1
|
Eskandari AH, Ghezelbash F, Shirazi-Adl A, Arjmand N, Larivière C. Effect of a back-support exoskeleton on internal forces and lumbar spine stability during low load lifting task. APPLIED ERGONOMICS 2024; 123:104407. [PMID: 39489061 DOI: 10.1016/j.apergo.2024.104407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/15/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
This study assessed the effect of a small-torque generating passive back-support exoskeleton during a low demanding occupational task, namely a repetitive lifting/lowering of an empty crate between the knee and shoulder heights. A comprehensive set of outcomes was considered, ranging from the measured trunk muscle activation and trunk movement to the estimated muscle group forces/coordination, spine loading and spine stability, using a dynamic subject-specific EMG-assisted musculoskeletal model. The exoskeleton decreased back muscle activation and corresponding muscle forces in the lowering phase and reduced spinal loading at larger trunk flexion angles (decreased peak compression and shear forces by ∼ 15%). However, the effect sizes were small (ηG2 < .06), questioning the usefulness of this type of exoskeleton, even for light tasks. On the other hand, the unique results of the present study showed that coordination between the main muscle groups as well as spinal stability remained unchanged with low effect sizes, suggesting that the use of this exoskeleton is safe.
Collapse
Affiliation(s)
- Amir Hossein Eskandari
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada; Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada; Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l'Ile-de-Montréal (CCSMTL), Canada
| | - Farshid Ghezelbash
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada; Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada
| | - Aboulfazl Shirazi-Adl
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada
| | - Navid Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Christian Larivière
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada; Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l'Ile-de-Montréal (CCSMTL), Canada.
| |
Collapse
|
2
|
Sturdy JT, Sessoms PH, Silverman AK. Psoas force recruitment in full-body musculoskeletal movement simulations is restored with a geometrically informed cost function weighting. J Biomech 2024; 168:112130. [PMID: 38713998 DOI: 10.1016/j.jbiomech.2024.112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/01/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Simulations of musculoskeletal models are useful for estimating internal muscle and joint forces. However, predicted forces rely on optimization and modeling formulations. Geometric detail is important to predict muscle forces, and greater geometric complexity is required for muscles that have broad attachments or span many joints, as in the torso. However, the extent to which optimized muscle force recruitment is sensitive to these geometry choices is unclear. We developed level, uphill and downhill sloped walking simulations using a standard (uniformly weighted, "fatigue-like") cost function with lower limb and full-body musculoskeletal models to evaluate hip muscle recruitment with different geometric representations of the psoas muscle under walking conditions with varying hip moment demands. We also tested a novel cost function formulation where muscle activations were weighted according to the modeled geometric detail in the full-body model. Total psoas force was less and iliacus, rectus femoris, and other hip flexors' force was greater when psoas was modeled with greater geometric detail compared to other hip muscles for all slopes. The proposed weighting scheme restored hip muscle force recruitment without sacrificing detailed psoas geometry. In addition, we found that lumbar, but not hip, joint contact forces were influenced by psoas force recruitment. Our results demonstrate that static optimization dependent simulations using models comprised of muscles with different amounts of geometric detail bias force recruitment toward muscles with less geometric detail. Muscle activation weighting that accounts for differences in geometric complexity across muscles corrects for this recruitment bias.
Collapse
Affiliation(s)
- Jordan T Sturdy
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO, USA.
| | - Pinata H Sessoms
- Warfighter Performance Department, Naval Health Research Center, San Diego, CA, USA
| | - Anne K Silverman
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO, USA; Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, USA
| |
Collapse
|
3
|
Caimi A, Ferguson SJ, Ignasiak D. Evaluation of trunk muscle coactivation predictions in multi-body models. J Biomech 2024; 168:112039. [PMID: 38657434 DOI: 10.1016/j.jbiomech.2024.112039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/26/2024]
Abstract
Musculoskeletal simulations with muscle optimization aim to minimize muscle effort, hence are considered unable to predict the activation of antagonistic muscles. However, activation of antagonistic muscles might be necessary to satisfy the dynamic equilibrium. This study aims to elucidate under which conditions coactivation can be predicted, to evaluate factors modulating it, and to compare the antagonistic activations predicted by the lumbar spine model with literature data. Simple 2D and 3D models, comprising of 2 or 3 rigid bodies, with simple or multi-joint muscles, were created to study conditions under which muscle coactivity is predicted. An existing musculoskeletal model of the lumbar spine developed in AnyBody was used to investigate the effects of modeling intra-abdominal pressure (IAP), linear/cubic and load/activity-based muscle recruitment criterion on predicted coactivation during forward flexion and lateral bending. The predicted antagonist activations were compared to reported EMG data. Muscle coactivity was predicted with simplified models when multi-joint muscles were present or the model was three-dimensional. During forward flexion and lateral bending, the coactivation ratio predicted by the model showed good agreement with experimental values. Predicted coactivation was negligibly influenced by IAP but substantially reduced with a force-based recruitment criterion. The conditions needed in multi-body models to predict coactivity are: three-dimensionality or multi-joint muscles, unless perfect antagonists. The antagonist activations are required to balance 3D moments but do not reflect other physiological phenomena, which might explain the discrepancies between model predictions and experimental data. Nevertheless, the findings confirm the ability of the multi-body trunk models to predict muscle coactivity and suggest their overall validity.
Collapse
Affiliation(s)
- Alice Caimi
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
4
|
Banks JJ, Quirk DA, Chung J, Cherin JM, Walsh CJ, Anderson DE. The effect of a soft active back support exosuit on trunk motion and thoracolumbar spine loading during squat and stoop lifts. ERGONOMICS 2024:1-14. [PMID: 38389220 PMCID: PMC11339243 DOI: 10.1080/00140139.2024.2320355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Back support exosuits aim to reduce tissue demands and thereby risk of injury and pain. However, biomechanical analyses of soft active exosuit designs have been limited. The objective of this study was to evaluate the effect of a soft active back support exosuit on trunk motion and thoracolumbar spine loading in participants performing stoop and squat lifts of 6 and 10 kg crates, using participant-specific musculoskeletal models. The exosuit did not change overall trunk motion but affected lumbo-pelvic motion slightly, and reduced peak compressive and shear vertebral loads at some levels, although shear increased slightly at others. This study indicates that soft active exosuits have limited kinematic effects during lifting, and can reduce spinal loading depending on the vertebral level. These results support the hypothesis that a soft exosuit can assist without limiting trunk movement or negatively impacting skeletal loading and have implications for future design and ergonomic intervention efforts.
Collapse
Affiliation(s)
- Jacob J. Banks
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, United States
| | - David A. Quirk
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
| | - Jinwon Chung
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
| | - Jason M. Cherin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
| | - Conor J. Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
| | - Dennis E. Anderson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Eskandari AH, Ghezelbash F, Shirazi-Adl A, Larivière C. Comparative evaluation of different spinal stability metrics. J Biomech 2024; 162:111901. [PMID: 38160088 DOI: 10.1016/j.jbiomech.2023.111901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/13/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024]
Abstract
Direct in vivo measurements of spinal stability are not possible, leaving computational estimations (such as dynamic time series and structural analyses) as the feasible option. However, differences between different stability assessment approaches and metrics remain unclear. To explore this, we asked 32 participants to perform 35 cycles of repetitive lifts with and without load (4/2.6 kg for males/females). EMG signals and 3D kinematics were collected via 12 surface electrodes and 17 inertial sensors, and three dynamical stability measures were computed: short and long temporal and conventional maximum Lyapunov exponents (LyE) and maximum Floquet multipliers (FM). A dynamic subject-specific EMG-assisted musculoskeletal model computed four structural stability measures (critical muscle stiffness coefficient at which spine becomes unstable, average spine stiffness, minimum and geometric average of Hessian matrix eigenvalues). Across cycles, dynamical and structural stability outcomes varied noticeably. Temporal short-term LyE and all structural stability measures were more influenced by the cycle percentage (posture factor) than by phase (lifting, lowering) or load factor. The effect of all factors were non-significant for FM and long LyE, except for the posture on LyE-L with a small effect size. Pearson's correlations revealed a weak to moderate, or non-existent, correlation between structural and dynamical stability metrics, with small shared variances, underscoring their distinct and independent nature and theoretical foundations. Moreover, the low sensitivity of dynamic measures to posture and load factors, found in this study, calls for further examination. Considering the limitations and shortcomings of both dynamical and structural stability assessment approaches, there is a need for the development of improved musculoskeletal stability evaluation techniques.
Collapse
Affiliation(s)
- Amir Hossein Eskandari
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada; Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada.
| | - Farshid Ghezelbash
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada
| | - Aboulfazl Shirazi-Adl
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada
| | - Christian Larivière
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada; Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l'Ile-de-Montréal (CCSMTL), Canada
| |
Collapse
|
6
|
Alemi MM, Banks JJ, Lynch AC, Allaire BT, Bouxsein ML, Anderson DE. EMG Validation of a Subject-Specific Thoracolumbar Spine Musculoskeletal Model During Dynamic Activities in Older Adults. Ann Biomed Eng 2023; 51:2313-2322. [PMID: 37353715 PMCID: PMC11426388 DOI: 10.1007/s10439-023-03273-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/01/2023] [Indexed: 06/25/2023]
Abstract
Musculoskeletal models can uniquely estimate in vivo demands and injury risk. In this study, we aimed to compare muscle activations from subject-specific thoracolumbar spine OpenSim models with recorded muscle activity from electromyography (EMG) during five dynamic tasks. Specifically, 11 older adults (mean = 65 years, SD = 9) lifted a crate weighted to 10% of their body mass in axial rotation, 2-handed sagittal lift, 1-handed sagittal lift, and lateral bending, and simulated a window opening task. EMG measurements of back and abdominal muscles were directly compared to equivalent model-predicted activity for temporal similarity via maximum absolute normalized cross-correlation (MANCC) coefficients and for magnitude differences via root-mean-square errors (RMSE), across all combinations of participants, dynamic tasks, and muscle groups. We found that across most of the tasks the model reasonably predicted temporal behavior of back extensor muscles (median MANCC = 0.92 ± 0.07) but moderate temporal similarity was observed for abdominal muscles (median MANCC = 0.60 ± 0.20). Activation magnitude was comparable to previous modeling studies, and median RMSE was 0.18 ± 0.08 for back extensor muscles. Overall, these results indicate that our thoracolumbar spine model can be used to estimate subject-specific in vivo muscular activations for these dynamic lifting tasks.
Collapse
Affiliation(s)
- Mohammad Mehdi Alemi
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA.
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave, RN119, Boston, MA, 02215, USA.
| | - Jacob J Banks
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Andrew C Lynch
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Brett T Allaire
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mary L Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Dennis E Anderson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Eskandari AH, Ghezelbash F, Shirazi-Adl A, Gagnon D, Mecheri H, Larivière C. Validation of an EMG submaximal method to calibrate a novel dynamic EMG-driven musculoskeletal model of the trunk: Effects on model estimates. J Electromyogr Kinesiol 2023; 68:102728. [PMID: 36512937 DOI: 10.1016/j.jelekin.2022.102728] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/29/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Multijoint EMG-assisted optimization models are reliable tools to predict muscle forces as they account for inter- and intra-individual variations in activation. However, the conventional method of normalizing EMG signals using maximum voluntary contractions (MVCs) is problematic and introduces major limitations. The sub-maximal voluntary contraction (SVC) approaches have been proposed as a remedy, but their performance against the MVC approach needs further validation particularly during dynamic tasks. METHODS To compare model outcomes between MVC and SVC approaches, nineteen healthy subjects performed a dynamic lifting task with two loading conditions. RESULTS Results demonstrated that these two approaches produced highly correlated results with relatively small absolute and relative differences (<10 %) when considering highly-aggregated model outcomes (e.g. compression forces, stability indices). Larger differences were, however, observed in estimated muscle forces. Although some model outcomes, e.g. force of abdominal muscles, were statistically different, their effect sizes remained mostly small (ηG2 ≤ 0.13) and in a few cases moderate (ηG2 ≤ 0.165). CONCLUSION The findings highlight that the MVC calibration approach can reliably be replaced by the SVC approach when the true MVC exertion is not accessible due to pain, kinesiophobia and/or the lack of proper training.
Collapse
Affiliation(s)
| | - Farshid Ghezelbash
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada
| | - Aboulfazl Shirazi-Adl
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada
| | - Denis Gagnon
- Department of Physical Activity Sciences, University of Sherbrooke, Canada
| | - Hakim Mecheri
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada
| | - Christian Larivière
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada; Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l'Ile-de-Montréal (CCSMTL), Canada.
| |
Collapse
|
8
|
Cannon J, Kulig K, Weber AE, Powers CM. Gluteal activation during squatting reduces acetabular contact pressure in persons with femoroacetabular impingement syndrome: A patient-specific finite element analysis. Clin Biomech (Bristol, Avon) 2023; 101:105849. [PMID: 36549048 DOI: 10.1016/j.clinbiomech.2022.105849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Femoroacetabular impingement syndrome is a motion-related clinical disorder resulting from abnormal hip joint morphology. Mechanical impingement, in which the aspherical femoral head (cam morphology) abuts with the acetabular rim, is created with simultaneous hip flexion, internal rotation, and adduction. Impaired function of the gluteal muscles may be contributory to femoroacetabular impingement syndrome progression. The purpose of this study was to assess the influence of gluteal muscle recruitment on acetabular contact pressure during squatting in persons with cam femoroacetabular impingement syndrome. METHODS Eight individuals (4 males, 4 females) with a diagnosis of cam femoroacetabular impingement syndrome underwent CT imaging of the pelvis and proximal femora, and a biomechanical assessment of squatting (kinematics, kinetics, and electromyography). Two maximal depth bodyweight squat conditions were evaluated: 1) non-cued squatting; and 2) cued gluteal activation squatting. Utilizing subject-specific electromyography-driven hip and finite element modeling approaches, hip muscle activation, kinematics, bone-on-bone contact forces, and peak acetabular contact pressure were compared between squat conditions. FINDINGS Modest increases in gluteus maximus (7% MVIC, P < 0.0001) and medius (6% MVIC, P = 0.009) activation were able to reduce hip internal rotation on average 5° (P = 0.024), and in doing so reduced acetabular contact pressure by 32% (P = 0.023). Reductions in acetabular contact pressure occurred despite no change in hip abduction and increased bone-on-bone contact forces occurring in the cued gluteal activation condition. INTERPRETATION Our findings highlight the importance of gluteal activation in minimizing mechanical impingement and provide a foundation for interventions aimed at preventing the development and progression of femoroacetabular impingement syndrome.
Collapse
Affiliation(s)
- Jordan Cannon
- Jacquelin Perry Musculoskeletal Biomechanics Research Laboratory, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA; Comparative Neuromuscular Biomechanics Laboratory, Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kornelia Kulig
- Jacquelin Perry Musculoskeletal Biomechanics Research Laboratory, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Alexander E Weber
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christopher M Powers
- Jacquelin Perry Musculoskeletal Biomechanics Research Laboratory, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Robust estimation of lumbar joint forces in symmetric and asymmetric lifting tasks via large-scale electromyography-driven musculoskeletal models. J Biomech 2022; 144:111307. [DOI: 10.1016/j.jbiomech.2022.111307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
|
10
|
Banks JJ, Umberger BR, Boyer KA, Caldwell GE. Lower back kinetic demands during induced lower limb gait asymmetries. Gait Posture 2022; 98:101-108. [PMID: 36095916 DOI: 10.1016/j.gaitpost.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/12/2022] [Accepted: 09/01/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Gait asymmetries are common in many clinical populations (e.g., amputation, injury, or deformities) and are associated with a high incidence of lower back pain. Despite this high incidence, the impact of gait asymmetries on lower back kinetic demands are not well characterized due to experimental limitations in these clinical populations. Therefore, we artificially and safely induced gait asymmetry during walking in healthy able-bodied participants to examine lower back kinetic demands compared to their normal gait. RESEARCH QUESTION Are lower back kinetic demands different during artificially induced asymmetries than those during normal gait? METHODS L5/S1 vertebral joint kinetics and trunk muscle forces were estimated during gait in twelve healthy men and women with a musculoskeletal lower back model that uniquely incorporated participant-specific responses using an EMG optimization approach. Five walking conditions were conducted on a force-measuring treadmill, including normal unperturbed "symmetrical" gait, and asymmetrical gait induced by unilaterally altering leg mass, leg length, and ankle joint motion in various combinations. Gait symmetry index and lower back kinetics were compared with repeated-measures ANOVAs and post hoc tests (α = .05). RESULTS The perturbations were successful in producing different degrees of step length and stance time gait asymmetries (p < .01). However, lower back kinetic demands associated with asymmetrical gait were similar to, or only moderately different from normal walking for most conditions despite the observed asymmetries. SIGNIFICANCE Our findings indicate that the high incidence of lower back pain often associated with gait asymmetries may not be a direct effect of increased lower back demands. If biomechanical demands are responsible for the high incidence of lower back pain in such populations, daily tasks besides walking may be responsible and warrant further investigation.
Collapse
Affiliation(s)
- Jacob J Banks
- Department of Kinesiology, University of Massachusetts Amherst, Totman Building 30 Eastman Lane, Amherst, MA 01003, United States; Department of Orthopedic Surgery, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States.
| | - Brian R Umberger
- School of Kinesiology, University of Michigan, 830 North University, Ann Arbor, MI 48109, United States
| | - Katherine A Boyer
- Department of Kinesiology, University of Massachusetts Amherst, Totman Building 30 Eastman Lane, Amherst, MA 01003, United States
| | - Graham E Caldwell
- Department of Kinesiology, University of Massachusetts Amherst, Totman Building 30 Eastman Lane, Amherst, MA 01003, United States
| |
Collapse
|
11
|
Patellofemoral Joint Loading in Forward Lunge With Step Length and Height Variations. J Appl Biomech 2022; 38:210-220. [PMID: 35697336 DOI: 10.1123/jab.2021-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022]
Abstract
The objective was to assess how patellofemoral loads (joint force and stress) change while lunging with step length and step height variations. Sixteen participants performed a forward lunge using short and long steps at ground level and up to a 10-cm platform. Electromyography, ground reaction force, and 3D motion were captured, and patellofemoral loads were calculated as a function of knee angle. Repeated-measures 2-way analysis of variance (P < .05) was employed. Patellofemoral loads in the lead knee were greater with long step at the beginning of landing (10°-30° knee angle) and the end of pushoff (10°-40°) and greater with short step during the deep knee flexion portion of the lunge (50°-100°). Patellofemoral loads were greater at ground level than 10-cm platform during lunge descent (50°-100°) and lunge ascent (40°-70°). Patellofemoral loads generally increased as knee flexion increased and decreased as knee flexion decreased. To gradually increase patellofemoral loads, perform forward lunge in the following sequence: (1) minimal knee flexion (0°-30°), (2) moderate knee flexion (0°-60°), (3) long step and deep knee flexion (0°-100°) up to a 10-cm platform, and (4) long step and deep knee flexion (0°-100°) at ground level.
Collapse
|
12
|
Lee GH, Lee YR, Kim H, Kwon DA, Kim H, Yang C, Choi SQ, Park S, Jeong JW, Park S. Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics. Nat Commun 2022; 13:2643. [PMID: 35551193 PMCID: PMC9098628 DOI: 10.1038/s41467-022-30427-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
Liquid metal is being regarded as a promising material for soft electronics owing to its distinct combination of high electrical conductivity comparable to that of metals and exceptional deformability derived from its liquid state. However, the applicability of liquid metal is still limited due to the difficulty in simultaneously achieving its mechanical stability and initial conductivity. Furthermore, reliable and rapid patterning of stable liquid metal directly on various soft substrates at high-resolution remains a formidable challenge. In this work, meniscus-guided printing of ink containing polyelectrolyte-attached liquid metal microgranular-particle in an aqueous solvent to generate semi-solid-state liquid metal is presented. Liquid metal microgranular-particle printed in the evaporative regime is mechanically stable, initially conductive, and patternable down to 50 μm on various substrates. Demonstrations of the ultrastretchable (~500% strain) electrical circuit, customized e-skin, and zero-waste ECG sensor validate the simplicity, versatility, and reliability of this manufacturing strategy, enabling broad utility in the development of advanced soft electronics. In this article, meniscus-guided printing of polyelectrolyte-attached liquid metal particles to simultaneously achieve mechanical stability and initial electrical conductivity at high resolution is introduced.
Collapse
Affiliation(s)
- Gun-Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ye Rim Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hanul Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Do A Kwon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeonji Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Congqi Yang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Siyoung Q Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seongjun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
13
|
Banks JJ, Umberger BR, Caldwell GE. EMG optimization in OpenSim: A model for estimating lower back kinetics in gait. Med Eng Phys 2022; 103:103790. [PMID: 35500997 DOI: 10.1016/j.medengphy.2022.103790] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/22/2021] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
Participant-specific musculoskeletal models are needed to accurately estimate lower back internal kinetic demands and injury risk. In this study we developed the framework for incorporating an electromyography optimization (EMGopt) approach within OpenSim (https://simtk.org/projects/emg_opt_tool) and evaluated lower back demands estimated from the model during gait. Kinematic, external kinetic, and EMG data were recorded from six participants as they performed walking and carrying tasks on a treadmill. For evaluation, predicted lumbar vertebral joint forces were compared to those from a generic static optimization approach (SOpt) and to previous studies. Further, model-estimated muscle activations were compared to recorded EMG, and model sensitivity to day-to-day EMG variability was evaluated. Results showed the vertebral joint forces from the model were qualitatively similar in pattern and magnitude to literature reports. Compared to SOpt, the EMGopt approach predicted larger joint loads (p<.01) with muscle activations better matching individual participant EMG patterns. L5/S1 vertebral joint forces from EMGopt were sensitive to the expected variability of recorded EMG, but the magnitude of these differences (±4%) did not impact between-task comparisons. Despite limitations inherent to such models, the proposed musculoskeletal model and EMGopt approach appears well-suited for evaluating internal lower back demands during gait tasks.
Collapse
Affiliation(s)
- Jacob J Banks
- University of Massachusetts Amherst, Department of Kinesiology, 110 Totman Building, 30 Eastman Lane, Amherst, MA 01003, United States; Beth Israel Deaconess Medical Center, Center for Advanced Orthopaedic Studies, 330 Brookline Avenue, RN 115, Boston, MA 02215, United States; Harvard Medical School, Department of Orthopaedic Surgery, Boston, MA 02115, United States.
| | - Brian R Umberger
- University of Michigan, School of Kinesiology, 830 North University Avenue, Ann Arbor, MI 48109, United States.
| | - Graham E Caldwell
- University of Massachusetts Amherst, Department of Kinesiology, 110 Totman Building, 30 Eastman Lane, Amherst, MA 01003, United States.
| |
Collapse
|
14
|
Bojairami IE, Driscoll M. Coordination Between Trunk Muscles, Thoracolumbar Fascia, and Intra-Abdominal Pressure Toward Static Spine Stability. Spine (Phila Pa 1976) 2022; 47:E423-E431. [PMID: 34545044 DOI: 10.1097/brs.0000000000004223] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Numerical in-silico human spine stability finite element analysis. OBJECTIVE The purpose of this study was to investigate the contribution of major torso tissues toward static spine stability, mainly the thoracolumbar fascia (TLF), abdominal wall with its intra-abdominal pressure (IAP), and spinal muscles inclusive of their intramuscular pressure. SUMMARY OF BACKGROUND DATA Given the numerous redundancies involved in the spine, current methodologies for assessing static spinal stability are limited to specific tissues and could lead to inconclusive results. A three-dimensional finite element model of the spine, with structured analysis of major torso tissues, allows for objective investigation of static spine stability. METHODS A novel previously fully validated spine model was employed. Major torso tissues, mainly the muscles, TLF, and IAP were individually, and in combinations, activated under a 350N external spine perturbation. The stability contribution exerted by these tissues, or their ability to restore the spine to the unperturbed position, was assessed in different case-scenarios. RESULTS Individual activations recorded significantly different stability contributions, with the highest being the TLF at 75%. Combined or synergistic activations showed an increase of up to 93% stability contribution when all tissues were simultaneously activated with a corresponding decrease in the tensile load exerted by the tissues themselves. CONCLUSION This investigation demonstrated torso tissues exhibiting different roles toward static spine stability. The TLF appeared able to dissipate and absorb excessive loads, the muscles acted as antagonistic to external perturbations, and the IAP played a role limiting movement. Furthermore, the different combinations explored suggested an optimized engagement and coordination between different tissues to achieve a specific task, while minimizing individual work.Level of Evidence: N/A.
Collapse
Affiliation(s)
- Ibrahim El Bojairami
- Musculoskeletal Biomechanics Research Lab, Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
15
|
Silvestros P, Pizzolato C, Lloyd DG, Preatoni E, Gill HS, Cazzola D. Electromyography-Assisted Neuromusculoskeletal Models Can Estimate Physiological Muscle Activations and Joint Moments Across the Neck Before Impacts. J Biomech Eng 2022; 144:1120603. [PMID: 34557891 DOI: 10.1115/1.4052555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Indexed: 01/20/2023]
Abstract
Knowledge of neck muscle activation strategies before sporting impacts is crucial for investigating mechanisms of severe spinal injuries. However, measurement of muscle activations during impacts is experimentally challenging and computational estimations are not often guided by experimental measurements. We investigated neck muscle activations before impacts with the use of electromyography (EMG)-assisted neuromusculoskeletal models. Kinematics and EMG recordings from four major neck muscles of a rugby player were experimentally measured during rugby activities. A subject-specific musculoskeletal model was created with muscle parameters informed from MRI measurements. The model was used in the calibrated EMG-informed neuromusculoskeletal modeling toolbox and three neural solutions were compared: (i) static optimization (SO), (ii) EMG-assisted (EMGa), and (iii) MRI-informed EMG-assisted (EMGaMRI). EMGaMRI and EMGa significantly (p < 0.01) outperformed SO when tracking cervical spine net joint moments from inverse dynamics in flexion/extension (RMSE = 0.95, 1.14, and 2.32 N·m) but not in lateral bending (RMSE = 1.07, 2.07, and 0.84 N·m). EMG-assisted solutions generated physiological muscle activation patterns and maintained experimental cocontractions significantly (p < 0.01) outperforming SO, which was characterized by saturation and nonphysiological "on-off" patterns. This study showed for the first time that physiological neck muscle activations and cervical spine net joint moments can be estimated without assumed a priori objective criteria before impacts. Future studies could use this technique to provide detailed initial loading conditions for theoretical simulations of neck injury during impacts.
Collapse
Affiliation(s)
- Pavlos Silvestros
- Department for Health, Centre for Analysis of Motion and Entertainment Research and Application (CAMERA), University of Bath, Bath BA2 7AY, UK
| | - Claudio Pizzolato
- School of Allied Health Sciences, Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Griffith University, Gold Coast, Queensland 4222, Australia
| | - David G Lloyd
- School of Allied Health Sciences, Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Griffith University, Gold Coast, Queensland 4222, Australia
| | - Ezio Preatoni
- Department for Health, University of Bath, Bath BA2 7AY, UK
| | - Harinderjit S Gill
- Centre for Therapeutic Innovation, Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Dario Cazzola
- Department for Health, Centre for Analysis of Motion and Entertainment Research and Application (CAMERA), University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
16
|
Tabasi A, Lazzaroni M, Brouwer NP, Kingma I, van Dijk W, de Looze MP, Toxiri S, Ortiz J, van Dieën JH. Optimizing Calibration Procedure to Train a Regression-Based Prediction Model of Actively Generated Lumbar Muscle Moments for Exoskeleton Control. SENSORS (BASEL, SWITZERLAND) 2021; 22:87. [PMID: 35009627 PMCID: PMC8747305 DOI: 10.3390/s22010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The risk of low-back pain in manual material handling could potentially be reduced by back-support exoskeletons. Preferably, the level of exoskeleton support relates to the required muscular effort, and therefore should be proportional to the moment generated by trunk muscle activities. To this end, a regression-based prediction model of this moment could be implemented in exoskeleton control. Such a model must be calibrated to each user according to subject-specific musculoskeletal properties and lifting technique variability through several calibration tasks. Given that an extensive calibration limits the practical feasibility of implementing this approach in the workspace, we aimed to optimize the calibration for obtaining appropriate predictive accuracy during work-related tasks, i.e., symmetric lifting from the ground, box stacking, lifting from a shelf, and pulling/pushing. The root-mean-square error (RMSE) of prediction for the extensive calibration was 21.9 nm (9% of peak moment) and increased up to 35.0 nm for limited calibrations. The results suggest that a set of three optimally selected calibration trials suffice to approach the extensive calibration accuracy. An optimal calibration set should cover each extreme of the relevant lifting characteristics, i.e., mass lifted, lifting technique, and lifting velocity. The RMSEs for the optimal calibration sets were below 24.8 nm (10% of peak moment), and not substantially different than that of the extensive calibration.
Collapse
Affiliation(s)
- Ali Tabasi
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences, 1081BT Amsterdam, The Netherlands; (N.P.B.); (I.K.); (J.H.v.D.)
| | - Maria Lazzaroni
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, 16163 Genova, Italy; (M.L.); (S.T.); (J.O.)
| | - Niels P. Brouwer
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences, 1081BT Amsterdam, The Netherlands; (N.P.B.); (I.K.); (J.H.v.D.)
| | - Idsart Kingma
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences, 1081BT Amsterdam, The Netherlands; (N.P.B.); (I.K.); (J.H.v.D.)
| | | | | | - Stefano Toxiri
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, 16163 Genova, Italy; (M.L.); (S.T.); (J.O.)
| | - Jesús Ortiz
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, 16163 Genova, Italy; (M.L.); (S.T.); (J.O.)
| | - Jaap H. van Dieën
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences, 1081BT Amsterdam, The Netherlands; (N.P.B.); (I.K.); (J.H.v.D.)
| |
Collapse
|
17
|
Regulating Movement Frequency and Speed: Implications for Lumbar Spine Load Management Strategies Demonstrated Using an In Vitro Porcine Model. J Appl Biomech 2021; 37:538-546. [PMID: 34768237 DOI: 10.1123/jab.2021-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/14/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022]
Abstract
The relationship between internal loading dose and low-back injury risk during lifting is well known. However, the implications of movement parameters that influence joint loading rates-movement frequency and speed-on time-dependent spine loading responses remain less documented. This study quantified the effect of loading rate and frequency on the tolerated cumulative loading dose and its relation to joint lifespan. Thirty-two porcine spinal units were exposed to biofidelic compression loading paradigms that differed by joint compression rate (4.2 and 8.3 kN/s) and frequency (30 and 60 cycles per minute). Cyclic compression testing was applied until failure was detected or 10,800 continuous cycles were tolerated. Instantaneous weighting factors were calculated to evaluate the cumulative load and Kaplan-Meier survival probability functions were examined following nonlinear dose normalization of the cyclic lifespan. Significant reductions in cumulative compression were tolerated when spinal units were compressed at 8.3 kN/s (P < .001, 67%) and when loaded at 30 cycles per minute (P = .008, 45%). There was a positive moderate relationship between cumulative load tolerance and normalized cyclic lifespan (R2 = .52), which was supported by joint survivorship functions. The frequency and speed of movement execution should be evaluated in parallel to loading dose for the management of low-back training exposures.
Collapse
|
18
|
Ventura L, Lorenzini M, Kim W, Ajoudani A. A Flexible Robotics-Inspired Computational Model of Compressive Loading on the Human Spine. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Remus R, Lipphaus A, Neumann M, Bender B. Calibration and validation of a novel hybrid model of the lumbosacral spine in ArtiSynth-The passive structures. PLoS One 2021; 16:e0250456. [PMID: 33901222 PMCID: PMC8075237 DOI: 10.1371/journal.pone.0250456] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/07/2021] [Indexed: 12/04/2022] Open
Abstract
In computational biomechanics, two separate types of models have been used predominantly to enhance the understanding of the mechanisms of action of the lumbosacral spine (LSS): Finite element (FE) and musculoskeletal multibody (MB) models. To combine advantages of both models, hybrid FE-MB models are an increasingly used alternative. The aim of this paper is to develop, calibrate, and validate a novel passive hybrid FE-MB open-access simulation model of a ligamentous LSS using ArtiSynth. Based on anatomical data from the Male Visible Human Project, the LSS model is constructed from the L1-S1 rigid vertebrae interconnected with hyperelastic fiber-reinforced FE intervertebral discs, ligaments, and facet joints. A mesh convergence study, sensitivity analyses, and systematic calibration were conducted with the hybrid functional spinal unit (FSU) L4/5. The predicted mechanical responses of the FSU L4/5, the lumbar spine (L1-L5), and the LSS were validated against literature data from in vivo and in vitro measurements and in silico models. Spinal mechanical responses considered when loaded with pure moments and combined loading modes were total and intervertebral range of motions, instantaneous axes and centers of rotation, facet joint contact forces, intradiscal pressures, disc bulges, and stiffnesses. Undesirable correlations with the FE mesh were minimized, the number of crisscrossed collagen fiber rings was reduced to five, and the individual influences of specific anatomical structures were adjusted to in vitro range of motions. Including intervertebral motion couplings for axial rotation and nonlinear stiffening under increasing axial compression, the predicted kinematic and structural mechanics responses were consistent with the comparative data. The results demonstrate that the hybrid simulation model is robust and efficient in reproducing valid mechanical responses to provide a starting point for upcoming optimizations and extensions, such as with active skeletal muscles.
Collapse
Affiliation(s)
- Robin Remus
- Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| | - Andreas Lipphaus
- Biomechanics Research Group, Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| | - Marc Neumann
- Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| | - Beate Bender
- Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
20
|
Costi JJ, Ledet EH, O'Connell GD. Spine biomechanical testing methodologies: The controversy of consensus vs scientific evidence. JOR Spine 2021; 4:e1138. [PMID: 33778410 PMCID: PMC7984003 DOI: 10.1002/jsp2.1138] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Biomechanical testing methodologies for the spine have developed over the past 50 years. During that time, there have been several paradigm shifts with respect to techniques. These techniques evolved by incorporating state-of-the-art engineering principles, in vivo measurements, anatomical structure-function relationships, and the scientific method. Multiple parametric studies have focused on the effects that the experimental technique has on outcomes. As a result, testing methodologies have evolved, but there are no standard testing protocols, which makes the comparison of findings between experiments difficult and conclusions about in vivo performance challenging. In 2019, the international spine research community was surveyed to determine the consensus on spine biomechanical testing and if the consensus opinion was consistent with the scientific evidence. More than 80 responses to the survey were received. The findings of this survey confirmed that while some methods have been commonly adopted, not all are consistent with the scientific evidence. This review summarizes the scientific literature, the current consensus, and the authors' recommendations on best practices based on the compendium of available evidence.
Collapse
Affiliation(s)
- John J. Costi
- Biomechanics and Implants Research Group, Medical Device Research Institute, College of Science and EngineeringFlinders UniversityAdelaideAustralia
| | - Eric H. Ledet
- Department of Biomedical EngineeringRensselaer Polytechnic InstituteTroyNew YorkUSA
- Research and Development ServiceStratton VA Medical CenterAlbanyNew YorkUSA
| | - Grace D. O'Connell
- Department of Mechanical EngineeringUniversity of California‐BerkeleyBerkeleyCaliforniaUSA
- Department of Orthopaedic SurgeryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
21
|
Cannon J, Cambridge EDJ, McGill SM. Increased core stability is associated with reduced knee valgus during single-leg landing tasks: Investigating lumbar spine and hip joint rotational stiffness. J Biomech 2021; 116:110240. [PMID: 33494012 DOI: 10.1016/j.jbiomech.2021.110240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Knee valgus during landing has been identified as a strong correlate of ACL injury. Inappropriate trunk control during landing contributes to high knee valgus, with neuromuscular factors related to core stability postulated as the mechanism. This investigation probed the influence of trunk and hip mechanics, including joint stiffness, on knee mechanics, particularly high knee valgus. Specifically, this study quantified lumbar spine and hip joint rotational stiffness (a proxy for mechanical joint stability) during single-leg landing tasks known to be associated with injury risk, particularly in females. Kinematics, kinetics, and 24 channels of electromyography spanning the trunk and hip musculature were measured in 18 healthy female participants. Anatomically detailed EMG-driven musculoskeletal models quantified lumbar spine and hip joint rotational stiffness. The links between peak knee abduction angle and moment with lumbar spine and hip joint rotational stiffness were measured. Hip joint rotational stiffness influenced knee abduction across tasks (correlation coefficient ranging from -0.48 to -0.70, p < 0.05) to reduce valgus deviation. Similarly, transverse plane hip joint rotational stiffness during landings reduced knee abduction moment (R = -0.50, P = 0.03; R = -0.49, P = 0.04), and lumbar spine joint rotational stiffness reduced knee abduction angle and moment but did not consistently reach statistical significance. The control system uses stiffness to control motion. This study demonstrates the importance of proximal (lumbar spine and hip) joint rotational stiffness (i.e. core control stability) during single-leg landing to prevent knee abduction motion. Instantaneous core stability is achieved with the coordinated activation and stiffness of both trunk and hip muscles.
Collapse
Affiliation(s)
- Jordan Cannon
- Spine Biomechanics Laboratory, Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada; Musculoskeletal Biomechanics Research Laboratory, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA.
| | - Edward D J Cambridge
- Spine Biomechanics Laboratory, Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Stuart M McGill
- Spine Biomechanics Laboratory, Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
22
|
El Bojairami I, El-Monajjed K, Driscoll M. Development and validation of a timely and representative finite element human spine model for biomechanical simulations. Sci Rep 2020; 10:21519. [PMID: 33298988 PMCID: PMC7725813 DOI: 10.1038/s41598-020-77469-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/11/2020] [Indexed: 01/31/2023] Open
Abstract
Numerous spine Finite Element (FE) models have been developed to assess spinal tolerances, spinal loadings and low back pain-related issues. However, justified simplifications, in terms of tissue decomposition and inclusion, for such a complex system may overlook crucial information. Thus, the purpose of this research was to develop and validate a comprehensive and representative spine FE model inclusive of an accurate representation of all major torso elements. A comprehensive model comprised of 273 tissues was developed via a novel FE meshing method to enhance computational feasibility. A comprehensive set of indirect validation tests were carried out to validate every aspect of the model. Under an increasing angular displacement of 24°-41°, the lumbar spine recorded an increasing moment from 5.5 to 9.3 Nm with an increase in IVD pressures from 0.41 to 0.66 MPa. Under forward flexion, vertical vertebral displacements simulated a 6% and 13% maximum discrepancy for intra-abdominal and intramuscular pressure results, all closely resembling previously documented in silico measured values. The developed state-of-the-art model includes most physiological tissues known to contribute to spinal loadings. Given the simulation's accuracy, confirmed by its validation tests, the developed model may serve as a reliable spinal assessment tool.
Collapse
Affiliation(s)
- Ibrahim El Bojairami
- Musculoskeletal Biomechanics Research Laboratory, Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Macdonald Eng. Bldg. Office #153, Montreal, QC, H3A 0C3, Canada
| | - Khaled El-Monajjed
- Musculoskeletal Biomechanics Research Laboratory, Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Macdonald Eng. Bldg. Office #153, Montreal, QC, H3A 0C3, Canada
| | - Mark Driscoll
- Musculoskeletal Biomechanics Research Laboratory, Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Macdonald Eng. Bldg. Office #153, Montreal, QC, H3A 0C3, Canada.
| |
Collapse
|
23
|
MacLean KFE, Dickerson CR. Development of a comparative chimpanzee musculoskeletal glenohumeral model: implications for human function. J Exp Biol 2020; 223:jeb225987. [PMID: 33071220 DOI: 10.1242/jeb.225987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/01/2020] [Indexed: 11/20/2022]
Abstract
Modern human shoulder function is affected by the evolutionary adaptations that have occurred to ensure survival and prosperity of the species. Robust examination of behavioral shoulder performance and injury risk can be holistically improved through an interdisciplinary approach that integrates anthropology and biomechanics. Coordination of these fields can allow different perspectives to contribute to a more complete interpretation of biomechanics of the modern human shoulder. The purpose of this study was to develop a novel biomechanical and comparative chimpanzee glenohumeral model, designed to parallel an existing human glenohumeral model, and compare predicted musculoskeletal outputs between the two models. The chimpanzee glenohumeral model consists of three modules - an external torque module, a musculoskeletal geometric module and an internal muscle force prediction module. Together, these modules use postural kinematics, subject-specific anthropometrics, a novel shoulder rhythm, glenohumeral stability ratios, hand forces, musculoskeletal geometry and an optimization routine to estimate joint reaction forces and moments, subacromial space dimensions, and muscle and tissue forces. Using static postural data of a horizontal bimanual suspension task, predicted muscle forces and subacromial space were compared between chimpanzees and humans. Compared with chimpanzees, the human model predicted a 2 mm narrower subacromial space, deltoid muscle forces that were often double those of chimpanzees and a strong reliance on infraspinatus and teres minor (60-100% maximal force) over other rotator cuff muscles. These results agree with previous work on inter-species differences that inform basic human rotator cuff function and pathology.
Collapse
Affiliation(s)
- Kathleen F E MacLean
- Division of Kinesiology, School of Health and Human Performance, Dalhousie University, 6260 South Street, Halifax, NS, Canada B3H 4R2
| | - Clark R Dickerson
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| |
Collapse
|
24
|
Sarshari E, Mancuso M, Terrier A, Farron A, Mullhaupt P, Pioletti D. Muscle co-contraction in an upper limb musculoskeletal model: EMG-assisted vs. standard load-sharing. Comput Methods Biomech Biomed Engin 2020; 24:137-150. [DOI: 10.1080/10255842.2020.1814755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ehsan Sarshari
- Automatic Control Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matteo Mancuso
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Terrier
- Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alain Farron
- Service of Orthopaedic Surgery and Traumatology, Lausanne University Hospital and University of Lausanne (CHUV), Lausanne, Switzerland
| | - Philippe Mullhaupt
- Automatic Control Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Dominique Pioletti
- Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
25
|
Development of a multiscale model of the human lumbar spine for investigation of tissue loads in people with and without a transtibial amputation during sit-to-stand. Biomech Model Mechanobiol 2020; 20:339-358. [PMID: 33026565 DOI: 10.1007/s10237-020-01389-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/19/2020] [Indexed: 01/14/2023]
Abstract
Quantification of lumbar spine load transfer is important for understanding low back pain, especially among persons with a lower limb amputation. Computational modeling provides a helpful solution for obtaining estimates of in vivo loads. A multiscale model was constructed by combining musculoskeletal and finite element (FE) models of the lumbar spine to determine tissue loading during daily activities. Three-dimensional kinematic and ground reaction force data were collected from participants with ([Formula: see text]) and without ([Formula: see text]) a unilateral transtibial amputation (TTA) during 5 sit-to-stand trials. We estimated tissue-level load transfer from the multiscale model by controlling the FE model with intervertebral kinematics and muscle forces predicted by the musculoskeletal model. Annulus fibrosis stress, intradiscal pressure (IDP), and facet contact forces were calculated using the FE model. Differences in whole-body kinematics, muscle forces, and tissue-level loads were found between participant groups. Notably, participants with TTA had greater axial rotation toward their intact limb ([Formula: see text]), greater abdominal muscle activity ([Formula: see text]), and greater overall tissue loading throughout sit-to-stand ([Formula: see text]) compared to able-bodied participants. Both normalized (to upright standing) and absolute estimates of L4-L5 IDP were close to in vivo values reported in the literature. The multiscale model can be used to estimate the distribution of loads within different lumbar spine tissue structures and can be adapted for use with different activities, populations, and spinal geometries.
Collapse
|
26
|
McFarland DC, Brynildsen AG, Saul KR. Sensitivity of Neuromechanical Predictions to Choice of Glenohumeral Stability Modeling Approach. J Appl Biomech 2020; 36:249-258. [PMID: 32369767 DOI: 10.1123/jab.2019-0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 02/05/2020] [Accepted: 03/12/2020] [Indexed: 11/18/2022]
Abstract
Most upper-extremity musculoskeletal models represent the glenohumeral joint with an inherently stable ball-and-socket, but the physiological joint requires active muscle coordination for stability. The authors evaluated sensitivity of common predicted outcomes (instability, net glenohumeral reaction force, and rotator cuff activations) to different implementations of active stabilizing mechanisms (constraining net joint reaction direction and incorporating normalized surface electromyography [EMG]). Both EMG and reaction force constraints successfully reduced joint instability. For flexion, incorporating any normalized surface EMG data reduced predicted instability by 54.8%, whereas incorporating any force constraint reduced predicted instability by 43.1%. Other outcomes were sensitive to EMG constraints, but not to force constraints. For flexion, incorporating normalized surface EMG data increased predicted magnitudes of joint reaction force and rotator cuff activations by 28.7% and 88.4%, respectively. Force constraints had no influence on these predicted outcomes for all tasks evaluated. More restrictive EMG constraints also tended to overconstrain the model, making it challenging to accurately track input kinematics. Therefore, force constraints may be a more robust choice when representing stability.
Collapse
|
27
|
Li SSW, Chow DHK. Comparison of Predictions Between an EMG-Assisted Approach and Two Optimization-Driven Approaches for Lumbar Spine Loading During Walking With Backpack Loads. HUMAN FACTORS 2020; 62:565-577. [PMID: 31189071 DOI: 10.1177/0018720819851299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
OBJECTIVE The efficacy of two optimization-driven biomechanical modeling approaches has been compared with an electromyography-assisted optimization (EMGAO) approach to predict lumbar spine loading while walking with backpack loads. BACKGROUND The EMGAO approach adopts more variables in the optimization process and is complex in data collection and processing, whereas optimization-driven approaches are simple and include the fewest possible variables. However, few studies have been conducted on the efficacy of using the optimization-driven approach to predict lumbar spine loading while walking with backpack loads. METHOD Anthropometric information of 10 healthy male adults as well as their kinematic, kinetic, and electromyographic data acquired while they walked with various backpack loads (no-load, 5%, 10%, 15%, and 20% of body weight) served as inputs into the model for predicting lumbosacral joint compression forces. The efficacy of two optimization-driven models, namely double linear optimization with constraints on muscle intensity and single linear optimization without any constraints, was investigated by comparing the resulting force profile with that provided by a current EMGAO approach. RESULTS The double and single linear optimization approaches predicted mean deviations in peak force of -5.1%, and -19.2% as well as root-mean-square differences in force profile of 16.2%, and 25.4%, respectively. CONCLUSION The double linear optimization approach was a relatively comparable estimator to the EMGAO approach in terms of its consistency, slight bias, and efficiency for predicting peak lumbosacral joint compression forces. APPLICATION The double linear optimization approach is a useful biomechanical model for estimating peak lumbar compression forces while walking with backpack loads.
Collapse
Affiliation(s)
- Simon S W Li
- 229051 66390 The Education University of Hong Kong
| | | |
Collapse
|
28
|
EMG-Assisted Algorithm to Account for Shoulder Muscles Co-Contraction in Overhead Manual Handling. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glenohumeral stability is essential for a healthy function of the shoulder. It is ensured partly by the scapulohumeral muscular balance. Accordingly, modelling muscle interactions is a key factor in the understanding of occupational pathologies, and the development of ergonomic interventions. While static optimization is commonly used to estimate muscle activations, it tends to underestimate the role of shoulder’s antagonist muscles. The purpose of this study was to implement experimental electromyographic (EMG) data to predict muscle activations that could account for the stabilizing role of the shoulder muscles. Kinematics and EMG were recorded from 36 participants while lifting a box from hip to eye level. Muscle activations and glenohumeral joint reactions were estimated using an EMG-assisted algorithm and compared to those obtained using static optimization with a generic and calibrated model. Muscle activations predicted with the EMG-assisted method were generally larger. Additionally, more interactions between the different rotator cuff muscles, as well as between primer actuators and stabilizers, were predicted with the EMG-assisted method. Finally, glenohumeral forces calculated from a calibrated model remained within the boundaries of the glenoid stability cone. These findings suggest that EMG-assisted methods could account for scapulohumeral muscle co-contraction, and thus their contribution to the glenohumeral stability.
Collapse
|
29
|
The effect of posture on lumbar muscle morphometry from upright MRI. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2020; 29:2306-2318. [DOI: 10.1007/s00586-020-06409-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/15/2020] [Accepted: 04/04/2020] [Indexed: 11/26/2022]
|
30
|
Molinaro DD, King AS, Young AJ. Biomechanical analysis of common solid waste collection throwing techniques using OpenSim and an EMG-assisted solver. J Biomech 2020; 104:109704. [PMID: 32248942 DOI: 10.1016/j.jbiomech.2020.109704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/21/2020] [Accepted: 02/18/2020] [Indexed: 11/20/2022]
Abstract
The solid waste collection industry is one of the most common occupations resulting in low back pain (LBP). Lumbar peak joint reaction forces and peak and integrated moments are strong correlates of LBP. To investigate these risks, this study compared three common waste collection throwing techniques of varying lumbar symmetry: the symmetric (SYM) technique, the asymmetric fixed stance (AFS) technique, and the asymmetric with pivot (AWP) technique. Lumbar moments and joint reaction loads were computed for throwing garbage bags of 3, 7, and 11 kg to quantify the effects that technique and object weight have on LBP risk. LBP risk factors were computed using a full-body musculoskeletal model in OpenSim. Muscle activations were estimated using two methods: the EMG-assisted method, which included electromyography data in the solution, and the conventional static optimization method, which did not. The EMG-assisted method more accurately reproduced measured muscle activation, resulting in significantly larger peak compressive and shear forces (p < 0.05) of magnitudes indicative of LBP risk. Risk factors associated with the SYM technique were either larger or not statistically different compared to the asymmetric techniques for the 3 kg condition; however, the opposite result occurred for the 7 and 11 kg conditions (p < 0.05). These results suggest using rapid, asymmetric techniques when handling lightweight objects and slower, symmetric techniques for heavier objects to reduce LBP risk during waste collection throwing techniques. Results indicating increased risk between asymmetric techniques were mostly inconclusive. As expected, increasing bag mass generally increased LBP risk factors, regardless of technique (p < 0.05).
Collapse
Affiliation(s)
- Dean D Molinaro
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Andrew S King
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aaron J Young
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
31
|
Esrafilian A, Stenroth L, Mononen ME, Tanska P, Avela J, Korhonen RK. EMG-Assisted Muscle Force Driven Finite Element Model of the Knee Joint with Fibril-Reinforced Poroelastic Cartilages and Menisci. Sci Rep 2020; 10:3026. [PMID: 32080233 PMCID: PMC7033219 DOI: 10.1038/s41598-020-59602-2 10.1109/tnsre.2022.3159685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Abnormal mechanical loading is essential in the onset and progression of knee osteoarthritis. Combined musculoskeletal (MS) and finite element (FE) modeling is a typical method to estimate load distribution and tissue responses in the knee joint. However, earlier combined models mostly utilize static-optimization based MS models and muscle force driven FE models typically use elastic materials for soft tissues or analyze specific time points of gait. Therefore, here we develop an electromyography-assisted muscle force driven FE model with fibril-reinforced poro(visco)elastic cartilages and menisci to analyze knee joint loading during the stance phase of gait. Moreover, since ligament pre-strains are one of the important uncertainties in joint modeling, we conducted a sensitivity analysis on the pre-strains of anterior and posterior cruciate ligaments (ACL and PCL) as well as medial and lateral collateral ligaments (MCL and LCL). The model produced kinematics and kinetics consistent with previous experimental data. Joint contact forces and contact areas were highly sensitive to ACL and PCL pre-strains, while those changed less cartilage stresses, fibril strains, and fluid pressures. The presented workflow could be used in a wide range of applications related to the aetiology of cartilage degeneration, optimization of rehabilitation exercises, and simulation of knee surgeries.
Collapse
Affiliation(s)
- A Esrafilian
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - L Stenroth
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - M E Mononen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - P Tanska
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - J Avela
- NeuroMuscular Research Center, Unit of Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - R K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
32
|
Esrafilian A, Stenroth L, Mononen ME, Tanska P, Avela J, Korhonen RK. EMG-Assisted Muscle Force Driven Finite Element Model of the Knee Joint with Fibril-Reinforced Poroelastic Cartilages and Menisci. Sci Rep 2020; 10:3026. [PMID: 32080233 PMCID: PMC7033219 DOI: 10.1038/s41598-020-59602-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/31/2020] [Indexed: 11/12/2022] Open
Abstract
Abnormal mechanical loading is essential in the onset and progression of knee osteoarthritis. Combined musculoskeletal (MS) and finite element (FE) modeling is a typical method to estimate load distribution and tissue responses in the knee joint. However, earlier combined models mostly utilize static-optimization based MS models and muscle force driven FE models typically use elastic materials for soft tissues or analyze specific time points of gait. Therefore, here we develop an electromyography-assisted muscle force driven FE model with fibril-reinforced poro(visco)elastic cartilages and menisci to analyze knee joint loading during the stance phase of gait. Moreover, since ligament pre-strains are one of the important uncertainties in joint modeling, we conducted a sensitivity analysis on the pre-strains of anterior and posterior cruciate ligaments (ACL and PCL) as well as medial and lateral collateral ligaments (MCL and LCL). The model produced kinematics and kinetics consistent with previous experimental data. Joint contact forces and contact areas were highly sensitive to ACL and PCL pre-strains, while those changed less cartilage stresses, fibril strains, and fluid pressures. The presented workflow could be used in a wide range of applications related to the aetiology of cartilage degeneration, optimization of rehabilitation exercises, and simulation of knee surgeries.
Collapse
Affiliation(s)
- A Esrafilian
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - L Stenroth
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - M E Mononen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - P Tanska
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - J Avela
- NeuroMuscular Research Center, Unit of Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - R K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
33
|
Li SS, Chow DH. Modified electromyography-assisted optimization approach for predicting lumbar spine loading while walking with backpack loads. Proc Inst Mech Eng H 2020; 234:527-533. [PMID: 32053045 DOI: 10.1177/0954411920906243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study modified an electromyography-assisted optimization approach for predicting lumbar spine loading while walking with backpack loads. The modified-electromyography-assisted optimization approach eliminated the electromyography measurement at maximal voluntary contraction and adopted a linear electromyography-force relationship. Moreover, an optimal lower boundary condition for muscle gain was introduced to constrain the trunk muscle co-activation. Anthropometric information of 10 healthy young men as well as their kinematic, kinetic, and electromyography data obtained while walking with backpack loads were used as inputs in this study. A computational algorithm was used to find and analyse the sensitivity of the optimal lower boundary condition for achieving minimum deviation of the modified-electromyography-assisted optimization approach from the electromyography-assisted optimization approach for predicting lumbosacral joint compression force. Results validated that the modified-electromyography-assisted optimization approach (at optimal lower boundary condition of 0.92) predicted on average, a non-significant deviation in peak lumbosacral joint compression force of -18 N, a standard error of 9 N, and a root mean square difference in force profile of 73.8 N. The modified-electromyography-assisted optimization approach simplified the experimental process by eliminating the electromyography measurement at maximal voluntary contraction and provided comparable estimations for lumbosacral joint compression force that is also applicable to patients or individuals having difficulty in performing the maximal voluntary contraction activity.
Collapse
Affiliation(s)
- Simon Sw Li
- Department of Health and Physical Education, The Education University of Hong Kong, Tai Po, Hong Kong
| | - Daniel Hk Chow
- Department of Health and Physical Education, The Education University of Hong Kong, Tai Po, Hong Kong
| |
Collapse
|
34
|
Kian A, Pizzolato C, Halaki M, Ginn K, Lloyd D, Reed D, Ackland D. Static optimization underestimates antagonist muscle activity at the glenohumeral joint: A musculoskeletal modeling study. J Biomech 2019; 97:109348. [DOI: 10.1016/j.jbiomech.2019.109348] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/23/2019] [Accepted: 09/14/2019] [Indexed: 10/25/2022]
|
35
|
Li SSW, Chu CCF, Chow DHK. EMG-based lumbosacral joint compression force prediction using a support vector machine. Med Eng Phys 2019; 74:115-120. [PMID: 31537499 DOI: 10.1016/j.medengphy.2019.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/12/2019] [Accepted: 09/08/2019] [Indexed: 10/26/2022]
Abstract
Electromyography-assisted optimization (EMGAO) approach is widely used to predict lumbar joint loads under various dynamic and static conditions. However, such approach uses numerous anthropometric, kinematic, kinetic, and electromyographic data in the computation process, and thus makes data collection and processing complicated. This study developed an electromyography-based support vector machine (EMGB_SVM) approach for predicting lumbar spine load during walking with backpack loads. The EMGB_SVM is simple and uses merely the electromyographic data. Anthropometric information of 10 healthy male adults as well as their kinematic, kinetic, and electromyographic data acquired during walking exercises with no-load and with various backpack loads (5%, 10%, 15%, and 20% of their body weight) were used as the inputs of a biomechanical model, which was then used for predicting the lumbosacral joint compression force. The efficacy of the EMGB_SVM was investigated by comparing the force profiles obtained using this model with those obtained using the current EMGAO approach. On average, the EMGB_SVM obtained deviations in the peak and minimum forces of -3.3% and 5.1%, respectively, and a root mean square difference in the force profile of 7.5%. The EMGB_SVM is a comparable estimator in terms of its slight bias, favourable consistency, and efficiency at predicting the lumbosacral joint compression force.
Collapse
Affiliation(s)
- Simon S W Li
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong
| | - Carlin C F Chu
- School of Science and Technology, The Open University of Hong Kong, Hong Kong.
| | - Daniel H K Chow
- Department of Health and Physical Education, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong.
| |
Collapse
|
36
|
Anterior Cruciate Ligament Injury Mechanisms and the Kinetic Chain Linkage: The Effect of Proximal Joint Stiffness on Distal Knee Control During Bilateral Landings. J Orthop Sports Phys Ther 2019; 49:601-610. [PMID: 31130059 DOI: 10.2519/jospt.2019.8248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neuromuscular deficits at the trunk and hip may contribute to dynamic knee valgus and anterior cruciate ligament injury mechanisms. However, comprehensive examination of neuromuscular patterns and their mechanical influence is lacking. OBJECTIVES To investigate the influence of lumbar spine joint rotational stiffness (JRS) and the gluteal musculature contribution to hip JRS on dynamic knee valgus. METHODS In this cross-sectional study, 18 university-aged women completed a drop vertical jump while we measured kinematics, kinetics, and 24 channels of electromyography (EMG) spanning the trunk and hip musculature. We classified each limb as high or low valgus, based on frontal plane knee displacement magnitude. We used anatomically detailed, EMG-driven biomechanical models to quantify lumbar spine JRS and muscle contributions to hip JRS. RESULTS Low-valgus limbs generated greater gluteus medius frontal JRS (P = .002; effect size, 1.3) and gluteus maximus transverse JRS (P = .003; effect size, 1.2) compared to high-valgus limbs. Participants with bilateral high-valgus collapse had substantially reduced lumbar spine sagittal JRS compared to the group with low valgus on both limbs (P = .05; effect size, 5.1). Those with low valgus on both limbs also had a peak lumbar spine flexion angle of 24° ± 4°, compared to the bilateral high-valgus group's angle of 38° ± 10° (P = .09; effect size, 1.8). CONCLUSION Participants who avoided high medial knee displacement had greater proximal JRS. Increased JRS at the lumbar spine and greater JRS contributions from the gluteal musculature are linked with preventing high medial knee displacement. J Orthop Sports Phys Ther 2019;49(8):601-610. Epub 26 May 2019. doi:10.2519/jospt.2019.8248.
Collapse
|
37
|
Li SSW, Zheng YP, Chow DHK. Changes of lumbosacral joint compression force profile when walking caused by backpack loads. Hum Mov Sci 2019; 66:164-172. [PMID: 31029838 DOI: 10.1016/j.humov.2019.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/27/2019] [Accepted: 04/10/2019] [Indexed: 11/30/2022]
Abstract
Walking with backpack loads induces additional mechanical stress on the spine and has been identified as a risk factor of lower-back pain. This study evaluated the effects of walking with backpack loads on the lumbosacral joint compression force profile in both the magnitude and time domains. Ten male adults geared with anatomical markers and trunk surface electromyographic sensors walked along a walkway embedded with three force plates with no load and various backpack loads (5%, 10%, 15%, and 20% body weight). Lower-body movements, ground reaction forces, and trunk muscle activations were measured using a synchronized motion analysis, force plate, and surface electromyography system. The force profiles of identified gait cycles were predicted using an integrated inverse dynamic and electromyography-assisted optimization model and evaluated statistically. The results showed that as backpack load increased, the 10th, 50th, and 90th percentiles of force profiles escalated disproportionately. However, no significant changes were observed in the timing of the two peak force incidences. Such changes in the compression force might be an indication of the combined effects of the increase in both gravitational and mass moment of inertia of the system (body plus pack loads) when walking with a backpack. Pearson correlation coefficients of the force profiles between the five loading conditions were greater than 0.94. Strong associations between the force profiles at different backpack loads were confirmed.
Collapse
Affiliation(s)
- Simon S W Li
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Daniel H K Chow
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong.
| |
Collapse
|
38
|
Cooper L, Gullane A, Harvey J, Hills A, Zemura M, Martindale J, Rennie A, Cheneler D. Experimental platform to facilitate novel back brace development for the improvement of spine stability. Comput Methods Biomech Biomed Engin 2019; 22:1163-1173. [PMID: 31361152 DOI: 10.1080/10255842.2019.1645837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The spine or 'back' has many functions including supporting our body frame whilst facilitating movement, protecting the spinal cord and nerves and acting as a shock absorber. In certain instances, individuals may develop conditions that not only cause back pain but also may require additional support for the spine. Common movements such as twisting, standing and bending motions could exacerbate these conditions and intensify this pain. Back braces can be used in certain instances to constrain such motion as part of an individual's therapy and have existed as both medical and retail products for a number of decades. Arguably, back brace designs have lacked the innovation expected in this time. Existing designs are often found to be heavy, overly rigid, indiscrete and largely uncomfortable. In order to facilitate the development of new designs of back braces capable of being optimised to constrain particular motions for specific therapies, a numerical and experimental design strategy has been devised, tested and proven for the first time. The strategy makes use of an experimental test rig in conjunction with finite element analysis simulations to investigate and quantify the effects of back braces on flexion, extension, lateral bending and torsional motions as experienced by the human trunk. This paper describes this strategy and demonstrates its effectiveness through the proposal and comparison of two novel back brace designs.
Collapse
Affiliation(s)
- L Cooper
- Engineering Department, Lancaster University , Lancaster , UK
| | - A Gullane
- Engineering Department, Lancaster University , Lancaster , UK
| | - J Harvey
- Engineering Department, Lancaster University , Lancaster , UK
| | - A Hills
- Engineering Department, Lancaster University , Lancaster , UK
| | - M Zemura
- Engineering Department, Lancaster University , Lancaster , UK
| | - J Martindale
- Wrightington Wigan and Leigh NHS Foundation Trust , Wigan , UK and Lancaster University Health Hub, Lancaster University , Lancaster , UK
| | - A Rennie
- Engineering Department, Lancaster University , Lancaster , UK
| | - D Cheneler
- Engineering Department, Lancaster University , Lancaster , UK
| |
Collapse
|
39
|
Beaucage-Gauvreau E, Robertson WSP, Brandon SCE, Fraser R, Freeman BJC, Graham RB, Thewlis D, Jones CF. Validation of an OpenSim full-body model with detailed lumbar spine for estimating lower lumbar spine loads during symmetric and asymmetric lifting tasks. Comput Methods Biomech Biomed Engin 2019; 22:451-464. [DOI: 10.1080/10255842.2018.1564819] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Erica Beaucage-Gauvreau
- School of Mechanical Engineering, The University of Adelaide, Adelaide, South Australia, Australia
- Spinal Research Group, Centre for Orthopaedic & Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - William S. P. Robertson
- School of Mechanical Engineering, The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Robert Fraser
- Affiliate Professor, The University of Adelaide, Adelaide, South Australia, Australia
- Spinal Surgery, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Brian J. C. Freeman
- Spinal Services, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Research Fellow, South Australian Health and Medical Research Institute, Spinal Unit Administration, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Ryan B. Graham
- School of Human Kinetics, The University of Ottawa, Ottawa, Ontario, Canada
| | - Dominic Thewlis
- Centre for Orthopaedic & Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Claire F. Jones
- Spinal Research Group, Centre for Orthopaedic & Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- School of Mechanical Engineering, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
40
|
Jia B, Nussbaum MA. Influences of continuous sitting and psychosocial stress on low back kinematics, kinetics, discomfort, and localized muscle fatigue during unsupported sitting activities. ERGONOMICS 2018; 61:1671-1684. [PMID: 29985116 DOI: 10.1080/00140139.2018.1497815] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 05/23/2023]
Abstract
Continuous seated postures may increase the risk of adverse health outcomes such as low-back pain, and this risk may be influenced by several modifying factors. In the present study, we aimed to quantify the effects of continuous sitting and psychosocial stress under an unsupported sitting condition. Fourteen participants completed continuous, 40 min. periods of computer-based tasks, involving both low and higher levels of psychosocial stress, while using a laptop computer without a desk. Continuous sitting significantly increased perceived discomfort (particularly in the upper and lower back), trunk flexion and metrics of localized muscle fatigue. A higher level of psychosocial stress increased estimated lumbosacral compression forces (by ∼12%). Only weak correlations were found between subjective and objective measures, while various fatigue metrics showed a good level of correspondence with each other. These results could support the future evaluation or design of diverse seated work configurations. Practitioner Summary: Continuous, 40 min. periods of unsupported sitting had broad impacts on subjective and objective outcomes, including discomfort, postures, spine loads and localized muscle fatigue, while psychosocial stress only had a substantial influence on lumbosacral compression. These results extend our understanding of sitting behaviors and provide information for designing future sitting environments.
Collapse
Affiliation(s)
- Bochen Jia
- a Department of Industrial and Manufacturing Systems Engineering , University of Michigan-Dearborn , Dearborn , MI , USA
| | - Maury A Nussbaum
- b Department of Industrial and Systems Engineering , Virginia Tech , Blacksburg , VA , USA
| |
Collapse
|
41
|
Gagnon D, Plamondon A, Larivière C. A comparison of lumbar spine and muscle loading between male and female workers during box transfers. J Biomech 2018; 81:76-85. [PMID: 30286979 DOI: 10.1016/j.jbiomech.2018.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 10/28/2022]
Abstract
There is a clear relationship between lumbar spine loading and back musculoskeletal disorders in manual materials handling. The incidence of back disorders is greater in women than men, and for similar work demands females are functioning closer to their physiological limit. It is crucial to study loading on the spine musculoskeletal system with actual handlers, including females, to better understand the risk of back disorders. Extrapolation from biomechanical studies conducted on unexperienced subjects (mainly males) might not be applicable to actual female workers. For male workers, expertise changes the lumbar spine flexion, passive spine resistance, and active/passive muscle forces. However, experienced females select similar postures to those of novices when spine loading is critical. This study proposes that the techniques adopted by male experts, male novices, and females (with considerable experience but not categorized as experts) impact their lumbar spine musculoskeletal systems differently. Spinal loads, muscle forces, and passive resistance (muscle and ligamentous spine) were predicted by a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine. Expert males flexed their lumbar spine less (avg. 21.9° vs 30.3-31.7°) and showed decreased passive internal moments (muscle avg. 8.9% vs 15.9-16.0%; spine avg. 4.7% vs 7.1-7.8%) and increased active internal moments (avg. 72.9% vs 62.0-63.9%), thus producing a different impact on their lumbar spine musculoskeletal systems. Experienced females sustained the highest relative spine loads (compression avg. 7.3 N/BW vs 6.2-6.4 N/BW; shear avg. 2.3 N/BW vs 1.7-1.8 N/BW) in addition to passive muscle and ligamentous spine resistance similar to novices. Combined with smaller body size, less strength, and the sequential lifting technique used by females, this could potentially mean greater risk of back injury. Workers should be trained early to limit excessive and repetitive stretching of their lumbar spine passive tissues.
Collapse
Affiliation(s)
- Denis Gagnon
- Faculté des sciences de l'activité physique, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - André Plamondon
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Québec, Canada
| | - Christian Larivière
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Québec, Canada
| |
Collapse
|
42
|
Shabani M, Stavness I. Simulating the effect of muscle stiffness and co-contraction on postural stability. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2018. [DOI: 10.1080/21681163.2017.1332530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammad Shabani
- Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
| | - Ian Stavness
- Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
43
|
Samadi S, Arjmand N. A novel stability-based EMG-assisted optimization method for the spine. Med Eng Phys 2018; 58:S1350-4533(18)30091-2. [PMID: 29945762 DOI: 10.1016/j.medengphy.2018.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/02/2018] [Accepted: 04/30/2018] [Indexed: 10/28/2022]
Abstract
Traditional electromyography-assisted optimization (TEMG) models are commonly employed to compute trunk muscle forces and spinal loads for the design of clinical/treatment and ergonomics/prevention programs. These models calculate muscle forces solely based on moment equilibrium requirements at spinal joints. Due to simplifications/assumptions in the measurement/processing of surface EMG activities and in the presumed muscle EMG-force relationship, these models fail to satisfy stability requirements. Hence, the present study aimed to develop a novel stability-based EMG-assisted optimization (SEMG) method applied to a musculoskeletal spine model in which trunk muscle forces were estimated by enforcing equilibrium conditions constrained to stability requirements. That is, second-order partial derivatives of the potential energy of the musculoskeletal model with respect to its generalized coordinates were enforced to be positive semi-definite. Fifteen static tasks in upright and flexed postures with and without a hand load at different heights were simulated. The SEMG model predicted different muscle recruitments/forces (generally larger global and local muscle forces) and spinal loads (slightly larger) compared to the TEMG model. Such task-specific differences were dependant on the assumed magnitude of the muscle stiffness coefficient in the SEMG model. The SEMG model-predicted and measured L4-L5 intradiscal pressures were in satisfactory agreement during simulated activities.
Collapse
Affiliation(s)
- S Samadi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - N Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
44
|
Li SSW, Chow DHK. Effects of backpack load on critical changes of trunk muscle activation and lumbar spine loading during walking. ERGONOMICS 2018; 61:553-565. [PMID: 28791922 DOI: 10.1080/00140139.2017.1365950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the effects of carrying a backpack while walking. Critical changes featuring the disproportionality of increases in trunk muscle activation and lumbar joint loading between light and heavy backpack carriage weight may reveal the load-bearing strategy (LBS) of the lumbar spine. This was investigated using an integrated system equipped with a motion analysis, a force platform and a wireless surface electromyography (EMG) system to measure the trunk muscle EMG amplitudes and lumbar joint component forces. A predictive goal programming model was developed to determine the most critical changes in trunk muscle activation and lumbar joint loading. Results suggested that lightweight backpack carriage at approximately 3% of body weight (BW) might reduce the peak lumbosacral compression force by 3% during walking compared with no load condition. The most critical changes in both trunk muscle activation and lumbosacral joint loading were found at a backpack load of 10% of BW. Practitioner Summary: This study investigated the effects of backpack load on the LBS of lumbar spine while walking. A backpack load of 3% of BW might reduce the peak lumbosacral compression force by 3 and 10% of BW induced the most critical changes in LBS of lumbar spine.
Collapse
Affiliation(s)
- Simon S W Li
- a Interdisciplinary Division of Biomedical Engineering , The Hong Kong Polytechnic University , Hong Kong
- b Department of Health and Physical Education , The Education University of Hong Kong , Hong Kong
| | - Daniel H K Chow
- b Department of Health and Physical Education , The Education University of Hong Kong , Hong Kong
| |
Collapse
|
45
|
Ghezelbash F, El Ouaaid Z, Shirazi-Adl A, Plamondon A, Arjmand N. Trunk musculoskeletal response in maximum voluntary exertions: A combined measurement-modeling investigation. J Biomech 2018; 70:124-133. [PMID: 29198368 DOI: 10.1016/j.jbiomech.2017.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 02/05/2023]
Abstract
Maximum voluntary exertion (MVE) tasks quantify trunk strength and maximal muscle electromyography (EMG) activities with both clinical and biomechanical implications. The aims here are to evaluate the performance of an existing trunk musculoskeletal model, estimate maximum muscle stresses and spinal forces, and explore likely differences between males and females in maximum voluntary exertions. We, therefore, measured trunk strength and EMG activities of 19 healthy right-handed subjects (9 females and 10 males) in flexion, extension, lateral and axial directions. MVEs for all subjects were then simulated in a subject-specific trunk musculoskeletal model, and estimated muscle activities were compared with EMGs. Analysis of variance was used to compare measured moments and estimated spinal loads at the L5-S1 level between females and males. MVE moments in both sexes were greatest in extension (means of 236 Nm in males and 190 Nm in females) and least in left axial torque (97 Nm in males and 64 Nm in females). Being much greater in lateral and axial MVEs, coupled moments reached ∼50% of primary moments in average. Females exerted less moments in all directions reaching significance except in flexion. Muscle activity estimations were strongly correlated with measurements in flexion and extension (Pearson's r = 0.69 and 0.76), but the correlations were very weak in lateral and axial MVEs (Pearson's r = 0.27 and 0.13). Maximum muscle stress was in average 0.80 ± 0.42 MPa but varied among muscles from 0.40 ± 0.22 MPa in rectus abdominis to 0.99 ± 0.29 MPa in external oblique. To estimate maximum muscle stresses and evaluate validity of a musculoskeletal model, MVEs in all directions with all coupled moments should be considered.
Collapse
Affiliation(s)
- F Ghezelbash
- Division of Applied Mechanics, Department of Mechanical Engineering, Ecole Polytechnique, Montréal, Canada.
| | - Z El Ouaaid
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada
| | - A Shirazi-Adl
- Division of Applied Mechanics, Department of Mechanical Engineering, Ecole Polytechnique, Montréal, Canada
| | - A Plamondon
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada
| | - N Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
46
|
Eijkelkamp M, van Donkelaar C, Veldhuizen A, van Horn J, Huyghe J, Verkerke G. Requirements for an artificial intervertebral disc. Int J Artif Organs 2018. [DOI: 10.1177/039139880102400510] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intervertebral disc degeneration is an important social and economic problem. Presently available artificial intervertebral discs (AIDs) are insufficient and the main surgical intervention is still spinal fusion. The objective of the present study is to present a list of requirements for the development of an AID which could replace the human lumbar intervertebral disc and restore its function. The list addresses geometry, stiffness, range of motion, strength, facet joint function, center of rotation, fixation, failsafety and implantation technique. Date are obtained from the literature, quantified where possible and checked for consistency. Existing AIDs are evaluated according to the presented list of requirements. Endplate size is a weak point in existing AIDs. These should be large and fit vertebral bodies to prevent migration. Disc height and wedge angle should be restored, unless this would overstretch ligaments. Finally, stiffness and range of motion in all directions should equal those of the healthy disc, except for the axial rotation to relieve the facet joints.
Collapse
Affiliation(s)
- M.F. Eijkelkamp
- Department of Biomedical Engineering, University of Groningen, Groningen - The Netherlands
| | - C.C. van Donkelaar
- Department of Orthopedics, University Hospital of Groningen, Groningen - The Netherlands
| | - A.G. Veldhuizen
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven - The Netherlands
| | - J.R. van Horn
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven - The Netherlands
| | - J.M. Huyghe
- Department of Orthopedics, University Hospital of Groningen, Groningen - The Netherlands
| | - G.J. Verkerke
- Department of Biomedical Engineering, University of Groningen, Groningen - The Netherlands
| |
Collapse
|
47
|
Abraham L, Bromberg F, Forradellas R. Ensemble of shape functions and support vector machines for the estimation of discrete arm muscle activation from external biceps 3D point clouds. Comput Biol Med 2018; 95:129-139. [PMID: 29499448 DOI: 10.1016/j.compbiomed.2018.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Muscle activation level is currently being captured using impractical and expensive devices which make their use in telemedicine settings extremely difficult. To address this issue, a prototype is presented of a non-invasive, easy-to-install system for the estimation of a discrete level of muscle activation of the biceps muscle from 3D point clouds captured with RGB-D cameras. METHODS A methodology is proposed that uses the ensemble of shape functions point cloud descriptor for the geometric characterization of 3D point clouds, together with support vector machines to learn a classifier that, based on this geometric characterization for some points of view of the biceps, provides a model for the estimation of muscle activation for all neighboring points of view. This results in a classifier that is robust to small perturbations in the point of view of the capturing device, greatly simplifying the installation process for end-users. RESULTS In the discrimination of five levels of effort with values up to the maximum voluntary contraction (MVC) of the biceps muscle (3800 g), the best variant of the proposed methodology achieved mean absolute errors of about 9.21% MVC - an acceptable performance for telemedicine settings where the electric measurement of muscle activation is impractical. CONCLUSIONS The results prove that the correlations between the external geometry of the arm and biceps muscle activation are strong enough to consider computer vision and supervised learning an alternative with great potential for practical applications in tele-physiotherapy.
Collapse
Affiliation(s)
- Leandro Abraham
- Laboratorio DHARMa, DeSI, Universidad Tecnológica Nacional, Facultad Regional Mendoza - Rodriguez 273, PC M5502AJE Mendoza, Argentina; CEAL, Universidad Nacional de Cuyo, Facultad de Ingeniería - Centro Universitario CC 405, PC M5500AAT Mendoza, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Facundo Bromberg
- Laboratorio DHARMa, DeSI, Universidad Tecnológica Nacional, Facultad Regional Mendoza - Rodriguez 273, PC M5502AJE Mendoza, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Raymundo Forradellas
- CEAL, Universidad Nacional de Cuyo, Facultad de Ingeniería - Centro Universitario CC 405, PC M5500AAT Mendoza, Argentina.
| |
Collapse
|
48
|
Bélaise C, Michaud B, Dal Maso F, Mombaur K, Begon M. Which data should be tracked in forward-dynamic optimisation to best predict muscle forces in a pathological co-contraction case? J Biomech 2018; 68:99-106. [DOI: 10.1016/j.jbiomech.2017.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/25/2017] [Accepted: 12/28/2017] [Indexed: 11/15/2022]
|
49
|
Evaluation of full pelvic ring stresses using a bilateral static gait-phase finite element modeling method. J Mech Behav Biomed Mater 2018; 78:175-187. [DOI: 10.1016/j.jmbbm.2017.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/27/2017] [Accepted: 11/03/2017] [Indexed: 11/21/2022]
|
50
|
Van den Abbeele M, Li F, Pomero V, Bonneau D, Sandoz B, Laporte S, Skalli W. A subject-specific biomechanical control model for the prediction of cervical spine muscle forces. Clin Biomech (Bristol, Avon) 2018; 51:58-66. [PMID: 29227919 DOI: 10.1016/j.clinbiomech.2017.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 11/24/2017] [Accepted: 12/03/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND The aim of the present study is to propose a subject-specific biomechanical control model for the estimation of active cervical spine muscle forces. METHODS The proprioception-based regulation model developed by Pomero et al. (2004) for the lumbar spine was adapted to the cervical spine. The model assumption is that the control strategy drives muscular activation to maintain the spinal joint load below the physiological threshold, thus avoiding excessive intervertebral displacements. Model evaluation was based on the comparison with the results of two reference studies. The effect of the uncertainty on the main model input parameters on the predicted force pattern was assessed. The feasibility of building this subject-specific model was illustrated with a case study of one subject. FINDINGS The model muscle force predictions, although independent from EMG recordings, were consistent with the available literature, with mean differences of 20%. Spinal loads generally remained below the physiological thresholds. Moreover, the model behavior was found robust against the uncertainty on the muscle orientation, with a maximum coefficient of variation (CV) of 10%. INTERPRETATION After full validation, this model should offer a relevant and efficient tool for the biomechanical and clinical study of the cervical spine, which might improve the understanding of cervical spine disorders.
Collapse
Affiliation(s)
- Maxim Van den Abbeele
- Arts et Metiers ParisTech, Institut de Biomecanique Humaine Georges Charpak, 151 bd de l'Hopital, 75013 Paris, France.
| | - Fan Li
- Arts et Metiers ParisTech, Institut de Biomecanique Humaine Georges Charpak, 151 bd de l'Hopital, 75013 Paris, France; State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Yuelushan, Changsha, Hunan, 410082, PR China.
| | - Vincent Pomero
- Arts et Metiers ParisTech, Institut de Biomecanique Humaine Georges Charpak, 151 bd de l'Hopital, 75013 Paris, France
| | - Dominique Bonneau
- Arts et Metiers ParisTech, Institut de Biomecanique Humaine Georges Charpak, 151 bd de l'Hopital, 75013 Paris, France
| | - Baptiste Sandoz
- Arts et Metiers ParisTech, Institut de Biomecanique Humaine Georges Charpak, 151 bd de l'Hopital, 75013 Paris, France
| | - Sébastien Laporte
- Arts et Metiers ParisTech, Institut de Biomecanique Humaine Georges Charpak, 151 bd de l'Hopital, 75013 Paris, France
| | - Wafa Skalli
- Arts et Metiers ParisTech, Institut de Biomecanique Humaine Georges Charpak, 151 bd de l'Hopital, 75013 Paris, France
| |
Collapse
|