1
|
Ungvari A, Gulej R, Csik B, Mukli P, Negri S, Tarantini S, Yabluchanskiy A, Benyo Z, Csiszar A, Ungvari Z. The Role of Methionine-Rich Diet in Unhealthy Cerebrovascular and Brain Aging: Mechanisms and Implications for Cognitive Impairment. Nutrients 2023; 15:4662. [PMID: 37960316 PMCID: PMC10650229 DOI: 10.3390/nu15214662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
As aging societies in the western world face a growing prevalence of vascular cognitive impairment and Alzheimer's disease (AD), understanding their underlying causes and associated risk factors becomes increasingly critical. A salient concern in the western dietary context is the high consumption of methionine-rich foods such as red meat. The present review delves into the impact of this methionine-heavy diet and the resultant hyperhomocysteinemia on accelerated cerebrovascular and brain aging, emphasizing their potential roles in cognitive impairment. Through a comprehensive exploration of existing evidence, a link between high methionine intake and hyperhomocysteinemia and oxidative stress, mitochondrial dysfunction, inflammation, and accelerated epigenetic aging is drawn. Moreover, the microvascular determinants of cognitive deterioration, including endothelial dysfunction, reduced cerebral blood flow, microvascular rarefaction, impaired neurovascular coupling, and blood-brain barrier (BBB) disruption, are explored. The mechanisms by which excessive methionine consumption and hyperhomocysteinemia might drive cerebromicrovascular and brain aging processes are elucidated. By presenting an intricate understanding of the relationships among methionine-rich diets, hyperhomocysteinemia, cerebrovascular and brain aging, and cognitive impairment, avenues for future research and potential therapeutic interventions are suggested.
Collapse
Affiliation(s)
- Anna Ungvari
- Department of Public Health, Semmelweis University, 1089 Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Translational Medicine, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Wang Y, Sun X, Qiu J, Zhou A, Xu P, Liu Y, Wu H. A UHPLC-Q-TOF-MS-based serum and urine metabolomics approach reveals the mechanism of Gualou-Xiebai herb pair intervention against atherosclerosis process in ApoE -/- mice. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123567. [PMID: 36529071 DOI: 10.1016/j.jchromb.2022.123567] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/05/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Atherosclerosis (AS) is a metabolic disorder commonly correlated with a high-fat diet (HFD). There are many endogenous metabolic changes associated with AS development. Gualou-Xiebai (GLXB) is a traditional Chinese medicine herb pair that has been used to treat AS. However, the mechanism of GLXB herb pair on the process of AS is still essentially unknown. In this study, aortic histopathological examination and biochemical analyses were used to validate the anti-atherosclerotic effects of GLXB herb pair on ApoE-/- mice during the disease course of AS. The mechanism of GLXB herb pair were performed by metabolomics approach based on ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). As a result, GLXB herb pair has protective effects on AS lesion development and improves blood lipid levels in ApoE-/- mice. A total of 34, 39, and 49 metabolites were found to be profoundly altered in the 9-week, 14-week, and 19-week model groups compared with the corresponding control groups. Among them, 16, 18, and 18 metabolites showed a trend toward normal levels after pharmacological intervention. Metabolic pathway analysis found that GLXB herb pair mainly affects glycerophospholipid metabolism, pentose and glucuronate interconversions in 9 weeks; linoleic acid metabolism, cysteine and methionine metabolism, and arachidonic acid metabolism in 14 weeks; arachidonic acid metabolism and pentose and glucuronate interconversions in 19 weeks. The results demonstrated that GLXB herb pair mainly played a therapeutic role by regulating glycerophospholipid metabolism and pentose and glucuronate interconversions in the whole process of AS.
Collapse
Affiliation(s)
- Yuting Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xin Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jingwen Qiu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - An Zhou
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China.
| | - Pengbo Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yarong Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China.
| |
Collapse
|
3
|
Yang Y, Lu M, Xu Y, Qian J, Le G, Xie Y. Dietary Methionine via Dose-Dependent Inhibition of Short-Chain Fatty Acid Production Capacity Contributed to a Potential Risk of Cognitive Dysfunction in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15225-15243. [PMID: 36413479 DOI: 10.1021/acs.jafc.2c04847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
High-methionine diets induce impaired learning and memory function, dementia-like neurodegeneration, and Alzheimer's disease, while low-methionine diets improve learning and memory function. We speculated that variations in intestinal microbiota may mediate these diametrically opposed effects; thus, this study aimed to verify this hypothesis. The ICR mice were fed either a low-methionine diet (LM, 0.17% methionine), normal methionine diet (NM, 0.86% methionine), or high-methionine diet (HM, 2.58% methionine) for 11 weeks. We found that HM diets damaged nonspatial recognition memory, working memory, and hippocampus-dependent spatial memory and induced anxiety-like behaviors in mice. LM diets improved nonspatial recognition memory and hippocampus-dependent spatial memory and ameliorated anxiety-like behavior, but the differences did not reach a significant level. Moreover, HM diets significantly decreased the abundance of putative short-chain fatty acid (SCFA)-producing bacteria (Roseburia, Blautia, Faecalibaculum, and Bifidobacterium) and serotonin-producing bacteria (Turicibacter) and significantly increased the abundance of proinflammatory bacteria Escherichia-Shigella. Of note, LM diets reversed the results. Consequently, the SCFA and serotonin levels were significantly decreased with HM diets and significantly increased with LM diets. Furthermore, HM diets induced hippocampal oxidative stress and inflammation and selectively downregulated the hippocampus-dependent memory-related gene expression, whereas LM diets selectively upregulated the hippocampus-dependent memory-related gene expression. In conclusion, dietary methionine via dose-dependent inhibition of SCFA production capacity contributed to a potential risk of cognitive dysfunction in mice.
Collapse
Affiliation(s)
- Yuhui Yang
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Manman Lu
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuncong Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jing Qian
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanli Xie
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
4
|
Increased Ingestion of Hydroxy-Methionine by Both Sows and Piglets Improves the Ability of the Progeny to Counteract LPS-Induced Hepatic and Splenic Injury with Potential Regulation of TLR4 and NOD Signaling. Antioxidants (Basel) 2022; 11:antiox11020321. [PMID: 35204204 PMCID: PMC8868084 DOI: 10.3390/antiox11020321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Methionine, as an essential amino acid, play roles in antioxidant defense and the regulation of immune responses. This study was designed to determine the effects and mechanisms of increased consumption of methionine by sows and piglets on the capacity of the progeny to counteract lipopolysaccharide (LPS) challenge-induced injury in the liver and spleen of piglets. Primiparous sows (n = 10/diet) and their progeny were fed a diet that was adequate in sulfur amino acids (CON) or CON + 25% total sulfur amino acids as methionine from gestation day 85 to postnatal day 35. A total of ten male piglets were selected from each treatment and divided into 2 groups (n = 5/treatment) for a 2 × 2 factorial design [diets (CON, Methionine) and challenge (saline or LPS)] at 35 d old. After 24 h challenge, the piglets were euthanized to collect the liver and spleen for the histopathology, redox status, and gene expression analysis. The histopathological results showed that LPS challenge induced liver and spleen injury, while dietary methionine supplementation alleviated these damages that were induced by the LPS challenge. Furthermore, the LPS challenge also decreased the activities of GPX, SOD, and CAT and upregulated the mRNA and(or) protein expression of TLR4, MyD88, TRAF6, NOD1, NOD2, NF-kB, TNF-α, IL-8, p53, BCL2, and COX2 in the liver and (or) spleen. The alterations of GPX and SOD activities and the former nine genes were prevented or alleviated by the methionine supplementation. In conclusion, the maternal and neonatal dietary supplementation of methionine improved the ability of piglets to resist LPS challenge-induced liver and spleen injury, potentially through the increased antioxidant capacity and inhibition of TLR4 and NOD signaling pathway.
Collapse
|
5
|
Zaric BL, Radovanovic JN, Gluvic Z, Stewart AJ, Essack M, Motwalli O, Gojobori T, Isenovic ER. Atherosclerosis Linked to Aberrant Amino Acid Metabolism and Immunosuppressive Amino Acid Catabolizing Enzymes. Front Immunol 2020; 11:551758. [PMID: 33117340 PMCID: PMC7549398 DOI: 10.3389/fimmu.2020.551758] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/25/2020] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease is the leading global health concern and responsible for more deaths worldwide than any other type of disorder. Atherosclerosis is a chronic inflammatory disease in the arterial wall, which underpins several types of cardiovascular disease. It has emerged that a strong relationship exists between alterations in amino acid (AA) metabolism and the development of atherosclerosis. Recent studies have reported positive correlations between levels of branched-chain amino acids (BCAAs) such as leucine, valine, and isoleucine in plasma and the occurrence of metabolic disturbances. Elevated serum levels of BCAAs indicate a high cardiometabolic risk. Thus, BCAAs may also impact atherosclerosis prevention and offer a novel therapeutic strategy for specific individuals at risk of coronary events. The metabolism of AAs, such as L-arginine, homoarginine, and L-tryptophan, is recognized as a critical regulator of vascular homeostasis. Dietary intake of homoarginine, taurine, and glycine can improve atherosclerosis by endothelium remodeling. Available data also suggest that the regulation of AA metabolism by indoleamine 2,3-dioxygenase (IDO) and arginases 1 and 2 are mediated through various immunological signals and that immunosuppressive AA metabolizing enzymes are promising therapeutic targets against atherosclerosis. Further clinical studies and basic studies that make use of animal models are required. Here we review recent data examining links between AA metabolism and the development of atherosclerosis.
Collapse
Affiliation(s)
- Bozidarka L. Zaric
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena N. Radovanovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Faculty of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, University of Belgrade, Belgrade, Serbia
| | - Alan J. Stewart
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Olaa Motwalli
- College of Computing and Informatics, Saudi Electronic University (SEU), Medina, Saudi Arabia
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Erarpat S, Bodur S, Öztürk Er E, Bakırdere S. Combination of ultrasound-assisted ethyl chloroformate derivatization and switchable solvent liquid-phase microextraction for the sensitive determination of l-methionine in human plasma by GC-MS. J Sep Sci 2019; 43:1100-1106. [PMID: 31858708 DOI: 10.1002/jssc.201901078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 11/05/2022]
Abstract
A green and fast analytical method for the determination of l-methionine in human plasma is presented in this study. Preconcentration of the analyte was carried out by switchable solvent liquid phase microextraction after ethyl chloroformate derivatization reaction. Instrumental detection of the analyte was performed by means of gas chromatography-mass spectrometry. N,N-Dimethyl benzylamine was used in the synthesis of switchable solvent. Protonated N,N-dimethyl benzylamine volume, volume/concentration of sodium hydroxide, and vortex period were meticulously fixed to their optimum values. Besides, ethyl chloroformate, pyridine, and ethanol volumes were optimized in order to get high derivatization yield. After the optimization studies, limit of detection and quantitation values were attained as 3.30 and 11.0 ng/g, respectively, by the developed switchable solvent liquid phase microextraction gas chromatography-mass spectrometry method that corresponding to 76.7-folds enhancement in detection power of the gas chromatography-mass spectrometry system. Applicability and accuracy of the switchable solvent liquid phase microextraction-gas chromatography-mass spectrometry method were also checked by spiking experiments. Percent recovery results were ranged from 97.8 to 100.5% showing that human plasma samples could be analyzed for its l-methionine level by the proposed method.
Collapse
Affiliation(s)
- Sezin Erarpat
- Department of Chemistry, Yıldız Technical University, İstanbul, Turkey
| | - Süleyman Bodur
- Department of Chemistry, Yıldız Technical University, İstanbul, Turkey
| | - Elif Öztürk Er
- Department of Chemical Engineering, Yıldız Technical University, İstanbul, Turkey
| | - Sezgin Bakırdere
- Department of Chemistry, Yıldız Technical University, İstanbul, Turkey
| |
Collapse
|
7
|
Zhao L, Zhang NY, Pan YX, Zhu LY, Batonon-Alavo DI, Ma LB, Khalil MM, Qi DS, Sun LH. Efficacy of 2-hydroxy-4-methylthiobutanoic acid compared to DL-Methionine on growth performance, carcass traits, feather growth, and redox status of Cherry Valley ducks. Poult Sci 2018; 97:3166-3175. [DOI: 10.3382/ps/pey196] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/25/2018] [Indexed: 12/20/2022] Open
|
8
|
Sun JH, Liu X, Cong LX, Li H, Zhang CY, Chen JG, Wang CM. Metabolomics study of the therapeutic mechanism of Schisandra Chinensis lignans in diet-induced hyperlipidemia mice. Lipids Health Dis 2017; 16:145. [PMID: 28764799 PMCID: PMC5537938 DOI: 10.1186/s12944-017-0533-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/04/2017] [Indexed: 12/31/2022] Open
Abstract
Background Schisandra, a globally distributed plant, has been widely applied for the treatment of diseases such as hyperlipidemia, fatty liver and obesity in China. In the present work, a rapid resolution liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (RRLC-Q-TOF-MS)-based metabolomics was conducted to investigate the intervention effect of Schisandra chinensis lignans (SCL) on hyperlipidemia mice induced by high-fat diet (HFD). Methods Hyperlipidemia mice were orally administered with SCL (100 mg/kg) once a day for 4 weeks. Serum biochemistry assay of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c) was conducted to confirm the treatment of SCL on lipid regulation. Metabolomics analysis on serum samples was carried out, and principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were carried out for the pattern recognition and characteristic metabolites identification. The relative levels of critical regulatory factors of liver lipid metabolism, sterol regulatory element-binding proteins (SREBPs) and its related gene expressions were measured by quantitative real-time polymerase chain reaction (RT-PCR) for investigating the underlying mechanism. Results Oral administration of SCL significantly decreased the serum levels of TC, TG and LDL-c and increased the serum level of HDL-c in the hyperlipidemia mice, and no effect of SCL on blood lipid levels was observed in control mice. Serum samples were scattered in the PCA scores plots in response to the control, HFD and SCL group. Totally, thirteen biomarkers were identified and nine of them were recovered to the normal levels after SCL treatment. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, the anti-hyperlipidemia mechanisms of SCL may be involved in the following metabolic pathways: tricarboxylic acid (TCA) cycle, synthesis of ketone body and cholesterol, choline metabolism and fatty acid metabolism. Meanwhile, SCL significantly inhibited the mRNA expression level of hepatic lipogenesis genes such as SREBP-1c, fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), and decreased the mRNA expression of liver X receptor α (LXRα). Moreover, SCL also significantly decreased the expression level of SREBP-2 and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) in the liver of hyperlipidemia mice. Conclusion Anti-hyperlipidemia effect of SCL was confirmed by both serum biochemistry and metabolomics analysis. The mechanism may be related to the down-regulation of LXRα/SREBP-1c/FAS/ACC and SREBP2/HMGCR signaling pathways.
Collapse
Affiliation(s)
- Jing-Hui Sun
- College of Pharmacy, Beihua University, 3999 Binjiang East Road, Jilin, 132013, China
| | - Xu Liu
- College of Pharmacy, Beihua University, 3999 Binjiang East Road, Jilin, 132013, China
| | - Li-Xin Cong
- Second Treatment Area of Senile Disease, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, 1478, Gongnong Road, Changchun, 130021, China
| | - He Li
- College of Pharmacy, Beihua University, 3999 Binjiang East Road, Jilin, 132013, China
| | - Cheng-Yi Zhang
- College of Pharmacy, Beihua University, 3999 Binjiang East Road, Jilin, 132013, China
| | - Jian-Guang Chen
- College of Pharmacy, Beihua University, 3999 Binjiang East Road, Jilin, 132013, China.
| | - Chun-Mei Wang
- College of Pharmacy, Beihua University, 3999 Binjiang East Road, Jilin, 132013, China.
| |
Collapse
|
9
|
Rom O, Grajeda-Iglesias C, Najjar M, Abu-Saleh N, Volkova N, Dar DE, Hayek T, Aviram M. Atherogenicity of amino acids in the lipid-laden macrophage model system in vitro and in atherosclerotic mice: a key role for triglyceride metabolism. J Nutr Biochem 2017; 45:24-38. [DOI: 10.1016/j.jnutbio.2017.02.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/27/2017] [Accepted: 02/25/2017] [Indexed: 12/27/2022]
|
10
|
Rom O, Aviram M. It is not just lipids: proatherogenic vs. antiatherogenic roles for amino acids in macrophage foam cell formation. Curr Opin Lipidol 2017; 28:85-87. [PMID: 28030455 DOI: 10.1097/mol.0000000000000377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Oren Rom
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
11
|
Plasma and Aorta Biochemistry and MMPs Activities in Female Rabbit Fed Methionine Enriched Diet and Their Offspring. J Nutr Metab 2017; 2017:2785142. [PMID: 28133545 PMCID: PMC5241488 DOI: 10.1155/2017/2785142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/22/2016] [Indexed: 11/24/2022] Open
Abstract
This study investigated whether a high Met diet influences biochemical parameters, MMPs activities in plasma, and biochemical and histological remodeling in aorta, in both pregnant female rabbits and their offspring. Four female rabbit groups are constituted (each n = 8), nonpregnant control (NPC), pregnant control (PC) that received normal commercial chow, nonpregnant Met (NPMet), and pregnant Met (PMet) that received the same diet supplemented with 0,35% L-methionine (w/w) for 3 months (500 mg/d). All pregnant females realize 3 successive pregnancies. Plasma results showed that Met excess increased Hcy, raised CRP in NPMet and decreased it in PMet, enhanced significantly proMMP-2 and proMMP-9 activities in NPMet, and reduced them in PMet. Aorta showed a rise in collagen level, essentially in PMet, a reduction of elastin content in both PMet and NPMet, and a significant decrease in lipid content in PMet, with histological changes that are more pronounced in NPMet than PMet. Met excess enhanced proMMP-9 activities in NPMet while it decreased them in PMet. PMet newborn presented increase in uremia and CRP and significant rise of active MMP-2 and MMP-9 forms. In aorta, media and adventitia thickness increased, total lipids content decreased, proMMP-9 activity decreased, and proMMP-2 activity increased.
Collapse
|
12
|
Akkaya H, Eyuboglu S, Erkanlı Senturk G, Yilmaz B. Investigation of the effects of kisspeptin-10 in methionine-induced lipid peroxidation in testicle tissue of young rats. J Biochem Mol Toxicol 2016; 31. [PMID: 27900820 DOI: 10.1002/jbt.21881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/21/2016] [Accepted: 10/31/2016] [Indexed: 11/09/2022]
Abstract
Disruption of the balance oxidants, antioxidants cause various pathophysiological conditions such as lipid peroxidation, protein degradation, or DNA damage. We have examined possible effects of kisspeptin-10 on the structural damage produced by methionine-induced lipid peroxidation in testicle tissue of young rats. Kisspeptin-10 did not significantly affect spermatogenic cells in seminiferous tubules. Testosterone levels decreased in the methionine group as compared with the control group but without statistical significance. Luteinizing hormone levels decreased in the methionine group as compared with the control group (P < 0.001). Catalase enzyme activity increased in the kisspeptin-10 group (P < 0.01) as compared with the other groups. Catalase mRNA expression was decreased in the methionine group as compared with the kisspeptin group (P < 0.001). Total superoxide dismutase enzyme activity and superoxide dismutase mRNA expression were increased in the kisspeptin group as compared with the methionine group (P < 0.05). In conclusion, kisspeptin treatment may protect the structure of spermatogenic cells against methionine-induced damage.
Collapse
Affiliation(s)
- Hatice Akkaya
- Experimental Research Center, Yeditepe University, Istanbul, Turkey
| | - Signem Eyuboglu
- Department of Physiology, Yeditepe University, Istanbul, Turkey
| | | | - Bayram Yilmaz
- Department of Physiology, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
13
|
Abstract
Deep vein thrombosis (DVT) leads to venous ulcers in later life. Venous ulcers are the majority of chronic lower extremity wounds. Recent evidence suggests that hyperhomocysteinemia is an independent risk factor for venous thrombosis. Other evidence suggests that dietary supplementation with folic acids and vitamins helps to change hyper-homocysteinemia. This may be the key to wound management in the future.
Collapse
Affiliation(s)
- Paul Lee
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
14
|
Selhub J, Troen AM. Sulfur amino acids and atherosclerosis: a role for excess dietary methionine. Ann N Y Acad Sci 2015; 1363:18-25. [PMID: 26647293 DOI: 10.1111/nyas.12962] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The homocysteine theory of arteriosclerosis received credence when it was shown that after a methionine load, circulating homocysteine-cysteine concentrations were higher in cardiovascular disease patients than in healthy controls. Subsequent studies showing associations between homocysteine and coronary artery disease, stroke and cognitive impairment, relied on small increases in homocysteine concentration unlike the very high homocysteine seen in the rare genetic disorders that lead to homocystinuria and much higher homocysteine levels. Subsequent studies in cell culture, animals, and humans showed that a variety of cardiovascular adverse effects of "high homocysteine" introduced either as a nonphysiological bolus or as a methionine load led to high homocysteine. We fed apolipoprotein E-deficient mice diets designed to achieve three conditions: (1) high methionine intake with normal blood homocysteine, (2) high methionine intake with B vitamin deficiency and hyperhomocysteinemia, and (3) normal methionine intake with both B vitamin deficiency and hyperhomocysteinemia. We found that the mice fed methionine-rich diets had significant atheromatous pathology in the aortic arch even with normal plasma homocysteine levels. Mice fed B vitamin-deficient diets developed severe hyperhomocysteinemia but without any increase in vascular pathology. Our findings suggest that even moderate increases in methionine intake are atherogenic in susceptible mice while high plasma homocysteine is not.
Collapse
Affiliation(s)
- Jacob Selhub
- Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Aron M Troen
- Nutrition and Brain Health Laboratory, The Institute of Biochemistry Food and Nutrition Science, The Robert H. Smith Faculty of Agriculture Food and the Environment, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
15
|
Liu T, Lin J, Ju T, Chu L, Zhang L. Vascular smooth muscle cell differentiation to an osteogenic phenotype involves matrix metalloproteinase-2 modulation by homocysteine. Mol Cell Biochem 2015; 406:139-49. [DOI: 10.1007/s11010-015-2432-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/05/2015] [Indexed: 11/29/2022]
|
16
|
Yang Y, Liu Y, Zheng L, Wu T, Li J, Zhang Q, Li X, Yuan F, Wang L, Guo J. Serum metabonomic analysis of apoE−/−mice reveals progression axes for atherosclerosis based on NMR spectroscopy. ACTA ACUST UNITED AC 2014; 10:3170-8. [DOI: 10.1039/c4mb00334a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Akkaya H, Kilic E, Eyuboglu Dinc S, Yilmaz B. Postacute Effects of Kisspeptin-10 on Neuronal Injury Induced byl-Methionine in Rats. J Biochem Mol Toxicol 2014; 28:373-7. [DOI: 10.1002/jbt.21573] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/18/2014] [Accepted: 04/30/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Hatice Akkaya
- Experimental Research Center (YUDETAM); Faculty of Medicine; Yeditepe University; Istanbul Turkey
| | - Ertugrul Kilic
- Department of Physiology; Faculty of Medicine; Istanbul Medipol University; Istanbul Turkey
| | - Signem Eyuboglu Dinc
- Department of Physiology; Faculty of Medicine; Yeditepe University; Istanbul Turkey
| | - Bayram Yilmaz
- Department of Physiology; Faculty of Medicine; Yeditepe University; Istanbul Turkey
| |
Collapse
|
18
|
A (1)H NMR-Based Metabonomic Investigation of Time-Related Metabolic Trajectories of the Plasma, Urine and Liver Extracts of Hyperlipidemic Hamsters. PLoS One 2013; 8:e66786. [PMID: 23840531 PMCID: PMC3694122 DOI: 10.1371/journal.pone.0066786] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 05/13/2013] [Indexed: 12/19/2022] Open
Abstract
The hamster has been previously found to be a suitable model to study the changes associated with diet-induced hyperlipidemia in humans. Traditionally, studies of hyperlipidemia utilize serum- or plasma-based biochemical assays and histopathological evaluation. However, unbiased metabonomic technologies have the potential to identify novel biomarkers of disease. Thus, to obtain a better understanding of the progression of hyperlipidemia and discover potential biomarkers, we have used a proton nuclear magnetic resonance spectroscopy (1H-NMR)-based metabonomics approach to study the metabolic changes occurring in the plasma, urine and liver extracts of hamsters fed a high-fat/high-cholesterol diet. Samples were collected at different time points during the progression of hyperlipidemia, and individual proton NMR spectra were visually and statistically assessed using two multivariate analyses (MVA): principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA). Using the commercial software package Chenomx NMR suite, 40 endogenous metabolites in the plasma, 80 in the urine and 60 in the water-soluble fraction of liver extracts were quantified. NMR analysis of all samples showed a time-dependent transition from a physiological to a pathophysiological state during the progression of hyperlipidemia. Analysis of the identified biomarkers of hyperlipidemia suggests that significant perturbations of lipid and amino acid metabolism, as well as inflammation, oxidative stress and changes in gut microbiota metabolites, occurred following cholesterol overloading. The results of this study substantially broaden the metabonomic coverage of hyperlipidemia, enhance our understanding of the mechanism of hyperlipidemia and demonstrate the effectiveness of the NMR-based metabonomics approach to study a complex disease.
Collapse
|
19
|
|
20
|
Prasanna GS, Ashok P. Antihyperhomocysteinemic and antihyperlipidemic effect of Trichilia connaroides in methionine-induced hyperhomocysteinemic animals. Indian J Pharmacol 2011; 43:203-6. [PMID: 21572660 PMCID: PMC3081464 DOI: 10.4103/0253-7613.77371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/17/2010] [Accepted: 01/08/2011] [Indexed: 12/02/2022] Open
Abstract
The current study investigates the antihyperhomocysteinemic and antihyperlipidemic effect of chloroform and methanol extracts of the leaves of Trichilia connaroides in methionine-induced hyperhomocysteinemic rats. Hyperhomocysteinemia was induced in albino Wistar rats by oral administration of L-Methionine (1 gm / kg) and they were treated simultaneously with chloroform and methanol extracts (100 mg / kg) from the leaves of Trichilia connaroides. Serum homocysteine, lipid profile, and products of lipid peroxidation (MDA) in the heart homogenate were recorded and treated for statistical significance. Hyperhomocysteinemic animals recorded significantly elevated serum homocysteine changes in lipid profile (P < 0.01) and Thibarbituric acid reactive substances (P < 0.01), compared to the vehicle control animals. Animals treated with chloroform and methanol extracts recorded significantly (P < 0.01) lower serum homocysteine, entire lipid profile, LPO (P < 0.01), except a significant increase in HDL-cholesterol (P < 0.01) compared to hyperhomocysteinemic animals. Thus, we conclude that chloroform and methanol extracts of Trichilia connaroides have significant antihyperhomocysteinemic and antihyperlipidemic effects on methionine–induced hyperhomocysteinemic animals. Trichilia connaroides, therefore, holds promise as a cardioprotective herb.
Collapse
Affiliation(s)
- G S Prasanna
- Department of Pharmacology, KLE University's College of Pharmacy, Rajajinagar 2 Block, Bangalore - 560 010, Karnataka, India
| | | |
Collapse
|
21
|
Bhandari U, Ansari MN, Islam F, Tripathi CD. The effect of aqueous extract of Embelia ribes Burm on serum homocysteine, lipids and oxidative enzymes in methionine induced hyperhomocysteinemia. Indian J Pharmacol 2011; 40:152-7. [PMID: 20040948 PMCID: PMC2792618 DOI: 10.4103/0253-7613.43161] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 06/03/2008] [Accepted: 08/23/2008] [Indexed: 11/13/2022] Open
Abstract
Objective: The present study was designed to evaluate the effect of the aqueous extract of Embelia ribes Burm fruits on methionine-induced hyperhomocysteinemia, hyperlipidemia and oxidative stress in albino rats. Materials and Methods: Adult male Wistar albino rats were fed with the aqueous extract of Embelia ribes (100 and 200 mg/kg, p.o.) for 30 days. Hyperhomocysteinemia was induced by methionine treatment (1 g/kg, p.o.) for 30 days and folic acid (100 mg/kg, p.o.) was used as a standard drug. The animals were evaluated for various biochemical parameters in serum and brain homogenates, followed by histopathological studies at the end of the study. Results: Administration of methionine (1 g/kg, p.o.) for 30 days to vehicle control rats produced significant increase (P < 0.01) in homocysteine, lactate dehydrogenase (LDH), total cholesterol, triglycerides, low density lipoprotein (LDL-C), very low density lipoprotein (VLDL-C) levels in serum and lipid peroxides (LPO) levels in brain homogenates, with reduction in high density lipoprotein (HDL-C) levels in serum, and glutathione (GSH) content in brain homogenates, as compared to vehicle control rats. Administration of the aqueous extract of Embelia ribes (100 and 200 mg/kg, p.o.) for 30 days, to hyperhomocysteinemic rats, significantly (P < 0.01) decreased the levels of homocysteine, LDH, total cholesterol, triglycerides, LDL-C and VLDL-C and increased the HDL-C levels in serum. In addition, a significant (P < 0.01) decrease in LPO levels with increase in GSH content was observed in hyperhomocysteinemic rats treated with the aqueous extract of Embelia ribes. The results were comparable to those obtained with folic acid, a standard antihyperhomocysteinemic drug. Conclusion: The present results provide clear evidence that the aqueous extract of Embelia ribes treatment enhances the antioxidant defense against methionine-induced hyperhomocysteinemia, hyperlipidemia and oxidative stress in brain.
Collapse
Affiliation(s)
- Uma Bhandari
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | | | | | | |
Collapse
|
22
|
Saito M, Marumo K, Soshi S, Kida Y, Ushiku C, Shinohara A. Raloxifene ameliorates detrimental enzymatic and nonenzymatic collagen cross-links and bone strength in rabbits with hyperhomocysteinemia. Osteoporos Int 2010; 21:655-66. [PMID: 19484165 DOI: 10.1007/s00198-009-0980-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 05/14/2009] [Indexed: 01/19/2023]
Abstract
UNLABELLED We demonstrate a reduction in enzymatic divalent immature and trivalent pyridinium cross-links and an increase in the nonenzymatic cross-link, pentosidine (Pen), in rabbits with methionine (Met)-induced hyperhomocysteinemia. Such detrimental cross-link formation in bone was ameliorated by raloxifene (RLX) treatment. INTRODUCTION Collagen cross-links are determinants of bone quality. Homocysteine (Hcys) interferes with collagen cross-linking. Because RLX is thought to ameliorate bone quality, we investigated whether RLX ameliorated hyperhomocysteinemia-induced cross-link abnormalities using a Met-rich diet rabbit model. METHODS We divided New Zealand white rabbits into six groups (n = 6 per group): baseline control, sham operation, sham + 1% Met diet, ovariectomy (OVX), 1% Met diet + OVX, OVX + RLX (10 mg/kg/day), and 1% Met diet + OVX + RLX. RLX was administered for 16 weeks. We measured the amount of enzymatic immature and mature pyridinium cross-links and the nonenzymatic cross-link, Pen, and correlated the cross-link content to bone strength. RESULTS Hcys levels were significantly higher in the Met diet groups than in the normal diet groups. Met-fed rabbits with or without OVX showed a significant reduction of enzymatic cross-links, whereas an increase in Pen was observed in Met-fed rabbits with OVX. The cross-link content of the RLX-treated Met-fed rabbits with OVX was restored to similar levels as the sham group, accompanied by an improvement of bone strength. CONCLUSION These results demonstrate that hyperhomocysteinemia reduced bone strength via a reduction of enzymatic cross-links and an increase of nonenzymatic cross-links. RLX may ameliorate hyperhomocysteinemia-induced detrimental cross-linking in rabbits with OVX and may improve bone strength via the amelioration of collagen cross-links.
Collapse
Affiliation(s)
- M Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Zhao L, Xu S, Zhao R, Peng Z, Pan X. Effects of Selenium and Methionine Supplementation of Breeder Hen Diets on Selenium Concentration and Oxidative Stability of Lipids in the Thigh Muscles of Progeny. J Food Sci 2009; 74:C569-74. [DOI: 10.1111/j.1750-3841.2009.01296.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Song Y, Cho M, Cho C, Rosenfeld ME. Methionine-induced hyperhomocysteinemia modulates lipoprotein profile and oxidative stress but not progression of atherosclerosis in aged apolipoprotein E knockout mice. J Med Food 2009; 12:137-44. [PMID: 19298207 DOI: 10.1089/jmf.2007.0561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is documented that hyperhomocysteinemia (HHcy) is an independent risk factor for atherosclerosis, but whether elevated plasma homocysteine contributes to the progression of atherosclerosis in aged animals with hypercholesterolemia is still unknown. HHcy was induced in apolipoprotein E (ApoE) knockout mice (male, 32 weeks old) by feeding 2% methionine/low folate (1 mg/kg) diet for 20 weeks. HHcy induced by methionine feeding significantly increased oxidative stress, as measured by thiobarbituric-reactive substances in livers (P < .05) and genetic expression of Cu,Zn-superoxide dismutase, in methionine-fed animals compared with controls (P < .05). Furthermore, lipoprotein profiles were changed, in that low-density lipoprotein-cholesterol was shifted to very low-density lipoprotein in the methionine-supplemented group. However, nuclear factor kappaB activity, atherosclerotic lesions, hepatic glutathione level, lipid profiles, and activities of aspartate aminotransferase and alanine aminotransferase were not significantly different. These findings suggest that HHcy induced by methionine may promote disturbances in lipid peroxidation and modify lipoprotein metabolism but not contribute to the progression of atherosclerotic lesion in aged ApoE knockout mice.
Collapse
Affiliation(s)
- Youngsun Song
- Center of Smart Food & Drug, Food Science Institute, Inje University, Gyongnam, Republic of Korea.
| | | | | | | |
Collapse
|
25
|
Ansari MN, Nigam GK, Bhandari U. Effect of folic Acid on hematological changes in methionine-induced hyperhomocysteinemia in rats. Indian J Pharm Sci 2009; 71:270-5. [PMID: 20490293 PMCID: PMC2865785 DOI: 10.4103/0250-474x.56025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 04/23/2009] [Accepted: 05/25/2009] [Indexed: 01/13/2023] Open
Abstract
The present study was designed to investigate the effect of folic acid on homocysteine, lipid profile and hematological changes in methionine-induced hyperhomocysteinemic rats. Hyperhomocysteinemia was induced by methionine (1 g/kg, p.o.) administration for 30 days. Biochemical and hematological observations were further substantiated with histopathological examination. The increase in homocysteine, total cholesterol, low density lipoprotein-cholesterol, very low density lipoprotein-cholesterol and triglycerides levels with reduction in the levels of high density lipoprotein in serum were the salient features observed in methionine treated toxicologic control rats (i.e. group II). Hematological observations of the peripheral blood smears of toxicologic rats also showed crenation of red blood cells membrane and significant (P<0.01) increase in total leukocyte count, differential leukocyte count and platelet counts with significant (P<0.01) decrease in the mean hemoglobin levels, as compared to vehicle control rats. Administration of folic acid (100 mg/kg, p.o.) for 30 days to methionine- induced hyperhomocysteinemic rats produced a significant (P< 0.01) decrease in the levels of homocysteine, total cholesterol, low density lipoprotein-cholesterol, very low density lipoprotein-cholesterol and triglycerides with significant (P< 0.01) increase in high density lipoprotein-cholesterol levels in serum when compared with toxicologic control rats. The present study, for the first time, investigates the effect of folic acid treatment on hematological changes in rats with methionine-induced hyperhomocysteinemia.
Collapse
Affiliation(s)
- M. N. Ansari
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi-110 062, India
| | - G. K. Nigam
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi-110 062, India
| | - Uma Bhandari
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi-110 062, India
| |
Collapse
|
26
|
Zinellu A, Lepedda A, Sotgia S, Zinellu E, Scanu B, Turrini F, Spirito R, Deiana L, Formato M, Carru C. Evaluation of low molecular mass thiols content in carotid atherosclerotic plaques. Clin Biochem 2009; 42:796-801. [PMID: 19233150 DOI: 10.1016/j.clinbiochem.2009.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/04/2009] [Accepted: 02/05/2009] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Despite the evidence that both homocysteine and cysteine are important risk factors for vascular disease and atherosclerosis no information are reported about their effective amount in plaque and on the relationship with the other low molecular weight thiols. DESIGN AND METHODS We used capillary electrophoresis to measure thiols in both carotid plaque specimens and plasma samples from 37 patients undergoing carotid endarterectomy. RESULTS Pearson's correlation shows that intraplaque homocysteine, cysteine and cysteinylglycine levels are related to their plasma concentrations. The distribution of intraplaque GSH and Glu-Cys was higher than that of the same thiols in plasma, whereas the other thiols were significantly less prevalent in plaque than in plasma. Intraplaque haemoglobin and GSH levels were correlated, thus suggesting their common origin from erythrocytes lysis. CONCLUSION Data suggest that increased levels of intraplaque glutathione may induce important effects on plaque fate by perturbing the normal LMW thiol redox state.
Collapse
Affiliation(s)
- Angelo Zinellu
- Dipartimento di Scienze Biomediche, Università di Sassari, Italy; Istituto Nazionale Biostrutture e Biosistemi, Osilo, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yalçinkaya S, Unlüçerçi Y, Giriş M, Olgaç V, Doğru-Abbasoğlu S, Uysal M. Oxidative and nitrosative stress and apoptosis in the liver of rats fed on high methionine diet: protective effect of taurine. Nutrition 2008; 25:436-44. [PMID: 19056240 DOI: 10.1016/j.nut.2008.09.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/25/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE There are few reports about the direct toxic effects of hyperhomocysteinemia on the liver. We investigated oxidative and nitrosative stresses and apoptotic and necrotic changes in the liver of rats fed a high-methionine (HM) diet (2%, w/w) for 6 mo. We also investigated whether taurine, an antioxidant amino acid, is protective against an HM-diet-induced toxicity in the liver. METHODS Lipid peroxide levels, nitrotyrosine formation, and non-enzymatic and enzymatic antioxidants were determined in livers of rats fed an HM diet. In addition, apoptosis-related proteins, proapoptotic Bax and antiapoptotic B-cell lymphoma-2 expressions, apoptotic cell count, histopathologic appearance in the liver, and alanine transaminase and aspartate transaminase activities in the serum were investigated. RESULTS Plasma homocysteine levels and serum alanine transaminase and aspartate transaminase activities were increased after the HM diet. This diet resulted in increases in lipid peroxide and nitrotyrosine levels and decreases in non-enzymatic and enzymatic antioxidants in liver homogenates in rats. Bax expression increased, B-cell lymphoma-2 expression decreased, and apoptotic cell number increased in livers of rats fed an HM diet. Inflammatory reactions, microvesicular steatosis, and hepatocyte degeneration were observed in the liver after the HM diet. Taurine (1.5%, w/v, in drinking water) administration and the HM diet for 6 mo was found to decrease serum alanine transaminase and aspartate transaminase activities, hepatic lipid peroxide levels, and nitrotyrosine formation without any change in serum homocysteine levels. Decreases in Bax expression, increases in B-cell lymphoma-2 expression, decreases in apoptotic cell number, and amelioration of histopathologic findings were observed in livers of rats fed with the taurine plus HM diet. CONCLUSION Our results indicate that taurine has protective effects on hyperhomocysteinemia-induced toxicity by decreasing oxidative and nitrosative stresses, apoptosis, and necrosis in the liver.
Collapse
Affiliation(s)
- Seda Yalçinkaya
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
28
|
Park CM, Cho CW, Rosenfeld ME, Song YS. Methionine Supplementation Accelerates Oxidative Stress and Nuclear FactorκB Activation in Livers of C57BL/6 Mice. J Med Food 2008; 11:667-74. [DOI: 10.1089/jmf.2007.0146] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Chung-Mu Park
- Center of Smart Food & Drug, Biohealth Product Research Center and Food Science Institute, Inje University, Gimhae, Republic of Korea
| | - Chung-Won Cho
- School of Biotechnology and Biomedical Science, Inje University, Gimhae, Republic of Korea
| | | | - Young-Sun Song
- Center of Smart Food & Drug, Biohealth Product Research Center and Food Science Institute, Inje University, Gimhae, Republic of Korea
| |
Collapse
|
29
|
Koivusalo AM, Teikari T, Höckerstedt K, Isoniemi H. Albumin dialysis has a favorable effect on amino acid profile in hepatic encephalopathy. Metab Brain Dis 2008; 23:387-98. [PMID: 18773287 DOI: 10.1007/s11011-008-9110-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Accepted: 07/08/2008] [Indexed: 01/23/2023]
Abstract
According to one popular theory, hepatic encephalopathy (HE) is partly caused by an imbalance in plasma amino acid levels. The Fischer's ratio between branched chain amino acids (BCAAs) and aromatic amino acids (AAAs) correlates with the degree of HE; the lower Fischer's ratio, the higher the grade of HE. Extra-corporeal liver support systems, like MARS(R)-albumin dialysis (Molecular Adsorbents Recirculating System), can improve HE. The MARS(R) system uses a hyperosmolar albumin circuit to remove both water-soluble and albumin-bound substances. Plasma levels of neuroactive amino acids were analyzed in 82 consecutive patients with life-threatening liver failure admitted to our ICU. All patients fulfilled our indications for MARS treatment and most also fulfilled the criteria for liver transplantation (LTx). In patients with acute liver failure (ALF), as compared to those with acute decompensation of chronic liver failure (AcOChr), levels of leucine and isoleucine were significantly higher before MARS(R) treatment. In all patients, before MARS(R) treatment the higher the grade of HE grade the lower was the Fischer's ratio and higher were the levels of inhibitory neuroactive amino acids. During MARS(R) treatments the Fischer's ratio increased, and the grade of HE decreased. The increase in Fischer's ratio was mainly due to the decrease in AAAs. The plasma levels of neuroactive amino acids, methionine, glutamine, glutamate, histidine and taurine decreased during MARS(R)-treatment. In this study MARS(R)-albumin dialysis had a favorable effect on the plasma amino acid profile of patients with HE.
Collapse
Affiliation(s)
- Anna-Maria Koivusalo
- Department of Anaesthesiology and Intensive Care, Helsinki University Hospital, P.O. Box 263, Helsinki, Finland.
| | | | | | | |
Collapse
|
30
|
Vatanavicharn N, Pressman BD, Wilcox WR. Reversible leukoencephalopathy with acute neurological deterioration and permanent residua in classical homocystinuria: A case report. J Inherit Metab Dis 2008; 31 Suppl 3:477-81. [PMID: 18210212 DOI: 10.1007/s10545-007-0791-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 11/27/2022]
Abstract
We report a 24-year-old patient with underlying classical homocystinuria who developed acute neurological deterioration apparently induced by malnutrition secondary to poor compliance with treatment and pancreatitis. Neurological examination revealed stupor, tremor of the upper extremities, spasticity, and Babinski responses of the bilateral lower extremities. The biochemical profile, including marked hypermethioninaemia, hyperhomocysteinaemia, and decreased cystine in plasma, is consistent with cystathionine β-synthase deficiency. Brain MRI showed reversible diffuse white-matter changes without evidence of thrombosis. The clinical features and neuroimaging including diffusion-weighted MRI suggest a demyelinating process similar to other inborn errors of the transsulfuration pathway such as methylenetetrahydrofolate reductase deficiency, disorders affecting methylcobalamin metabolism (cobalamin C, D, E, and G disorders), and methionine adenosyltransferase deficiency. She was left with residual spastic paraparesis despite normal follow-up MRI. Our observation suggests that reversible demyelination is another neurological manifestation of classical homocystinuria; however, the pathophysiology is unknown.
Collapse
Affiliation(s)
- N Vatanavicharn
- Medical Genetics Institute, Cedars-Sinai Medical Center, 8635 W. Third Street, Suite 1150 W, Los Angeles, CA, 90048, USA,
| | | | | |
Collapse
|
31
|
Abstract
Hyperhomocysteinemia is a risk factor for cardiovascular disease, stroke, and thrombosis. Several animal models of hyperhomocysteinemia have been developed by using both dietary and genetic approaches. These animal models have provided considerable insight into the mechanisms underlying the adverse vascular effects of hyperhomocysteinemia. Accumulating evidence suggests a significant role of altered cellular redox reactions in the vascular phenotype of hyperhomocysteinemia. Redox effects of hyperhomocysteinemia are particularly important in mediating the adverse effects of hyperhomocysteinemia on the endothelium, leading to loss of endothelium-derived nitric oxide and vasomotor dysfunction. Redox reactions also may be key factors in the development of vascular hypertrophy, thrombosis, and atherosclerosis in hyperhomocysteinemic animals. In this review, we summarize the metabolic relations between homocysteine and the cellular redox state, the vascular phenotypes that have been observed in hyperhomocysteinemic animals, the evidence for altered redox reactions in vascular tissue, and the specific redox reactions that may mediate the vascular effects of hyperhomocysteinemia.
Collapse
Affiliation(s)
- Sanjana Dayal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | |
Collapse
|
32
|
Wronska-Nofer T, Nofer JR, Stetkiewicz J, Wierzbicka M, Bolinska H, Fobker M, Schulte H, Assmann G, von Eckardstein A. Evidence for oxidative stress at elevated plasma thiol levels in chronic exposure to carbon disulfide (CS2) and coronary heart disease. Nutr Metab Cardiovasc Dis 2007; 17:546-553. [PMID: 17134958 DOI: 10.1016/j.numecd.2006.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 03/13/2006] [Accepted: 03/20/2006] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Oxidative stress in plasma may be promoted by plasma thiols such as homocysteine. However, other thiols such as glutathione may also exert antioxidant effects in vitro and in vivo. To further investigate whether plasma thiols act as prooxidants or antioxidants, we compared plasma oxidative status in patients with coronary heart disease (CHD) and in subjects occupationally exposed to carbon disulfide (CS(2)). METHODS Fifty-five subjects chronically exposed to CS(2), 53 CHD patients, and 52 healthy controls were examined. To assess plasma oxidative status, concentrations of thiobarbituric reactive substances (TBARS) and total antioxidative capacity (TAC), as well as ferritin and ceruloplasmin were determined. Antioxidative reserve was assessed by the determination of vitamine E, uric acid, superoxide dismutase, catalase, and glutathion peroxidase. In addition, protein and non-protein plasma thiol levels were measured. RESULTS Patients in both groups had increased levels of plasma thiols as compared to controls: CS(2)-exposed subjects presented with increased levels of thiols associated with plasma proteins, whereas CHD patients presented with elevated total homocysteine and cysteine levels. TBARS were significantly increased and TAC was significantly decreased both in CS(2)-exposed subjects and in CHD patients. In addition decreased activity of glutathione peroxidase, an antioxidative enzyme inhibited by thiol-containing compounds, was noted in both groups. CONCLUSION These results demonstrate that regardless of their metabolic origin increased thiols are associated with increased oxidative stress in plasma.
Collapse
Affiliation(s)
- Teresa Wronska-Nofer
- Department of Biochemical Toxicology, Nofer Institute for Occupational Medicine, Lodz, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Homocysteine is a sulfur amino acid whose metabolism stands at the intersection of 2 pathways: remethylation, which requires folic acid and B-12 coenzymes, and transsulfuration, which requires pyridoxal-5'-phosphate, the B-6 coenzyme. Data from several studies suggest that mild elevations of homocysteine in plasma are a risk factor for occlusive vascular disease. In the Framingham studies we have shown that plasma total homocysteine concentration is inversely related to the intake and plasma levels of folate and vitamin B-6 as well as vitamin B-12 plasma levels. Almost two-thirds of the prevalence of high homocysteine is attributable to low vitamin status or intake. Elevated homocysteine concentrations in plasma are a risk factor for prevalence of extracranial carotid artery stenosis of at least 25% in both men and women. Prospectively elevated plasma homocysteine is associated with increased total and CVD mortality, increased incidence of stroke, increased incidence of dementia and Alzheimer's disease, increased incidence of bone fracture, and higher prevalence of chronic heart failure. This multitude of relationships between elevated plasma total homocysteine and diseases that afflict the elderly point to the existence of a common denominator that may be responsible for these diseases. Whether this denominator is homocysteine itself or whether homocysteine is merely a marker remains to be determined.
Collapse
Affiliation(s)
- Jacob Selhub
- Vitamin Metabolism and Aging Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
34
|
Virtanen JK, Voutilainen S, Rissanen TH, Happonen P, Mursu J, Laukkanen JA, Poulsen H, Lakka TA, Salonen JT. High dietary methionine intake increases the risk of acute coronary events in middle-aged men. Nutr Metab Cardiovasc Dis 2006; 16:113-120. [PMID: 16487911 DOI: 10.1016/j.numecd.2005.05.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 05/06/2005] [Accepted: 05/26/2005] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIM Homocysteine, a methionine metabolite, is suggested to be a risk factor for cardiovascular diseases (CVD). To date, the effects of dietary intake of methionine, the key amino acid in homocysteine metabolism, on CVD have not been studied. Our aim was to examine the effects of dietary methionine intake on the risk of acute coronary events. METHODS AND RESULTS We examined the effects of dietary methionine intake, assessed with 4-d food record, on acute coronary events in a prospective cohort study consisting of 1981 coronary disease free men from eastern Finland, aged 42-60 years at baseline in 1984-89, in the Kuopio Ischaemic Heart Disease Risk Factor (KIHD) Study. During an average follow-up time of 14.0 years, 292 subjects experienced an acute coronary event. In a Cox proportional hazards model adjusting for age, examination years, BMI, urinary nicotine metabolites and protein intake (excluding methionine) the relative risks of acute coronary event in the three highest quarters of dietary methionine intake were 1.31 (95% CI: 0.92, 1.86), 1.31 (95% CI: 0.88, 1.96) and 2.08 (95% CI: 1.31, 3.29) as compared with the lowest quarter. Further adjustments did not change the results. However, opposite association was observed with total protein intake, which tended to decrease the risk. CONCLUSIONS The main finding of this study is that long-term, moderately high dietary methionine intake may increase the risk of acute coronary events in middle-aged Finnish men free of prior CHD. More prospective research is needed to confirm the role of dietary methionine in the development of CVD, and whether its effects are independent of homocysteine.
Collapse
Affiliation(s)
- Jyrki K Virtanen
- Research Institute of Public Health, University of Kuopio, PO Box 1627, 70211 Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pamplona R, Barja G. Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:496-508. [PMID: 16574059 DOI: 10.1016/j.bbabio.2006.01.009] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 01/10/2006] [Accepted: 01/28/2006] [Indexed: 12/20/2022]
Abstract
Caloric restriction (CR) decreases aging rate and mitochondrial ROS (MitROS) production and oxidative stress in rat postmitotic tissues. Low levels of these parameters are also typical traits of long-lived mammals and birds. However, it is not known what dietary components are responsible for these changes during CR. It was recently observed that 40% protein restriction without strong CR also decreases MitROS generation and oxidative stress. This is interesting because protein restriction also increases maximum longevity (although to a lower extent than CR) and is a much more practicable intervention for humans than CR. Moreover, it was recently found that 80% methionine restriction substituting it for l-glutamate in the diet also decreases MitROS generation in rat liver. Thus, methionine restriction seems to be responsible for the decrease in ROS production observed in caloric restriction. This is interesting because it is known that exactly that procedure of methionine restriction also increases maximum longevity. Moreover, recent data show that methionine levels in tissue proteins negatively correlate with maximum longevity in mammals and birds. All these suggest that lowering of methionine levels is involved in the control of mitochondrial oxidative stress and vertebrate longevity by at least two different mechanisms: decreasing the sensitivity of proteins to oxidative damage, and lowering of the rate of ROS generation at mitochondria.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Basic Medical Sciences, University of Lleida, Lleida 25008, Spain
| | | |
Collapse
|
36
|
Huijberts MSP, Becker A, Stehouwer CDA. Homocysteine and vascular disease in diabetes: a double hit? Clin Chem Lab Med 2005; 43:993-1000. [PMID: 16197287 DOI: 10.1515/cclm.2005.174] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cardiovascular disease is a major problem in diabetes, and risk factors presumably unrelated to diabetes, such as hyperhomocysteinaemia, may be related to the development of cardiovascular complications in diabetic individuals. Plasma homocysteine levels are usually normal in diabetes, although both lower and higher levels have been reported. Homocysteine levels in diabetes are modulated by hyperfiltration and renal dysfunction, as well as low folate status. Insulin resistance does not appear to be a major determinant of plasma homocysteine level. Hyperhomocysteinaemia has been associated with microalbuminuria and retinopathy in type 1 and type 2 diabetes. In patients with type 2 diabetes, plasma homocysteine concentration is a significant predictor of cardiovascular events and death. This relation seems to be stronger in subjects with diabetes than without. The underlying pathophysiological mechanism of this increased vascular risk remains unexplained, but may be related to worsening of endothelial dysfunction and/or structural vessel properties induced by oxidative stress. Because homocysteine and diabetes have apparent synergistic detrimental vascular effects, patients with diabetes are candidates for screening and treatment with folic acid until the results of ongoing clinical trials are available.
Collapse
Affiliation(s)
- Maya S P Huijberts
- Department of Internal Medicine, University Hospital Maastricht, Maastricht, The Netherlands
| | | | | |
Collapse
|
37
|
Abstract
Homocysteine is a thiol-containing amino acid that has gained notoriety because its elevation in the plasma is correlated with complex and multifactorial diseases, including cardiovascular diseases, neurodegenerative diseases, and neural tube defects. Homocysteine is redox-active, and its toxic effects have been frequently attributed to direct or indirect perturbation of redox homeostasis. Although the literature on the pathophysiology of elevated homocysteine is rather extensive, a very wide range of concentrations of this amino acid has been used in these studies ranging from normal to pathophysiological to unphysiological. It is clear that homocysteine induces varied responses that are specific to cell type and that cells, depending on their origin, display a wide range of sensitivity to homocysteine. In this review, we focus on the redox signaling pathways that have been connected to homocysteine in vascular (endothelial and smooth muscle) cells and in neuronal cells. We also discuss redox regulation of the key enzymes involved in homocysteine clearance: methionine synthase, betaine-homocysteine methyltranferase, and cystathionine beta-synthase.
Collapse
Affiliation(s)
- Cheng-Gang Zou
- Biochemistry Department, University of Nebraska, Lincoln, NE 68588, USA
| | | |
Collapse
|
38
|
Jones RWA, Jeremy JY, Koupparis A, Persad R, Shukla N. Cavernosal dysfunction in a rabbit model of hyperhomocysteinaemia. BJU Int 2005; 95:125-30. [PMID: 15638909 DOI: 10.1111/j.1464-410x.2004.05263.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the effect of sustained hyperhomocysteinaemia (HHCy) on cavernosal smooth muscle function in a rabbit model of HHCy, developed using a methionine-enriched diet in which cavernosal responses were characterized, as elevated plasma levels of homocysteine may be a risk factor for vasculogenic erectile dysfunction. MATERIALS AND METHODS Six New Zealand White rabbits were fed a diet supplemented with methionine (20 g/kg chow) for 4 weeks, while six control animals were fed a standard diet. Cavernosal strips were mounted in an organ bath and relaxation assessed when stimulated with carbachol, sodium nitroprusside (SNP), or noncholinergic, nonadrenergic (NANC)-mediated relaxation to electrical-field stimulation (EFS). Cavernosal tissue cGMP levels were assessed using an enzyme-linked immunosorbent assay, and superoxide (O(2) (.-)) production assessed using an assay of the superoxide dismutase (SOD)-inhibitable reduction of ferricytochrome c. RESULTS The methionine-rich diet led to an early but sustained HHCy; cavernosal strips from animals after 4 weeks of HHCy had a significantly impaired relaxation response to carbachol, an index of endothelium-dependent nitric oxide (NO)-mediated relaxation. This impairment was reversed by incubating with either SOD or catalase. Relaxation with either SNP, an index of endothelium-independent NO-mediated relaxation, or NANC-mediated EFS-induced relaxation, was unaffected by HHCy. There was a corresponding significant reduction in cavernosal cGMP levels (index of NO activity) in the HHCy group, with a more than five-fold increase in cavernosal tissue O(2) (.-) production. CONCLUSION Supplementing the diet of rabbits with methionine for 4 weeks caused an early and sustained HHCy and promoted a marked inhibitory effect on endothelium-dependent relaxation and NO formation in isolated corpus cavernosum, an effect mediated by reactive oxygen species.
Collapse
Affiliation(s)
- Robert W A Jones
- Bristol Heart Institute, Royal Infirmary, University of Bristol, Bristol BS2 8HW, UK
| | | | | | | | | |
Collapse
|
39
|
Romerio SC, Linder L, Nyfeler J, Wenk M, Litynsky P, Asmis R, Haefeli WE. Acute hyperhomocysteinemia decreases NO bioavailability in healthy adults. Atherosclerosis 2005; 176:337-44. [PMID: 15380457 DOI: 10.1016/j.atherosclerosis.2004.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 05/14/2004] [Accepted: 05/28/2004] [Indexed: 11/25/2022]
Abstract
Hyperhomocysteinemia is associated with decreased vascular reactivity and increased cardiovascular morbidity. Oxidative stress and reduced NO bioavailability have been proposed as a mechanism for the adverse effects of chronically elevated plasma homocysteine levels. Recent studies suggest that acute elevations of plasma homocysteine may also impair endothelial function and vasodilation, however, the mechanism is not clear. In the present study, we investigated whether moderate hyperhomocysteinemia after methionine loading decreases NO bioavailability, increases oxidative stress, and impairs receptor-mediated NO-dependent venodilation in healthy adults. After oral methionine loading (0.1g/kg), mean homocysteine concentrations increased 3.2-fold, from 6.9 +/- 0.5 to 27.8 +/- 1.9 micromol/l (n = 16), whereas plasma NO(x) concentrations, an indicator of NO release, were decreased by 12% compared to placebo treatment (P = 0.005). Vitamin E levels in freshly isolated low density lipoprotein (LDL), a sensitive marker of LDL oxidation, and LDL lipid (hydro)peroxide levels were unchanged after methionine loading. Endothelium-dependent venodilation induced by bradykinin was reduced by 18% during hyperhomocysteinemia (P = 0.06). Taken together our data suggest that the reduced NO bioavailability was likely due to decreased NO synthesis and release rather than to NO destruction by oxidative stress.
Collapse
Affiliation(s)
- Silvana C Romerio
- Department of Internal Medicine, University Hospital Liestal, Kantonsspital Liestal, Rheinstrasse 26, CH-4410 Liestal, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
40
|
Hamed SA, Nabeshima T. The High Atherosclerotic Risk Among Epileptics: the Atheroprotective Role of Multivitamins. J Pharmacol Sci 2005; 98:340-53. [PMID: 16079465 DOI: 10.1254/jphs.crj05003x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neurologists have little concern about the high atherosclerotic risk among epileptics. Recent evidences mount that chronic epilepsy and prolonged use of antiepileptic drugs (AEDs) are associated with multiple risk factors that are critically implicated in pathobiology and dysfunction of the vessel wall through complex molecular mechanisms that promote atherogenesis. This review is concerned with three metabolic alterations, which are attributed as major risk factors for atherosclerosis among epileptics: altered metabolism of a) homocysteine (Hcy), b) lipids and lipoproteins, and c) uric acid. Most conventional AEDs reduce folic acid levels, thereby raising Hcy levels. Hyperhomosysteinemia is recently believed to induce endothelial dysfunction and promote atherosclerosis through complex oxidative and excitatory neurotoxic molecular mechanisms. However, Hcy itself is a convulsing substance with increased seizure recurrence and intractability to antiepileptic medications. AEDs can disturb lipid metabolism with resultant hypercholestrolemia and dyslipidemia, common recognized risks for atherosclerosis. Altered uric acid metabolism is common among epileptics. Uric acid has been implicated in endothelial cell damage and decreased endothelial nitric oxide bioavailability. In the presence of atherosclerotic milieu, uric acid interacts with other substrate toxicities and increased reactive oxygen species, accelerating atherosclerosis. The above information forms the rationale for future routine screening and correction of such metabolic alterations in epileptics. A convincing argument now develops that routine polyvitamin supplementation (folic acid, vitamin B12, vitamin B6, vitamin C, vitamin E, and beta-carotene) becomes increasingly important for women and men receiving AEDs at all ages. The atheroprotective effect of multivitamins is through their antioxidant and anti-inflammatory effects together with their lipid and Hcy lowering effects.
Collapse
Affiliation(s)
- Sherifa A Hamed
- Department of Neurology, Assiut University Hospital, Assiut, Egypt.
| | | |
Collapse
|
41
|
Durga J, Verhoef P, Bots ML, Schouten E. Homocysteine and carotid intima-media thickness: a critical appraisal of the evidence. Atherosclerosis 2004; 176:1-19. [PMID: 15306169 DOI: 10.1016/j.atherosclerosis.2003.11.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Revised: 10/22/2003] [Accepted: 11/21/2003] [Indexed: 10/26/2022]
Abstract
UNLABELLED This review examines the relationship between hyperhomocysteinemia, a risk factor for vascular disease, and carotid intima-media thickness (CIMT), a valid marker of generalized atherosclerosis and future vascular disease risk. The relationship between two important determinants of hyperhomocysteinemia in the general population-folate status and the 677C --> T methylenetetrahydrofolate reductase (MTHFR) polymorphism-and CIMT is also covered. METHODS We searched literature databases for articles examining homocysteine and CIMT published before September 2003. RESULTS We identified 54 studies. Observational studies generally failed to demonstrate a relationship between homocysteine and CIMT in homocystinuric, uremic, hypercholesterolemic or non-insulin-dependent diabetes mellitus patients or in subjects with insulin insensitivity. Weak associations, but usually only in certain sub-populations were found in vascular disease patients and in population-based studies. B vitamins reduce the progression of CIMT in renal transplant recipients and vascular disease patients as demonstrated by two trials. The majority of studies demonstrated increased CIMT in individuals with the MTHFR 677TT genotype. Folate status showed no relation to CIMT. DISCUSSION In non-patient populations, hyperhomocysteinemia is weakly associated with CIMT. The association of the 677 C--> T MTHFR polymorphism with CIMT further supports this finding. Lastly, folate levels may need to reach a critically low status before an association can be found between folate and CIMT. Larger trials in various population types are needed to determine whether folate alone or in combination with Vitamins B6 and B12 will slow down or even reverse atherosclerotic progression.
Collapse
Affiliation(s)
- Jane Durga
- Division of Human Nutrition, Wageningen Centre for Food Sciences, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
42
|
Hidiroglou N, Gilani GS, Long L, Zhao X, Madere R, Cockell K, Belonge B, Ratnayake WMN, Peace R. The influence of dietary vitamin E, fat, and methionine on blood cholesterol profile, homocysteine levels, and oxidizability of low density lipoprotein in the gerbil. J Nutr Biochem 2004; 15:730-40. [PMID: 15607646 DOI: 10.1016/j.jnutbio.2004.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 04/15/2004] [Indexed: 11/23/2022]
Abstract
A 90-day feeding study with gerbils was conducted to evaluate the influence of dietary vitamin E levels (25 mg/kg diet, 75 mg/kg, 300 mg/kg, and 900 mg/kg), two levels of dietary methionione (casein or casein+L-methionine (1% w/w)) and two sources of lipid (soybean oil [20%] or soybean oil [4%]+coconut oil [16%, 1:4 w/w]) upon serum lipids (total cholesterol, HDL-cholesterol, LDL-cholesterol). In addition, this study examined the effects of diet-induced hyperhomocysteinemia and supplemental dietary vitamin E on the oxidation of low density lipoproteins. Tissue vitamin E (heart, liver, and plasma) demonstrated a dose response (P< or =0.001) following the supplementation with increasing dietary vitamin E (25, 75, 300, and 900 mg/kg). In addition, tissue vitamin E levels were found to be higher (P< or =0.001) in those animals receiving a combination of coconut oil+soybean oil as compared to the group receiving soybean oil solely. Blood cholesterol profiles indicated an increase (P< or =0.001) in total cholesterol and LDL cholesterol by the influence of saturated fat and supplemental methionine. Low-density lipoprotein cholesterol profile demonstrated a reduction (P< or =0.001) at the higher dietary vitamin E levels (300 and 900 mg/kg) as compared to the 25 mg/kg and 75 mg/kg dietary vitamin E. Plasma protein carbonyls were not influenced by dietary vitamin E nor by supplemental methionine intake. In vitro oxidation of LDL showed that vitamin E delayed the lag time of the oxidation phase (P< or =0.001) and reduced total diene production (P< or =0.001). On the contrary, supplemental methionine decreased (P< or =0.001) the delay time of the lag phase, whereas total diene production was increased (P< or =0.001). Plasma lipid hydroperoxides were significantly reduced (P< or =0.05) with supplemental dietary vitamin E, whereas supplemental L-methionine (1%) resulted in a significant (P< or =0.05) increase in lipid plasma hydroperoxide formation. Plasma homocysteine was elevated (P< or =0.001) with supplemental dietary L-methionine (1%) as well as the inclusion of dietary saturated fat. The present data showed that 1) a combination of dietary lipids (saturated and unsaturated fatty acids) as well as vitamin E and methionine supplementation altered blood cholesterol lipoprotein profiles; 2) in vitro oxidation parameters including LDL (lag time and diene production) and plasma hydroperoxide formations were affected by vitamin E and methionine supplementation; and 3) plasma homocysteine concentrations were influenced by supplemental methionine and the inclusion of dietary saturated fat.
Collapse
Affiliation(s)
- Nick Hidiroglou
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Banting Research Centre, Tunneys Pasture, Ottawa, ON, Canada KIAOL2.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Song YS, Rosenfeld ME. Methionine-induced hyperhomocysteinemia promotes superoxide anion generation and NFkappaB activation in peritoneal macrophages of C57BL/6 mice. J Med Food 2004; 7:229-34. [PMID: 15298772 DOI: 10.1089/1096620041224021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is well documented that hyperhomocysteinemia (HHcy) is an independent risk factor for atherosclerosis. This study was designed to investigate whether some of the atherosclerotic effects ascribed to HHcy are mediated by oxidative stress and nuclear factor kappa B (NFkappaB) activation in peritoneal macrophages of C57BL/6 mice fed a high (2%) methionine/low (1 mg/kg) folate diet for 12 weeks. Plasma homocysteine concentrations in mice fed methionine averaged 49 mol/L after 12 weeks of feeding, five times higher than that of controls. HHcy induced by methionine feeding significantly elevated oxidative stress, as measured by superoxide anion radical level (P <.05) in peritoneal macrophages. Furthermore, NFkappaB binding activities of peritoneal macrophages were higher in the methionine group than in the control group. These results suggest that HHcy induced by methionine may intensify disturbances in peroxidation and inflammatory mediator activation in peritoneal macrophages, and is a possible mechanism of its atherogenic effects.
Collapse
Affiliation(s)
- Young-Sun Song
- School of Food and Life Science and Food Science Institute, Inje University, Obang-dong, Kimhae, Kyung-Nam, Korea.
| | | |
Collapse
|
44
|
Mahfouz MM, Kummerow FA. Vitamin C or Vitamin B6 supplementation prevent the oxidative stress and decrease of prostacyclin generation in homocysteinemic rats. Int J Biochem Cell Biol 2004; 36:1919-32. [PMID: 15203107 DOI: 10.1016/j.biocel.2004.01.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Revised: 12/20/2003] [Accepted: 01/21/2004] [Indexed: 11/23/2022]
Abstract
We hypothesize that homocysteinemia causes oxidative stress, decreases the aortic ability to generate prostacyclin and that antioxidants have a protective role. Four groups of eight rats each were fed for 8 weeks the control diet (group A), control diet with folic acid omitted and excess methionine (Me) added to drinking water (group B), diet B + 500 mg/kg of Vitamin C (group C) or diet B + 60 mg/kg Vitamin B6 (group D). The three groups of rats fed folic acid deficient (FD) diets (groups B, C and D) were homocysteinemic as indicated by the significant increase in their serum homocysteine (HC) concentration. Rats fed diet B had oxidative stress as indicated by an increase in serum thiobarbituric acid reactive substances (TBARS) and advanced oxidation protein products (AOPP) and urinary isoprostanes and had a decreased ability of their aortas to generate prostacyclin. Homocysteinemic rats fed a FD diet + Vitamin C (group C) or Vitamin B6 (group D) also had high levels of serum homocysteine but the oxidative stress markers and the ability of their aortas to generate prostacyclin returned to normal. This indicates that the homocysteinemic effect is through an oxidative mechanism and that Vitamin C as a free radical scavenger prevents these effects. Serum Vitamin C and liver glutathione concentrations significantly increased in rats fed excess Vitamin B6 compared to the control or FD rats. This may explain why Vitamin B6 has an antioxidative effect.
Collapse
Affiliation(s)
- M M Mahfouz
- The H.E. Moore Heart Research Foundation, Champaign, IL 61820, USA
| | | |
Collapse
|
45
|
Chang SJ, Lee YC, Liu SY, Chang TW. Chinese yam (Dioscorea alata cv. Tainung No. 2) feeding exhibited antioxidative effects in hyperhomocysteinemia rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:1720-1725. [PMID: 15030236 DOI: 10.1021/jf0345954] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Antioxidative effects of Dioscorea alata (D. alata) were investigated in hyperhomocysteinemia (HHcy) induced by methionine (Met) oral feeding (1 (g/kg of BW)/day). HHcy rats were fed a standard laboratory chow supplemented without or with freeze-dried D. alata powder at 1, 2.5, and 5 (g/kg of BW)/day, assigned as Met, Met + D1, Met + D2, and Met + D3 groups, respectively. Twelve weeks after D. alata feeding, plasma homocysteine levels (16.3-24.2 microM) were significantly decreased compared to that of the Met group (34.1 +/- 9.9 microM) (p < 0.01), and similar to the basal level (15.0 +/- 1.9 microM). Thrombin-induced platelet aggregation (PA) of the Met + D2 and Met + D3 groups was significantly lower than that of the Met group. Plasma malondialdehyde levels, an indicator of lipid peroxidation, and hepatic reactive oxygen species, an indicator of oxidative stress, of HHcy with D. alata feeding were significantly lower than that without D. alata feeding. The hepatic catalase in the Met + D2 and Met + D3 groups was significantly elevated compared to that in the Met group. D. alata feeding did not significantly change hepatic superoxide dismutase, glutathione peroxidase, and glutathione reductase, which were adaptively enhanced by Met feeding. The decreased glutathione/glutathione disulfide ratio in the Met group was increased after D. alata feeding. These results indicated that HHcy induced by Met could be reversed by D. alata feeding. D. alata feeding exhibited its antioxidative effects in HHcy including alleviating PA, lipid peroxidation, and oxidative stress, but did not induce activity of antioxidant enzymes which had already adaptively increased by HHcy.
Collapse
Affiliation(s)
- Sue-Joan Chang
- Department of Biology, National Cheng Kung University, Tainan, Taiwan.
| | | | | | | |
Collapse
|
46
|
Li J, Chai S, Tang C, Du J. Homocysteine potentiates calcification of cultured rat aortic smooth muscle cells. Life Sci 2004; 74:451-61. [PMID: 14609723 DOI: 10.1016/j.lfs.2003.06.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aortic calcification was demonstrated in experimental animal models of hyperhomocysteinemia. Mild hyperhomocysteinemia was associated with aortic calcification, suggesting a relationship between homocysteine (HCY) and the pathogenesis of aortic calcification. In the present study, the effect of HCY on vascular calcification was examined in calcifying and non-calcifying vascular smooth muscle cells (VSMCs). Cell calcification was induced by incubation of VSMCs with beta-glycerophosphate. Proliferation of VSMCs was studied by cell counting, 3H-thymidine (3H-TdR) and 3H-leucine (3H-Leu) incorporation. 45Ca accumulation, cell calcium content, and alkaline phosphatase (ALP) activity were measured as indices of calcification. The results showed that the proliferation of calcifying VSMCs, which was indicated by cell counting, 3H-TdR and 3H-Leu incorporation in calcifying VSMCs, was enhanced as compared with that of non-calcifying VSMCs. HCY promoted increases in cell number, 3H-TdR and 3H-Leu incorporation in both calcifying and non-calcifying VSMCs, but with more prominent effect in calcifying VSMCs. The stimulating effects of HCY on the three parameters in calcifying VSMCs were antagonized by PD98059, a specific inhibitor of mitogen activated protein kinase kinase (MAPKK). The ALP activity, 45Ca uptake, and calcium deposition in the calcifying VSMCs were greater than those in non-calcifying VSMCs. PD98059 had no effect on ALP activity, 45Ca uptake, and calcium deposition in calcifying VSMCs. HCY caused marked increases in 45Ca uptake and calcium deposition both in calcifying and non-calcifying VSMCs. HCY, however, enhanced ALP activity in the calcified VSMCs but not in the non-calcifying VSMCs. The non-calcifying VSMCs treated with HCY showed the same low ALP activity, as did the control VSMCs. In calcifying VSMCs, the HCY-induced increases in 45Ca uptake, calcium deposition, and ALP activity were also attenuated by PD98059. The results demonstrated that HCY potentiated VSMC calcification probably through the mechanisms by which HCY promotes atherosclerosis.
Collapse
Affiliation(s)
- Juxiang Li
- Department of Physiology and Pathophysiology, Health Science Center of Peking University, Beijing 100083, PR China.
| | | | | | | |
Collapse
|
47
|
Troen AM, Lutgens E, Smith DE, Rosenberg IH, Selhub J. The atherogenic effect of excess methionine intake. Proc Natl Acad Sci U S A 2003; 100:15089-94. [PMID: 14657334 PMCID: PMC299913 DOI: 10.1073/pnas.2436385100] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Indexed: 01/11/2023] Open
Abstract
Methionine is the precursor of homocysteine, a sulfur amino acid intermediate in the methylation and transsulfuration pathways. Elevated plasma homocysteine (hyperhomocysteinemia) is associated with occlusive vascular disease. Whether homocysteine per se or a coincident metabolic abnormality causes vascular disease is still an open question. Animals with genetic hyperhomocysteinemia have so far not displayed atheromatous lesions. However, when methionine-rich diets are used to induce hyperhomocysteinemia, vascular pathology is often observed. Such studies have not distinguished the effects of excess dietary methionine from those of hyperhomocysteinemia. We fed apolipoprotein E-deficient mice with experimental diets designed to achieve three conditions: (i) high methionine intake with normal blood homocysteine; (ii) high methionine intake with B vitamin deficiency and hyperhomocysteinemia; and (iii) normal methionine intake with B vitamin deficiency and hyperhomocysteinemia. Mice fed methionine-rich diets had significant atheromatous pathology in the aortic arch even with normal plasma homocysteine levels, whereas mice fed B vitamin-deficient diets developed severe hyperhomocysteinemia without any increase in vascular pathology. Our findings suggest that moderate increases in methionine intake are atherogenic in susceptible mice. Although homocysteine may contribute to the effect of methionine, high plasma homocysteine was not independently atherogenic in this model. Some product of excess methionine metabolism rather than high plasma homocysteine per se may underlie the association of homocysteine with vascular disease.
Collapse
Affiliation(s)
- Aron M Troen
- Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, USA.
| | | | | | | | | |
Collapse
|
48
|
Austen SK, Coombes JS, Fassett RG. Homocysteine and cardiovascular disease in renal disease. Review Article. Nephrology (Carlton) 2003; 8:285-95. [PMID: 15012699 DOI: 10.1111/j.1440-1797.2003.00210.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elevated homocysteine (hyperhomocysteinaemia) in renal patients is a major concern for physicians. Although cause and effect between homocysteine and cardiovascular disease (CVD) has not been established in either the general population or renal patients, there is much evidence that this relationship does exist. Purported mechanisms that may explain this effect include increases in endothelial injury, smooth muscle cell proliferation, low-density lipoprotein oxidation and changes in haemostatic balance. Renal patients have a much greater incidence of hyperhomocysteinaemia and this may be explained by decreases in either the renal or extrarenal metabolism of the compound. We conclude that data from long-term placebo-controlled trials are urgently required to determine whether hyperhomocysteinaemia in renal patients is a cause of CVD events and requires therapeutic targeting.
Collapse
Affiliation(s)
- Simon K Austen
- School of Human Movement Studies, University of Queensland, St Lucia, Queensland, Australia
| | | | | |
Collapse
|
49
|
Zulli A, Widdop RE, Hare DL, Buxton BF, Black MJ. High methionine and cholesterol diet abolishes endothelial relaxation. Arterioscler Thromb Vasc Biol 2003; 23:1358-63. [PMID: 12791673 DOI: 10.1161/01.atv.0000080686.39871.54] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE High plasma cholesterol or homocysteine is a risk factor for atherosclerosis. Cholesterol and methionine, the precursor of homocysteine, are rarely eaten separately. Thus, the aims of this study were to determine neointima formation, aortic reactivity, and factors involved in endothelial function in rabbits fed high dietary cholesterol, methionine, or a combination of the two for 12 weeks. METHODS AND RESULTS Rabbit dietary groups were randomized into the following: control (Con), 0.5% cholesterol (Chol), 1% methionine (Meth), and 1% methionine+0.5% cholesterol (MethChol). Aortic reactivity was studied by isometric tension techniques, aortic volumetric analysis was determined by stereological techniques, and immunohistochemistry was used to localize endothelial and inducible NO synthases, superoxide dismutase, macrophages, and nitrotyrosine. Atherosclerosis was present in the Chol and MethChol groups. Endothelium-dependent relaxation was virtually abolished in the MethChol group compared with control. Such decrease in relaxation was not attributable to a vascular smooth muscle cell defect or to a decrease in endothelial NO synthase or superoxide dismutase content. Macrophages and inducible NO synthase immunoreactivity were present in Chol and MetChol groups. CONCLUSIONS The combination of high dietary cholesterol plus methionine virtually abolishes endothelium-dependent relaxation, underscoring the importance of multiple risk factors in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Anthony Zulli
- Department of Cardiac Surgery, University of Melbourne, Austin Health, Heidelberg, Australia.
| | | | | | | | | |
Collapse
|
50
|
Ni W, Tsuda Y, Takashima S, Sato H, Sato M, Imaizumi K. Anti-atherogenic effect of soya and rice-protein isolate, compared with casein, in apolipoprotein E-deficient mice. Br J Nutr 2003; 90:13-20. [PMID: 12844370 DOI: 10.1079/bjn2003878] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Our objective was to determine whether dietary plant proteins such as soya-protein isolate (SPI) and rice-protein isolate (RPI) compared with animal proteins, such as casein, could afford beneficial effects on atherosclerosis development in apolipoprotein E-deficient mice. In experiment 1, male and female mice were fed on a purified diet containing either casein, SPI or RPI for 9 weeks. The en face lesion area in the aorta (P<0.05) and the lesion size in the aortic root (P<0.05) in mice fed the casein-based diet were greater than those in the SPI or RPI groups. The plant protein groups had an increased concentration of serum l-arginine (P<0.05) and NO metabolites (NO2 plus NO3) (P<0.05) than did the casein group. The inhibitory effect of the plant proteins on the lesion formations was unrelated to gender and total serum cholesterol. In experiment 2, the l-arginine and l-methionine contents were the same in the l-arginine-supplemented casein-based and SPI-based diets, and between the l-methionine-supplemented SPI-based and the casein-based diets. Male mice were fed on the diets for 15 weeks. There were no significant differences in the en face lesion area and the lesion size between the casein group and the l-arginine-supplemented group, although the serum l-arginine (P<0.05) and NO2 plus NO3 (P<0.05) concentrations in the supplemented group were higher than those in the casein group. There were no significant effects of l-methionine supplementation on the lesion formations. In experiment 3, male mice were given the casein-based diet or the l-arginine-supplemented casein-based diet together with water or water containing an NO synthesis inhibitor for 9 weeks. When given the casein-based diet, the inhibitor drinking, compared with water drinking, resulted in a reduction of the serum NO2 plus NO3 concentration (P<0.01) and an increase in the en face lesion area (P<0.05) and the lesion size (P<0.01). When given the l-arginine-supplemented diet, the inhibitor drinking, compared with water drinking, resulted in no increase in the lesion area and size. These results demonstrate anti-atherogenic potentials of SPI- as well as RPI-derived proteins, but their l-arginine and l-methionine contents were not sufficient enough to explain the underlying mechanism(s).
Collapse
Affiliation(s)
- Weihua Ni
- Laboratory of Nutrition Chemistry, Division of Bioresource and Bioenvironmental Sciences, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|