Abstract
There is general agreement that a function, perhaps the major function, of stress proteins under normal physiological conditions is to help assembly and disassembly of protein complexes and to catalyse protein-translocation processes. It remains unclear, however, as to what role these processes play in stressed cells. It could be that cells under stress produce abnormal, misfolded or otherwise damaged proteins and that increased synthesis of stress proteins is required to counter protein modifications. A role for stress proteins in recovery of cells from stress, as opposed to a role in helping cells to withstand a lethal stress, is thus suggested. The intracellular location of stress proteins, in the unstressed and stressed cell, is worthy of further studies. Members of the hsp70 family are associated with the cytosol, mitochondria and endoplasmic reticulum. There is evidence, particularly from studies on mammalian cells (Tanguay, 1985; Welch and Mizzen, 1988; Arrigo et al., 1988), that following stress hsps migrate to various cellular compartments and subsequently delocalize after stress. However, there is little comparable data from microbial systems for this phenomenon (e.g. Rossi and Lindquist, 1989). The question as to the role of stress proteins in the transient acquisition of thermotolerance remains to be answered. It is insufficient to equate the kinetics of stress-protein synthesis with acquisition of thermotolerance. Quantitative data on the amount of stress protein present at various times, including the recovery period, is required. The demonstration that microbial stress proteins are important antigenic determinants of micro-organisms causing major debilitating diseases in the world is an exciting observation. Studies on the interplay of pathogen and host, both carrying similar antigenic hsp determinants, will be a challenging area for future research. It is likely that E. coli and Sacch. cerevisiae, with their well-established biochemical and genetic properties, will continue to be the experimental systems of choice for studies on stress proteins. On the other hand, it is encouraging that studies on other micro-organisms have expanded in the past few years and have made substantial contributions towards our understanding of the stress response. The ubiquitous nature of the stress response and the remarkable evolutionary conservation of the stress proteins continue to be attractive areas for research.
Collapse