1
|
Fasano E, Serini S, Cittadini A, Calviello G. Long-chain n-3 PUFA against breast and prostate cancer: Which are the appropriate doses for intervention studies in animals and humans? Crit Rev Food Sci Nutr 2017; 57:2245-2262. [PMID: 25897862 DOI: 10.1080/10408398.2013.850060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The potential antineoplastic effect of the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) remains a highly controversial issue. Numerous animal studies have supported the anticancer role of these dietary fatty acids, whereas conflicting results have been obtained in population studies, and only a few intervention human trials have been so far performed. In view of the possibility that the anticancer effects may be maximally observed within a defined range of EPA and DHA doses, herein we critically review the results and doses used in both animal studies and human clinical trials focusing on the possible n-3 PUFA protective effects against breast and prostate cancer. Our main aim is to identify the EPA and/or DHA ranges of doses needed to obtain clear anticancer effects. This may be of great help in designing future animal studies, and also in understanding the most appropriate dose for further human intervention studies. Moreover, since the healthy effects of these fatty acids have been strictly related to their increased incorporation in plasma and tissue lipids, we also examine and discuss the incorporation changes following the administration of the effective anticancer EPA and/or DHA doses in animals and humans.
Collapse
Affiliation(s)
- Elena Fasano
- a Institute of General Pathology, Università Cattolica S. Cuore , Rome , Italy
| | - Simona Serini
- a Institute of General Pathology, Università Cattolica S. Cuore , Rome , Italy
| | - Achille Cittadini
- a Institute of General Pathology, Università Cattolica S. Cuore , Rome , Italy
| | - Gabriella Calviello
- a Institute of General Pathology, Università Cattolica S. Cuore , Rome , Italy
| |
Collapse
|
2
|
Stark KD, Aristizabal Henao JJ, Metherel AH, Pilote L. Translating plasma and whole blood fatty acid compositional data into the sum of eicosapentaenoic and docosahexaenoic acid in erythrocytes. Prostaglandins Leukot Essent Fatty Acids 2016; 104:1-10. [PMID: 26802936 DOI: 10.1016/j.plefa.2015.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 11/19/2022]
Abstract
Specific blood levels of eicosapentaenoic plus docosahexaenoic acid (EPA+DHA, wt% of total) in erythrocytes or "the omega-3 index" have been recommended for cardio-protection, but fatty acids are often measured in different blood fractions. The ability to estimate the % of EPA+DHA in erythrocytes from the fatty acid composition of other blood fractions would enable clinical assessments of omega-3 status when erythrocyte fractions are not available and increase the ability to compare blood levels of omega-3 fatty acids across clinical studies. The fatty acid composition of baseline plasma, erythrocytes and whole blood samples from participants (n=1104) in a prospective, multicenter study examining acute coronary syndrome were determined. The ability to predict the % of EPA+DHA in erythrocytes from other blood fractions were examined using bivariate and multiple linear regression modelling. Concordance analysis was also used to compare the actual erythrocytes EPA+DHA values to values estimated from other blood fractions. EPA+DHA in erythrocytes was significantly (p<0.001) correlated EPA+DHA in plasma (r(2)=0.54) and whole blood (r(2)=0.79). Using multiple linear regression to predict EPA+DHA in erythrocytes resulted in stronger coefficients of determination in both plasma (R(2)=0.70) and whole blood (R(2)=0.84). Concordance analyses indicated agreement between actual and estimated EPA+DHA in erythrocytes, although estimating from plasma fatty acids appears to require translation by categorization rather than by translation as continuous data. This study shows that the fatty acid composition of different blood fractions can be used to estimate erythrocyte EPA+DHA in a population with acute coronary syndrome.
Collapse
Affiliation(s)
- Ken D Stark
- Department of Kinesiology, University of Waterloo, 200 University Avenue, Waterloo, Ontorio, Canada N2L 3G1.
| | - Juan J Aristizabal Henao
- Department of Kinesiology, University of Waterloo, 200 University Avenue, Waterloo, Ontorio, Canada N2L 3G1
| | - Adam H Metherel
- Department of Kinesiology, University of Waterloo, 200 University Avenue, Waterloo, Ontorio, Canada N2L 3G1
| | - Louise Pilote
- Division of General Internal Medicine, McGill University, Montreal, Quebec, Canada; Division of Clinical Epidemiology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Jeney V, Balla G, Balla J. Red blood cell, hemoglobin and heme in the progression of atherosclerosis. Front Physiol 2014; 5:379. [PMID: 25324785 PMCID: PMC4183119 DOI: 10.3389/fphys.2014.00379] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/13/2014] [Indexed: 01/02/2023] Open
Abstract
For decades plaque neovascularization was considered as an innocent feature of advanced atherosclerotic lesions, but nowadays growing evidence suggest that this process triggers plaque progression and vulnerability. Neovascularization is induced mostly by hypoxia, but the involvement of oxidative stress is also established. Because of inappropriate angiogenesis, neovessels are leaky and prone to rupture, leading to the extravasation of red blood cells (RBCs) within the plaque. RBCs, in the highly oxidative environment of the atherosclerotic lesions, tend to lyse quickly. Both RBC membrane and the released hemoglobin (Hb) possess atherogenic activities. Cholesterol content of RBC membrane contributes to lipid deposition and lipid core expansion upon intraplaque hemorrhage. Cell-free Hb is prone to oxidation, and the oxidation products possess pro-oxidant and pro-inflammatory activities. Defense and adaptation mechanisms evolved to cope with the deleterious effects of cell free Hb and heme. These rely on plasma proteins haptoglobin (Hp) and hemopexin (Hx) with the ability to scavenge and eliminate free Hb and heme form the circulation. The protective strategy is completed with the cellular heme oxygenase-1/ferritin system that becomes activated when Hp and Hx fail to control free Hb and heme-mediated stress. These protective molecules have pharmacological potential in diverse pathologies including atherosclerosis.
Collapse
Affiliation(s)
- Viktória Jeney
- Department of Medicine, University of Debrecen Debrecen, Hungary ; MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences Debrecen, Hungary
| | - György Balla
- MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences Debrecen, Hungary ; Department of Pediatrics, University of Debrecen Debrecen, Hungary
| | - József Balla
- Department of Medicine, University of Debrecen Debrecen, Hungary
| |
Collapse
|
4
|
Ritzenthaler KL, Shahin AM, Shultz TD, Dasgupta N, McGuire MA, McGuire MK. Dietary intake of c9,t11-conjugated linoleic acid correlates with its concentration in plasma lipid fractions of men but not women. J Nutr 2012; 142:1645-51. [PMID: 22833652 DOI: 10.3945/jn.111.156794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The c9,t11-18:2 isomer of conjugated linoleic acid (c9,t11-CLA) represents the main dietary CLA form with putative health benefits. Whereas CLA intake influences the tissue CLA concentration, little is known about the association between dietary CLA and the CLA content of plasma lipid fractions. This study was designed to document fasting and nonfasting plasma c9,t11-CLA concentrations in a population of free-living adults (n = 94) and relate these concentrations to c9,t11-CLA intake. We also determined the c9,t11-CLA content of the primary plasma lipid fractions in a subset (n = 50) of our participants, related these to c9,t11-CLA intake, and determined whether c9,t11-CLA intake or plasma c9,t11-CLA was correlated with plasma cholesterol. Mean fasting plasma c9,t11-CLA concentrations were 0.46 ± 0.01 and 0.54 ± 0.01% (wt:wt) of total fatty acids for men and women, respectively (P < 0.05); nonfasting concentrations were 0.28 ± 0.01 and 0.38 ± 0.01% of total fatty acids, respectively (P < 0.001). All major esterified plasma lipid fractions contained c9,t11-CLA; TG had the highest percentages. In men, c9,t11-CLA intake correlated (r = 0.47; P < 0.05) with TG c9,t11-CLA content, suggesting that TG c9,t11-CLA may serve as a biomarker for c9,t11-CLA intake. In females, there were no correlations between c9,t11-CLA intake and the c9,t11-CLA content of any esterified plasma lipid fraction. In neither sex was there a relation between dietary c9,t11-CLA or plasma c9,t11-CLA concentration and circulating lipoprotein cholesterol concentration. The influence of sex on circulating c9,t11-CLA content and further validation of biomarkers of c9,t11-CLA intake warrant further investigation.
Collapse
|
5
|
Lipid composition of the human eye: are red blood cells a good mirror of retinal and optic nerve fatty acids? PLoS One 2012; 7:e35102. [PMID: 22496896 PMCID: PMC3322172 DOI: 10.1371/journal.pone.0035102] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/08/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The assessment of blood lipids is very frequent in clinical research as it is assumed to reflect the lipid composition of peripheral tissues. Even well accepted such relationships have never been clearly established. This is particularly true in ophthalmology where the use of blood lipids has become very common following recent data linking lipid intake to ocular health and disease. In the present study, we wanted to determine in humans whether a lipidomic approach based on red blood cells could reveal associations between circulating and tissue lipid profiles. To check if the analytical sensitivity may be of importance in such analyses, we have used a double approach for lipidomics. METHODOLOGY AND PRINCIPAL FINDINGS Red blood cells, retinas and optic nerves were collected from 9 human donors. The lipidomic analyses on tissues consisted in gas chromatography and liquid chromatography coupled to an electrospray ionization source-mass spectrometer (LC-ESI-MS). Gas chromatography did not reveal any relevant association between circulating and ocular fatty acids except for arachidonic acid whose circulating amounts were positively associated with its levels in the retina and in the optic nerve. In contrast, several significant associations emerged from LC-ESI-MS analyses. Particularly, lipid entities in red blood cells were positively or negatively associated with representative pools of retinal docosahexaenoic acid (DHA), retinal very-long chain polyunsaturated fatty acids (VLC-PUFA) or optic nerve plasmalogens. CONCLUSIONS AND SIGNIFICANCE LC-ESI-MS is more appropriate than gas chromatography for lipidomics on red blood cells, and further extrapolation to ocular lipids. The several individual lipid species we have identified are good candidates to represent circulating biomarkers of ocular lipids. However, further investigation is needed before considering them as indexes of disease risk and before using them in clinical studies on optic nerve neuropathies or retinal diseases displaying photoreceptors degeneration.
Collapse
|
6
|
Neubronner J, Schuchardt JP, Kressel G, Merkel M, von Schacky C, Hahn A. Enhanced increase of omega-3 index in response to long-term n-3 fatty acid supplementation from triacylglycerides versus ethyl esters. Eur J Clin Nutr 2010; 65:247-54. [PMID: 21063431 DOI: 10.1038/ejcn.2010.239] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND There is a debate currently about whether different chemical forms of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are absorbed in an identical way. The objective of this study was to investigate the response of the omega-3 index, the percentage of EPA+DHA in red blood cell membranes, to supplementation with two different omega-3 fatty acid (n-3 FA) formulations in humans. DESIGN The study was conducted as a double-blinded placebo-controlled trial. A total of 150 volunteers was randomly assigned to one of the three groups: (1) fish oil concentrate with EPA+DHA (1.01 g+0.67 g) given as reesterified triacylglycerides (rTAG group); (2) corn oil (placebo group) or (3) fish oil concentrate with EPA+DHA (1.01 g+0.67 g) given as ethyl ester (EE group). Volunteers consumed four gelatine-coated soft capsules daily over a period of six months. The omega-3 index was determined at baseline (t(0)) after three months (t(3)) and at the end of the intervention period (t(6)). RESULTS The omega-3 index increased significantly in both groups treated with n-3 FAs from baseline to t(3) and t(6) (P<0.001). The omega-3 index increased to a greater extent in the rTAG group than in the EE group (t(3): 186 versus 161% (P<0.001); t(6): 197 versus 171% (P<0.01)). CONCLUSION A six-month supplementation of identical doses of EPA+DHA led to a faster and higher increase in the omega-3 index when consumed as triacylglycerides than when consumed as ethyl esters.
Collapse
Affiliation(s)
- J Neubronner
- Institute of Food Science and Human Nutrition, Leibniz Universität Hannover, Am Kleinen Felde 30, Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Because blood concentrations of n-3 (or omega-3) fatty acids (FAs) (eicosapentaenoic and docosahexaenoic acids) are a strong reflection of dietary intake, it is proposed that a n-3 FA biomarker, the omega-3 index (erythrocyte eicosapentaenoic acid plus docosahexaenoic acid), be considered as a potential risk factor for coronary heart disease mortality, especially sudden cardiac death. The omega-3 index fulfills many of the requirements for a risk factor including consistent epidemiologic evidence, a plausible mechanism of action, a reproducible assay, independence from classic risk factors, modifiability, and, most important, the demonstration that raising levels will reduce risk for cardiac events. Measuring membrane concentrations of n-3 FAs is a rational approach to biostatus assessment as these FAs appear to exert their beneficial metabolic effects because of their actions in membranes. They alter membrane physical characteristics and the activity of membrane-bound proteins, and, once released by intracellular phospholipases from membrane stores, they can interact with ion channels, be converted into a wide variety of bioactive eicosanoids, and serve as ligands for several nuclear transcription factors, thereby altering gene expression. The omega-3 index compares very favorably with other risk factors for sudden cardiac death. Proposed omega-3 index risk zones are (in percentages of erythrocyte FAs): high risk, <4%; intermediate risk, 4-8%; and low risk, >8%. Before assessment of n-3 FA biostatus can be used in routine clinical evaluation of patients, standardized laboratory methods and quality control materials must become available.
Collapse
Affiliation(s)
- William S Harris
- Metabolism and Nutrition Research Center, Sanford Research/USD, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
8
|
Hodson L, Skeaff CM, Fielding BA. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog Lipid Res 2008; 47:348-80. [PMID: 18435934 DOI: 10.1016/j.plipres.2008.03.003] [Citation(s) in RCA: 963] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 03/18/2008] [Accepted: 03/26/2008] [Indexed: 01/09/2023]
Abstract
Accurate assessment of fat intake is essential to examine the relationships between diet and disease risk but the process of estimating individual intakes of fat quality by dietary assessment is difficult. Tissue and blood fatty acids, because they are mainly derived from the diet, have been used as biomarkers of dietary intake for a number of years. We review evidence from a wide variety of cross-sectional and intervention studies and summarise typical values for fatty acid composition in adipose tissue and blood lipids and changes that can be expected in response to varying dietary intake. Studies in which dietary intake was strictly controlled confirm that fatty acid biomarkers can complement dietary assessment methodologies and have the potential to be used more quantitatively. Factors affecting adipose tissue and blood lipid composition are discussed, such as the physical properties of triacylglycerol, total dietary fat intake and endogenous fatty acid synthesis. The relationship between plasma lipoprotein concentrations and total plasma fatty acid composition, and the use of fatty acid ratios as indices of enzyme activity are also addressed.
Collapse
Affiliation(s)
- Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, UK.
| | | | | |
Collapse
|
9
|
Harris WS. Omega-3 fatty acids and cardiovascular disease: a case for omega-3 index as a new risk factor. Pharmacol Res 2007; 55:217-23. [PMID: 17324586 PMCID: PMC1899522 DOI: 10.1016/j.phrs.2007.01.013] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 01/19/2007] [Indexed: 01/08/2023]
Abstract
The omega-3 fatty acids (FAs) found in fish and fish oils (eicosapentaenoic and docosahexaenoic acids, EPA and DHA) have been reported to have a variety of beneficial effects in cardiovascular diseases. Ecological and prospective cohort studies as well as randomized, controlled trials have supported the view that the effects of these FAs are clinically relevant. They operate via several mechanisms, all beginning with the incorporation of EPA and DHA into cell membranes. From here, these omega-3 FA alter membrane physical characteristics and the activity of membrane-bound proteins, and once released by intracellular phospholipases, can interact with ion channels, be converted into a wide variety of bioactive eicosanoids, and serve as ligands for several nuclear transcription factors thereby altering gene expression. In as much as blood levels are a strong reflection of dietary intake, it is proposed that an omega-3 FA biomarker, the omega-3 index (erythrocyte EPA+DHA) be considered at least a marker, if not a risk factor, for coronary heart disease, especially sudden cardiac death. The omega-3 index fulfils many of the requirements for a risk factor including consistent epidemiological evidence, a plausible mechanism of action, a reproducible assay, independence from classical risk factors, modifiability, and most importantly, the demonstration that raising tissue levels will reduce risk for cardiac events. For these and a number of other reasons, the omega-3 index compares very favourably with other risk factors for sudden cardiac death.
Collapse
Affiliation(s)
- William S Harris
- Nutrition and Metabolic Disease Research Institute, Sanford Research/USD, Sanford School of Medicine of the University of South Dakota, 1400 West 22nd Street, Sioux Falls, SD 57105, USA.
| |
Collapse
|
10
|
Abstract
BACKGROUND Low intakes or blood levels of eicosapentaenoic and docosahexaenoic acids (EPA + DHA) are independently associated with increased risk of death from coronary heart disease (CHD). In randomized secondary prevention trials, fish or fish oil have been demonstrated to reduce total and CHD mortality at intakes of about 1 g/day. Red blood cell (RBC) fatty acid (FA) composition reflects long-term intake of EPA + DHA. We propose that the RBC EPA + DHA (hereafter called the Omega-3 Index) be considered a new risk factor for death from CHD. METHODS We conducted clinical and laboratory experiments to generate data necessary for the validation of the Omega-3 Index as a CHD risk predictor. The relationship between this putative marker and risk for CHD death, especially sudden cardiac death (SCD), was then evaluated in several published primary and secondary prevention studies. RESULTS The Omega-3 Index was inversely associated with risk for CHD mortality. An Omega-3 Index of > or = 8% was associated with the greatest cardioprotection, whereas an index of < or = 4% was associated with the least. CONCLUSION The Omega-3 Index may represent a novel, physiologically relevant, easily modified, independent, and graded risk factor for death from CHD that could have significant clinical utility.
Collapse
Affiliation(s)
- William S Harris
- Lipid and Diabetes Research Center, Mid America Heart Institute of Saint Luke's Hospital, University of Missouri-KC School of Medicine, Kansas City, MO 64111, USA.
| | | |
Collapse
|
11
|
Fraser GE, Bennett HW, Jaceldo KB, Sabaté J. Effect on body weight of a free 76 Kilojoule (320 calorie) daily supplement of almonds for six months. J Am Coll Nutr 2002; 21:275-83. [PMID: 12074256 DOI: 10.1080/07315724.2002.10719221] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Regular nut consumption is associated with lower rates of heart attack. However, as nuts are fatty foods, they may in theory lead to weight gain, although preliminary evidence has suggested otherwise. We tested the hypothesis that a free daily supplement (averaging 76 kJ) of almonds for six months, with no dietary advice, would not change body weight. METHODS Eighty-one male and female subjects completed the randomized cross-over study. During two sequential six-month periods, diet, body weight and habitual exercise were evaluated repeatedly in each subject. Almonds were provided only during the second period. The design was balanced for seasonal and other calendar trends. RESULTS During the almond feeding period, average body weight increased only 0.40 (kg) (p approximately 0.09). The weight change depended on baseline BMI (p = 0.05), and only those initially in the lower BMI tertiles experienced small and mainly unimportant weight gains with the almonds. We estimated that 54% (recalls) or 78% (diaries) of the extra energy from almonds was displaced by reductions in other foods. The ratio unsaturated/saturated dietary fat increased by 40% to 50% when almonds were included in the diet. CONCLUSION Incorporating a modest quantity (76 kJ) of almonds in the diet each day for six months did not lead on average to statistically or biologically significant changes in body weight and did increase the consumption of unsaturated fats. Further studies are necessary to evaluate longer term effects, especially in men.
Collapse
Affiliation(s)
- Gary E Fraser
- Center for Health Research, School of Public Health, Loma Linda University, California 92350, USA.
| | | | | | | |
Collapse
|
12
|
Okita M, Sasagawa T, Kotani M, Hayashi M, Yamashita H, Kimoto M, Suzuki K, Tsuji H, Tabei T. Green vegetable juice increases polyunsaturated fatty acid of erythrocyte membrane phospholipid in hypercholesterolaemic patients. Asia Pac J Clin Nutr 2000; 9:309-13. [DOI: 10.1046/j.1440-6047.2000.00161.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Tichelaar HY, van Jaarsveld PJ, Smuts CM, Marais M, Mdhluli MC, Kruger M, Benadé AJ. Plasma and red blood cell total phospholipid fatty acid status of nonpregnant female Vervet monkeys (Cercopithecus aethiops) on a high carbohydrate maintenance diet. J Med Primatol 1998; 27:240-3. [PMID: 9926979 DOI: 10.1111/j.1600-0684.1998.tb00243.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Nonhuman primates are of interest as models of human physiology to study the effect of multiple pregnancies on birth weight. Reference plasma and red blood cell (RBC) total phospholipids fatty acids were established in nonpregnant breeding female Vervet monkeys. Twenty-three clinically healthy nonpregnant Vervet monkeys (Cercopithecus aethiops), contained in a controlled closed environment and consuming a high carbohydrate diet (68 E%) that contained 20 E% fat and 12 E% protein were sampled for blood during a cross-sectional study. A low intake of omega3 fatty acids was reflected by a high omega6/omega3 ratio (66:1) of the diet. Inverse relations were seen between plasma and RBC total phospholipid fatty acids, 18:2omega6, 20:3omega6, and 20:4omega6, which suggested selective incorporation in membranes. Low levels of 20:5omega3 and 22:6omega3 of plasma and RBC total phospholipids render Vervet monkeys as ideal subjects to study the effect of omega3 fatty acid supplementation on pregnancy outcomes.
Collapse
Affiliation(s)
- H Y Tichelaar
- National Research Programme for Nutritional Intervention, Tygerberg, South Africa
| | | | | | | | | | | | | |
Collapse
|