McGachy NT, Grinberg N, Variankaval N. Thermodynamic study of N-trifluoroacetyl-O-alkyl nipecotic acid ester enantiomers on diluted permethylated β-cyclodextrin stationary phase.
J Chromatogr A 2005;
1064:193-204. [PMID:
15739887 DOI:
10.1016/j.chroma.2004.12.013]
[Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Thermodynamic studies were performed on 12 pairs of N-trifluoroacetyl-O-alkyl nipecotic acid ester enantiomers on diluted permethylated beta-cyclodextrin stationary phase (CP Chirasil-Dex CB). The influence of ester alkyl group structure on interaction with permethylated beta-cyclodextrin (Me-CD) and enantioselectivity was studied. The types of alkyl groups studied included n-alkyl (C1-C5) and groups containing branching at differing locations relative to the chiral center of the molecule. The results show that for a given molecular weight, the n-alkyl esters have stronger interactions with Me-CD than esters containing branched alkyl groups. However, although having weaker interactions with Me-CD, esters containing alpha-branched alkyl groups exhibit higher enantioselectivity than the corresponding n-alkyl or beta-branched isobutyl esters. From the retention data, thermodynamic parameters were estimated using the retention increment method and enthalpy-entropy compensation plots (ln R' versus deltaH) were constructed. The results suggest that ester enantiomers with branching at the alpha-carbon of the ester alkyl group have additional and/or different types of enantioselective interactions with Me-CD than the C1-C5 n-alkyl esters or beta-branched isobutyl ester. In order to obtain a qualitative sense of the interaction with Me-CD, structures of the diastereomeric complexes formed between Me-CD and some of the ester enantiomers were modeled using simulated annealing molecular dynamics.
Collapse