposure may be mediated in part through effects on the serotonin neurotransmitter system.
Collapse
Affiliation(s)
- M A Abdelnabi
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
7
|
Ottinger MA, Wu J, Pelican K. Neuroendocrine regulation of reproduction in birds and clinical applications of GnRH analogues in birds and mammals. ACTA ACUST UNITED AC 2002. [DOI: 10.1053/saep.2002.122896] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Ottinger MA, Abdelnabi M, Quinn M, Golden N, Wu J, Thompson N. Reproductive consequences of EDCs in birds: what do laboratory effects mean in field species? Neurotoxicol Teratol 2002; 24:17-28. [PMID: 11836068 DOI: 10.1016/s0892-0362(01)00195-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The varied reproductive strategies of birds present a challenge in developing reliable indices for the assessment of effects of endocrine disrupting chemicals (EDCs). Precocial species, such as quail, appear to be most sensitive to EDC effects during embryonic development. Although the Japanese quail (Coturnix japonica) is a nonnative lab species, its reproductive strategy is similar to that of many free-ranging species. Because a great deal is known about the reproductive biology of this species and Japanese quail have a short generation time, this species is an ideal candidate for testing EDC effects. In this review, we present data collected in a two-generation design with embryonic exposure to estradiol benzoate (EB). This study was conducted to provide fundamental information for establishing reliable reproductive endpoints associated with estrogenic EDC exposure. Data were collected for a variety of endpoints, which were chosen as measures of reproductive capability and success. These reproductive fitness measures included fertility, hatching success, and offspring viability. Endocrine measures consisted of plasma hormone levels and gonad weight/condition. Neuroendocrine systems, such as the monoamine neurotransmitter systems, regulate hypothalamic gonadotropin releasing hormone (GnRH) and reproductive behavior. Therefore, these variables should potentially be very sensitive indicators. Behavioral measures included reproductive behavior. Results showed that embryonic estradiol exposure affected endocrine and behavioral responses in males and impacted productivity in females. Therefore, quails provide an excellent model to determine fundamental actions of EDCs. The laboratory trials then serve as a basis for the extrapolation of findings of controlled laboratory studies to effects that may be observable in free-ranging species.
Collapse
Affiliation(s)
- Mary Ann Ottinger
- Department of Animal and Avian Sciences, Room 3113, Animal Sciences Center, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Ottinger MA, Abdelnabi MA, Henry P, McGary S, Thompson N, Wu JM. Neuroendocrine and behavioral implications of endocrine disrupting chemicals in quail. Horm Behav 2001; 40:234-47. [PMID: 11534988 DOI: 10.1006/hbeh.2001.1695] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies in our laboratory have focused on endocrine, neuroendocrine, and behavioral components of reproduction in the Japanese quail. These studies considered various stages in the life cycle, including embryonic development, sexual maturation, adult reproductive function, and aging. A major focus of our research has been the role of neuroendocrine systems that appear to synchronize both endocrine and behavioral responses. These studies provide the basis for our more recent research on the impact of endocrine disrupting chemicals (EDCs) on reproductive function in the Japanese quail. These endocrine active chemicals include pesticides, herbicides, industrial products, and plant phytoestrogens. Many of these chemicals appear to mimic vertebrate steroids, often by interacting with steroid receptors. However, most EDCs have relatively weak biological activity compared to native steroid hormones. Therefore, it becomes important to understand the mode and mechanism of action of classes of these chemicals and sensitive stages in the life history of various species. Precocial birds, such as the Japanese quail, are likely to be sensitive to EDC effects during embryonic development, because sexual differentiation occurs during this period. Accordingly, adult quail may be less impacted by EDC exposure. Because there are a great many data available on normal development and reproductive function in this species, the Japanese quail provides an excellent model for examining the effects of EDCs. Thus, we have begun studies using a Japanese quail model system to study the effects of EDCs on reproductive endocrine and behavioral responses. In this review, we have two goals: first, to provide a summary of reproductive development and sexual differentiation in intact Japanese quail embryos, including ontogenetic patterns in steroid hormones in the embryonic and maturing quail. Second, we discuss some recent data from experiments in our laboratory in which EDCs have been tested in Japanese quail. The Japanese quail provides an excellent avian model for testing EDCs because this species has well-characterized reproductive endocrine and behavioral responses. Considerable research has been conducted in quail in which the effects of embryonic steroid exposure have been studied relative to reproductive behavior. Moreover, developmental processes have been studied extensively and include investigations of the reproductive axis, thyroid system, and stress and immune responses. We have conducted a number of studies, which have considered long-term neuroendocrine consequences as well as behavioral responses to steroids. Some of these studies have specifically tested the effects of embryonic steroid exposure on later reproductive function in a multigenerational context. A multigenerational exposure provides a basis for understanding potential exposure scenarios in the field. In addition, potential routes of exposure to EDCs for avian species are being considered, as well as differential effects due to stage of the life cycle at exposure to an EDC. The studies in our laboratory have used both diet and egg injection as modes of exposure for Japanese quail. In this way, birds were exposed to a specific dose of an EDC at a selected stage in development by injection. Alternatively, dietary exposure appears to be a primary route of exposure; therefore experimental exposure through the diet mimics potential field situations. Thus, experiments should consider a number of aspects of exposure when attempting to replicate field exposures to EDCs.
Collapse
Affiliation(s)
- M A Ottinger
- Department of Animal and Avian Sciences, University of Maryland, College Park, 20706, USA
| | | | | | | | | | | |
Collapse
|
10
|
Ottinger MA, Pitts S, Abdelnabi MA. Steroid hormones during embryonic development in Japanese quail: plasma, gonadal, and adrenal levels. Poult Sci 2001; 80:795-9. [PMID: 11441848 DOI: 10.1093/ps/80.6.795] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The purpose of this experiment was to measure plasma, gonad, and adrenal steroid hormones during embryonic and early posthatch development in Japanese quail. Blood plasma samples were collected from male and female Japanese quail embryos at 2-d intervals between Day 10 of incubation and Day 5 posthatch. Gonads and adrenal glands were collected from a separate set of embryos at the same ages. Concentrations of androgen (testosterone and 5alpha-dihydrotestosterone) and 17beta-estradiol (E2) were determined by RIA. Plasma androgen changed significantly (P < 0.001) with age in males and females, and there were significant differences (P < 0.001) between sexes in the hormonal patterns. Males had higher plasma androgen than females; conversely, females consistently had overall higher levels of estradiol than males. Adrenal gland steroid content remained relatively high and did not change significantly with age. In contrast, steroid content of gonads followed patterns similar to those observed for plasma levels. These results provide evidence for steroid hormone production by the gonads of both sexes, as well as for distinct differences in the patterns observed in the adrenal gland and gonads. These results provide evidence for gonadal regulation of changes in circulating hormone levels. Further, these hormonal patterns were associated with the timing of steroid-induced sexual differentiation in the Japanese quail, suggesting that plasma gonadal steroids are critical in sexual differentiation.
Collapse
Affiliation(s)
- M A Ottinger
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742, USA
| | | | | |
Collapse
|
11
|
Millam JR, Ottinger MA, Craig-Veit CB, Fan Y, Chaiseha Y, el Halawani M. Multiple forms of GnRH are released from perifused medial basal hypothalamic/preoptic area (MBH/POA) explants in birds. Gen Comp Endocrinol 1998; 111:95-101. [PMID: 9653026 DOI: 10.1006/gcen.1998.7094] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both chicken gonadotropin-releasing hormones I and II (cGnRH I and II) were detected in abundant quantity by radioimmunoassay of extracts of Japanese quail medial basal hypothalamic/preoptic area (MBH/POA) fragments that included the median eminence (ME) region. However, in radioimmunoassayed extracts of Japanese quail ME alone, the concentration of cGnRH I greatly exceeded that of cGnRH II (approximately 450 pg/ME vs < 10 pg/ME). Likewise, cGnRH I and II were released into perifusates from quail an turkey MBH/POA explants maintained in short-term perifusion. Release of both forms occurred whether or not explants included the ME region, i.e., from quail POA explants did not include the ME or from turkey MBH/POA explants from which the ME region had been dissected out. This indicates that neuropeptides released from areas other than the ME can be a major source of neuropeptides detected in perifusates. Further, release of cGnRH I was altered following the addition of norepinephrine to perfusion media, whereas cGnRH II release was unaffected, again, whether or not explants included the ME. These results demonstrate that the release of neurohemoral substances from perifused explants cannot be assumed to represent regulated secretion from the ME.
Collapse
Affiliation(s)
- J R Millam
- Department of Avian Sciences, University of California, Davis 95616, USA
| | | | | | | | | | | |
Collapse
|
12
|
Lance VA, Bogart MH. Studies on sex determination in the American alligatoralligator mississippiensis. ACTA ACUST UNITED AC 1994. [DOI: 10.1002/jez.1402700109] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|