Aburai N, Yoshida M, Ohnishi M, Kimura K. Pisiferdiol and pisiferic acid isolated from Chamaecyparis pisifera activate protein phosphatase 2C in vitro and induce caspase-3/7-dependent apoptosis via dephosphorylation of Bad in HL60 cells.
PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010;
17:782-788. [PMID:
20153620 DOI:
10.1016/j.phymed.2009.12.015]
[Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/25/2009] [Accepted: 12/17/2009] [Indexed: 05/28/2023]
Abstract
Protein phosphatase 2C (PP2C) dephosphorylates a broad range of substrates and regulates apoptosis, stress response and growth-related pathways. In the course of screening for PP2C activators from natural sources, we isolated abietane-type diterpenes, pisiferdiol and pisiferic acid from Chamaecyparis pisifera. Pisiferdiol having a unique seven-membered ring showed more specific PP2C activation activity (1.3-fold at 100 microM) than pisiferic acid having a normal six-membered ring and oleic acid, which is known to activate PP2C. Pisiferdiol and pisiferic acid showed mixed-type activation with respect to alpha-casein, and this differed from the non-competitive activation of oleic acid in vitro. In vivo, the cytotoxicity of pisiferdiol toward human promyelocytic leukemia cell line HL60 with an IC(50) value of 18.3 microM was 2-fold and 7-fold stronger than those of pisiferic acid and oleic acid, and pisiferdiol induced apoptosis through a caspase 3/7-dependent mechanism involving the dephosphorylation of Bad(1), which is a PP2C substrate. We thus conclude that pisiferdiol and pisiferic acid are novel PP2C activators, and the more specific activator, pisiferdiol, may be a useful chemical probe to study PP2C-mediated signaling pathways, and a lead compound for pharmaceutical agents.
Collapse