1
|
Arts AM, Wrzesinski PJ, West ZJ. An HPLC-ESI-QTOF method to analyze polar heteroatomic species in aviation turbine fuel via hydrophilic interaction chromatography. J Chromatogr A 2024; 1719:464754. [PMID: 38428340 DOI: 10.1016/j.chroma.2024.464754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
Aviation turbine fuel is a complex mixture of thousands of compounds. An analytical method using hydrophilic interaction liquid chromatography (HILIC) coupled with electrospray ionization and quadrupole time-of-flight mass spectrometry (ESI-QTOF) was developed for the identification of heteroatomic, polar compounds in aviation turbine fuel. Although compounds containing oxygen, nitrogen, and sulfur functional groups are each found at low levels (<0.1 % by mass) in fuels, their presence can generate significant effects on fuel properties. The HILIC-ESI-QTOF method is a combined separation and detection technique that possesses many advantages including a fast and simple sample preparation-requiring no extraction step therefore ensuring no loss of compounds of interest-and the ability to acquire high-fidelity compound data for chemometric analysis of heteroatomic species in aviation turbine fuel. In the development of the method, it was found that the chromatographic conditions and nature of the injection sample had a significant effect on separation efficiency and repeatability. For a sample dataset optimized using a singular aviation turbine fuel, retention time shift was able to be reduced from 0.4 min to 2.0 % relative standard deviation (RSD) to approximately 0.1 min with RSD of 0.4 % using the newly developed method. In addition, a high number of untargeted molecular features (944) and targeted amines (121) were able to be identified when utilizing optimal method conditions. The specific benefits and limitations of utilizing HILIC techniques with HPLC-ESI-QTOF are also discussed herein. This new method is currently being expanded to include analysis of all heteroatoms and is being applied to real fuel sets. The results of these studies are forthcoming.
Collapse
Affiliation(s)
- Amanda M Arts
- University of Dayton Research Institute, 300 College Park Dr, Dayton, OH 45469-0043, United States.
| | - Paul J Wrzesinski
- Air Force Research Laboratory, 1790 Loop Rd, Wright-Patterson AFB, OH 45433-7131, United States
| | - Zachary J West
- University of Dayton Research Institute, 300 College Park Dr, Dayton, OH 45469-0043, United States
| |
Collapse
|
2
|
Berthias F, Thurman HA, Wijegunawardena G, Wu H, Shvartsburg AA, Jensen ON. Top-Down Ion Mobility Separations of Isomeric Proteoforms. Anal Chem 2023; 95:784-791. [PMID: 36562749 DOI: 10.1021/acs.analchem.2c02948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Continuing advances in proteomics highlight the ubiquity and biological importance of proteoforms─proteins with varied sequence, splicing, or distribution of post-translational modifications (PTMs). The preeminent example is histones, where the PTM pattern encodes the combinatorial language controlling the DNA transcription central to life. While the proteoforms with distinct PTM compositions are distinguishable by mass, the isomers with permuted PTMs commonly coexisting in cells generally require separation before mass-spectrometric (MS) analyses. That was accomplished on the bottom-up and middle-down levels using chromatography or ion mobility spectrometry (IMS), but proteolytic digestion obliterates the crucial PTM connectivity information. Here, we demonstrate baseline IMS resolution of intact isomeric proteoforms, specifically the acetylated H4 histones (11.3 kDa). The proteoforms with a single acetyl moiety on five alternative lysine residues (K5, K8, K12, K16, K20) known for distinct functionalities in vivo were constructed by two-step native chemical ligation and separated using trapped IMS at the resolving power up to 350 on the Bruker TIMS/ToF platform. Full resolution for several pairs was confirmed using binary mixtures and by unique fragments in tandem MS employing collision-induced dissociation. This novel capability for top-down proteoform characterization is poised to open major new avenues in proteomics and epigenetics.
Collapse
Affiliation(s)
- Francis Berthias
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230Odense M, Denmark
| | - Hayden A Thurman
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas67260, United States
| | - Gayani Wijegunawardena
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas67260, United States
| | - Haifan Wu
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas67260, United States
| | - Alexandre A Shvartsburg
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas67260, United States
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230Odense M, Denmark
| |
Collapse
|
3
|
Passamonti M, de Roos C, Schoenmakers PJ, Gargano AFG. Poly(acrylamide- co- N, N'-methylenebisacrylamide) Monoliths for High-Peak-Capacity Hydrophilic-Interaction Chromatography-High-Resolution Mass Spectrometry of Intact Proteins at Low Trifluoroacetic Acid Content. Anal Chem 2021; 93:16000-16007. [PMID: 34807576 PMCID: PMC8655738 DOI: 10.1021/acs.analchem.1c03473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
In this study, we
optimized a polymerization mixture to synthesize
poly(acrylamide-co-N,N′-methylenebisacrylamide) monolithic stationary phases for
hydrophilic-interaction chromatography (HILIC) of intact proteins.
Thermal polymerization was performed, and the effects of varying the
amount of cross-linker and the porogen composition on the separation
performance of the resulting columns were studied. The homogeneity
of the structure and the different porosities were examined through
scanning electron microscopy (SEM). Further characterization of the
monolithic structure revealed a permeable (Kf between 2.5 × 10–15 and 1.40 ×
10–13 m2) and polar stationary phase
suitable for HILIC. The HILIC separation performance of the different
columns was assessed using gradient separation of a sample containing
four intact proteins, with the best performing stationary phase exhibiting
a peak capacity of 51 in a gradient of 25 min. Polyacrylamide-based
materials were compared with a silica-based particulate amide phase
(2.7 μm core–shell particles). The monolith has no residual
silanol sites and, therefore, fewer sites for ion-exchange interactions
with proteins. Thus, it required lower concentrations of ion-pair
reagent in HILIC of intact proteins. When using 0.1% of trifluoroacetic
acid (TFA), the peak capacities of the two columns were similar (30
and 34 for the monolithic and packed column, respectively). However,
when decreasing the concentration of TFA to 0.005%, the monolithic
column maintained similar separation performance and selectivity (peak
capacity 23), whereas the packed column showed greatly reduced performance
(peak capacity 12), lower selectivity, and inability to elute all
four reference proteins. Finally, using a mobile phase containing
0.1% formic acid and 0.005% TFA, the HILIC separation on the monolithic
column was successfully hyphenated with high-resolution mass spectrometry.
Detection sensitivity for protein and glycoproteins was increased
and the amount of adducts formed was decreased in comparison with
separations performed at 0.1% TFA.
Collapse
Affiliation(s)
- Marta Passamonti
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands.,Centre for Analytical Sciences Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Chiem de Roos
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Peter J Schoenmakers
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands.,Centre for Analytical Sciences Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Andrea F G Gargano
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands.,Centre for Analytical Sciences Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
4
|
Pradita T, Chen YJ, Mernie EG, Bendulo SN, Chen YJ. ZIC-cHILIC Functionalized Magnetic Nanoparticle for Rapid and Sensitive Glycopeptide Enrichment from <1 µL Serum. NANOMATERIALS 2021; 11:nano11092159. [PMID: 34578474 PMCID: PMC8470806 DOI: 10.3390/nano11092159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022]
Abstract
Due to their unique glycan composition and linkage, protein glycosylation plays significant roles in cellular function and is associated with various diseases. For comprehensive characterization of their extreme structural complexity occurring in >50% of human proteins, time-consuming multi-step enrichment of glycopeptides is required. Here we report zwitterionic n-dodecylphosphocholine-functionalized magnetic nanoparticles (ZIC-cHILIC@MNPs) as a highly efficient affinity nanoprobe for large-scale enrichment of glycopeptides. We demonstrate that ZIC-cHILIC@MNPs possess excellent affinity, with 80-91% specificity for glycopeptide enrichment, especially for sialylated glycopeptide (90%) from biofluid specimens. This strategy provides rapidity (~10 min) and high sensitivity (<1 μL serum) for the whole enrichment process in patient serum, likely due to the rapid separation using magnetic nanoparticles, fast reaction, and high performance of the affinity nanoprobe at nanoscale. Using this strategy, we achieved personalized profiles of patients with hepatitis B virus (HBV, n = 3) and hepatocellular carcinoma (HCC, n = 3) at the depth of >3000 glycopeptides, especially for the large-scale identification of under-explored sialylated glycopeptides. The glycoproteomics atlas also revealed the differential pattern of sialylated glycopeptides between HBV and HCC groups. The ZIC-cHILIC@MNPs could be a generic tool for advancing the glycoproteome analysis, and contribute to the screening of glycoprotein biomarkers.
Collapse
Affiliation(s)
- Tiara Pradita
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; (T.P.); (Y.-J.C.); (E.G.M.); (S.N.B.)
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; (T.P.); (Y.-J.C.); (E.G.M.); (S.N.B.)
| | - Elias Gizaw Mernie
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; (T.P.); (Y.-J.C.); (E.G.M.); (S.N.B.)
| | - Sharine Noelle Bendulo
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; (T.P.); (Y.-J.C.); (E.G.M.); (S.N.B.)
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; (T.P.); (Y.-J.C.); (E.G.M.); (S.N.B.)
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
- Correspondence: ; Tel.: +886-2-5572-8660
| |
Collapse
|
5
|
Lui KW, Ngai SM. PrSM-Level Side-by-Side Comparison of Online LC-MS Methods with Intact Histone H3 and H4 Proteoforms. J Proteome Res 2021; 20:4331-4345. [PMID: 34327993 DOI: 10.1021/acs.jproteome.1c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heterogeneity of histone H3 proteoforms makes histone H3 top-down analysis challenging. To enhance the detection coverage of the proteoforms, performing liquid chromatography (LC) front-end to mass spectrometry (MS) detection is recommended. Here, using optimized electron-transfer/high-energy collision dissociation (EThcD) parameters, we have conducted a proteoform-spectrum match (PrSM)-level side-by-side comparison of reversed-phase LC-MS (RPLC-MS), "dual-gradient" weak cation-exchange/hydrophilic interaction LC-MS (dual-gradient WCX/HILIC-MS), and "organic-rich" WCX/HILIC-MS on the top-down analyses of H3.1, H3.2, and H4 proteins extracted from a HeLa cell culture. While both dual-gradient WCX/HILIC and organic-rich WCX/HILIC could resolve intact H3 and H4 proteoforms by the number of acetylations, the organic-rich method could enhance the separations of different trimethyl/acetyl near-isobaric H3 proteoforms. In comparison with RPLC-MS, both of the WCX/HILIC-MS methods enhanced the qualities of the H3 PrSMs and remarkably improved the range, reproducibility, and confidence in the identifications of H3 proteoforms.
Collapse
Affiliation(s)
- Kin-Wing Lui
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, P. R. China
| | - Sai-Ming Ngai
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, P. R. China.,State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, P. R. China
| |
Collapse
|
6
|
Jeanne Dit Fouque K, Kaplan D, Voinov VG, Holck FHV, Jensen ON, Fernandez-Lima F. Proteoform Differentiation using Tandem Trapped Ion Mobility, Electron Capture Dissociation, and ToF Mass Spectrometry. Anal Chem 2021; 93:9575-9582. [PMID: 34170114 DOI: 10.1021/acs.analchem.1c01735] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Comprehensive characterization of post-translationally modified histone proteoforms is challenging due to their high isobaric and isomeric content. Trapped ion mobility spectrometry (TIMS), implemented on a quadrupole/time-of-flight (Q-ToF) mass spectrometer, has shown great promise in discriminating isomeric complete histone tails. The absence of electron activated dissociation (ExD) in the current platform prevents the comprehensive characterization of unknown histone proteoforms. In the present work, we report for the first time the use of an electromagnetostatic (EMS) cell devised for nonergodic dissociation based on electron capture dissociation (ECD), implemented within a nESI-TIMS-Q-ToF mass spectrometer for the characterization of acetylated (AcK18 and AcK27) and trimethylated (TriMetK4, TriMetK9 and TriMetK27) complete histone tails. The integration of the EMS cell in a TIMS-q-TOF MS permitted fast mobility-selected top-down ECD fragmentation with near 10% efficiency overall. The potential of this coupling was illustrated using isobaric (AcK18/TriMetK4) and isomeric (AcK18/AcK27 and TriMetK4/TriMetK9) binary H3 histone tail mixtures, and the H3.1 TriMetK27 histone tail structural diversity (e.g., three IMS bands at z = 7+). The binary isobaric and isomeric mixtures can be separated in the mobility domain with RIMS > 100 and the nonergodic ECD fragmentation permitted the PTM localization (sequence coverage of ∼86%). Differences in the ECD patterns per mobility band of the z = 7+ H3 TriMetK27 molecular ions suggested that the charge location is responsible for the structural differences observed in the mobility domain. This coupling further enhances the structural toolbox with fast, high resolution mobility separations in tandem with nonergodic fragmentation for effective proteoform differentiation.
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.,Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Desmond Kaplan
- KapScience, LLC., Tewksbury, Massachusetts 01876, United States
| | - Valery G Voinov
- e-MSion, Inc., Corvallis, Oregon 97330, United States.,Linus Pauling Institute and Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Frederik H V Holck
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ole N Jensen
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.,Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
7
|
Kartsova LA, Bessonova EA, Somova VD. Hydrophilic Interaction Chromatography. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819050058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Gargano AFG, Shaw JB, Zhou M, Wilkins CS, Fillmore TL, Moore RJ, Somsen GW, Paša-Tolić L. Increasing the Separation Capacity of Intact Histone Proteoforms Chromatography Coupling Online Weak Cation Exchange-HILIC to Reversed Phase LC UVPD-HRMS. J Proteome Res 2018; 17:3791-3800. [PMID: 30226781 PMCID: PMC6220366 DOI: 10.1021/acs.jproteome.8b00458] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Top-down proteomics is an emerging
analytical strategy to characterize
combinatorial protein post-translational modifications (PTMs). However,
sample complexity and small mass differences between chemically closely
related proteoforms often limit the resolution attainable by separations
employing a single liquid chromatographic (LC) principle. In particular,
for ultramodified proteins like histones, extensive and time-consuming
fractionation is needed to achieve deep proteoform coverage. Herein,
we present the first online nanoflow comprehensive two-dimensional
liquid chromatography (nLC×LC) platform top-down mass spectrometry
analysis of histone proteoforms. The described two-dimensional LC
system combines weak cation exchange chromatography under hydrophilic
interaction LC conditions (i.e., charge- and hydrophilicity-based
separation) with reversed phase liquid chromatography (i.e., hydrophobicity-based
separation). The two independent chemical selectivities were run at
nanoflows (300 nL/min) and coupled online with high-resolution mass
spectrometry employing ultraviolet photodissociation (UVPD-HRMS).
The nLC×LC workflow increased the number of intact protein masses
observable relative to one-dimensional approaches and allowed characterization
of hundreds of proteoforms starting from limited sample quantities
(∼1.5 μg).
Collapse
Affiliation(s)
- Andrea F G Gargano
- Center for Analytical Sciences Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands.,Vrije Universiteit Amsterdam , Department of Bioanalytical Chemistry, Amsterdam Institute for Molecules, Medicines and Systems , de Boelelaan 1085 , 1081HV Amsterdam , The Netherlands
| | - Jared B Shaw
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Christopher S Wilkins
- Biological Sciences Division , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Thomas L Fillmore
- Biological Sciences Division , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Ronald J Moore
- Biological Sciences Division , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Govert W Somsen
- Center for Analytical Sciences Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands.,Vrije Universiteit Amsterdam , Department of Bioanalytical Chemistry, Amsterdam Institute for Molecules, Medicines and Systems , de Boelelaan 1085 , 1081HV Amsterdam , The Netherlands
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| |
Collapse
|
9
|
Bai Q, Liu Y, Wang Y, Zhao K, Yang F, Liu J, Shen J, Zhao Q. Protein separation using a novel silica-based RPLC/IEC mixed-mode stationary phase modified with N-methylimidazolium ionic liquid. Talanta 2018; 185:89-97. [DOI: 10.1016/j.talanta.2018.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 01/04/2023]
|
10
|
Domínguez-Vega E, Tengattini S, Peintner C, van Angeren J, Temporini C, Haselberg R, Massolini G, Somsen GW. High-resolution glycoform profiling of intact therapeutic proteins by hydrophilic interaction chromatography-mass spectrometry. Talanta 2018; 184:375-381. [PMID: 29674057 DOI: 10.1016/j.talanta.2018.03.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 11/18/2022]
Abstract
Glycosylation is considered a critical quality attribute of therapeutic proteins. Protein heterogeneity introduced by glycosylation includes differences in the nature, number and position of the glycans. Whereas analysis of released glycans and glycopeptides provides information about the composition and/or position of the glycan, intact glycoprotein analysis allows assignment of individual proteoforms and co-occurring modifications. Yet, resolving protein glycoforms at the intact level is challenging. We have explored the capacity of hydrophilic liquid chromatography-mass spectrometry (HILIC-MS) for assessing glycosylation patterns of intact pharmaceutical proteins by analyzing the complex glycoproteins interferon-beta-1a (rhIFN-β - 1a) and recombinant human erythropoietin (rhEPO). Efficient glycoform separation was achieved using a superficially-porous amide HILIC stationary phase and trifluoroacetic acid (TFA) as eluent additive. In-source collision-induced dissociation proved to be very useful to minimize protein-signal suppression effects by TFA. Direct injection of therapeutic proteins in aqueous formulation was possible without causing extra band dispersion, provided that the sample injection volume was not larger than 2 μL. HILIC-MS of rhIFN-β - 1a and rhEPO allowed the assignment of, respectively, 15 and 51 glycoform compositions, next to a variety of posttranslational modifications, such as succinimide, oxidation and N-terminal methionine-loss products. MS-based assignments showed that neutral glycan units significantly contributed to glycoform separation, whereas terminal sialic acids only had a marginal effect on HILIC retention. Comparisons of HILIC-MS with the selectivity provided by capillary electrophoresis-MS for the same glycoproteins, revealed a remarkable complementarity of the techniques. Finally it was demonstrated that by replacing TFA for difluoroacetic acid, peak resolution somewhat decreased, but rhEPO glycoforms with relative abundances below 1% could be detected by HILIC-MS, increasing the overall rhEPO glycoform coverage to 72.
Collapse
Affiliation(s)
- Elena Domínguez-Vega
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Sara Tengattini
- Department of Drug Sciences, University of Pavia, via Taramelli 12, I-27100 Pavia, Italy
| | - Claudia Peintner
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Jordy van Angeren
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Caterina Temporini
- Department of Drug Sciences, University of Pavia, via Taramelli 12, I-27100 Pavia, Italy
| | - Rob Haselberg
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Gabriella Massolini
- Department of Drug Sciences, University of Pavia, via Taramelli 12, I-27100 Pavia, Italy
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Önder Ö, Sidoli S, Carroll M, Garcia BA. Progress in epigenetic histone modification analysis by mass spectrometry for clinical investigations. Expert Rev Proteomics 2016; 12:499-517. [PMID: 26400466 DOI: 10.1586/14789450.2015.1084231] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chromatin biology and epigenetics are scientific fields that are rapid expanding due to their fundamental role in understanding cell development, heritable characters and progression of diseases. Histone post-translational modifications (PTMs) are major regulators of the epigenetic machinery due to their ability to modulate gene expression, DNA repair and chromosome condensation. Large-scale strategies based on mass spectrometry have been impressively improved in the last decade, so that global changes of histone PTM abundances are quantifiable with nearly routine proteomics analyses and it is now possible to determine combinatorial patterns of modifications. Presented here is an overview of the most utilized and newly developed proteomics strategies for histone PTM characterization and a number of case studies where epigenetic mechanisms have been comprehensively characterized. Moreover, a number of current epigenetic therapies are illustrated, with an emphasis on cancer.
Collapse
Affiliation(s)
- Özlem Önder
- a 1 Division of Hematology and Oncology, Philadelphia, 19104, USA.,b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simone Sidoli
- b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Martin Carroll
- a 1 Division of Hematology and Oncology, Philadelphia, 19104, USA
| | - Benjamin A Garcia
- b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
12
|
Jafari M, Mirzaie M, Khodabandeh M, Rezadoost H, Ghassempour A, Aboul-Enein HY. Polarity-based fractionation in proteomics: hydrophilic interaction vs reversed-phase liquid chromatography. Biomed Chromatogr 2015; 30:1036-1041. [PMID: 26555197 DOI: 10.1002/bmc.3647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/31/2015] [Accepted: 11/05/2015] [Indexed: 11/11/2022]
Abstract
During recent decades, hydrophilic interaction liquid chromatography (HILIC) ahs been introduced to fractionate or purify especially polar solutes such as peptides and proteins while reversed-phase liquid chromatography (RPLC) is also a common strategy. RPLC is also a common dimension in multidimensional chromatography. In this study, the potential of HILIC vs RPLC chromatography was compared for proteome mapping of human peripheral blood mononuclear cell extract. In HILIC a silica-based stationary phase and for RPLC a C18 column were applied. Then separated proteins were eluted to an ion trap mass spectrometry system. Our results showed that the HILIC leads to more proteins being identified in comparison to RPLC. Among the total 181 identified proteins, 56 and 38 proteins were fractionated specifically by HILIC and RPLC, respectively. In order to demonstrate this, the physicochemical properties of identified proteins such as polarity and hydrophobicity were considered. This analysis indicated that polarity may play a major role in the HILIC separation of proteins vs RPLC. Using gene ontology enrichment analysis, it was also observed that differences in physicochemical properties conform to the cellular compartment and biological features. Finally, this study highlighted the potential of HILIC and the great orthogonality of RPLC in gel-free proteomic studies. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- M Jafari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - M Mirzaie
- Department of Computational Biology, Faculty of High Technologies, Tarbiat Modares University, Tehran, Iran
| | - M Khodabandeh
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - H Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - A Ghassempour
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - H Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, 12622, Giza, Egypt
| |
Collapse
|
13
|
Ahn YH, Kim JY, Yoo JS. Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods. MASS SPECTROMETRY REVIEWS 2015; 34:148-65. [PMID: 24889823 PMCID: PMC4340049 DOI: 10.1002/mas.21428] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/20/2013] [Indexed: 05/12/2023]
Abstract
Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies.
Collapse
Affiliation(s)
- Yeong Hee Ahn
- Division of Mass Spectrometry, Korea Basic Science InstituteCheongwon-Gun, 363-883, Republic of Korea
| | - Jin Young Kim
- Division of Mass Spectrometry, Korea Basic Science InstituteCheongwon-Gun, 363-883, Republic of Korea
| | - Jong Shin Yoo
- Division of Mass Spectrometry, Korea Basic Science InstituteCheongwon-Gun, 363-883, Republic of Korea
| |
Collapse
|
14
|
Zhang W, Tang X, Ding M, Zhong H. Cu2+-assisted two dimensional charge-mass double focusing gel electrophoresis and mass spectrometric analysis of histone variants. Anal Chim Acta 2014; 852:121-8. [DOI: 10.1016/j.aca.2014.08.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 08/01/2014] [Accepted: 08/15/2014] [Indexed: 11/26/2022]
|
15
|
Molden RC, Garcia BA. Middle-Down and Top-Down Mass Spectrometric Analysis of Co-occurring Histone Modifications. ACTA ACUST UNITED AC 2014; 77:23.7.1-23.7.28. [PMID: 25081742 DOI: 10.1002/0471140864.ps2307s77] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Histones are chromatin proteins that are highly modified with many different types of post-translational modifications. These modifications act in concert to regulate a number of chromatin-related processes. However, identification and quantification of co-occurring histone post-translational modifications is challenging because there are many potential combinations of modifications and because the commonly used strategy of fragmenting proteins using trypsin or an alternative protease prior to LC-MS/MS analysis results in the loss of connectivity between modifications on different peptides. In this unit, mass spectrometric methods to analyze combinatorial histone modifications on histone tails (middle-down mass spectrometry) and on intact histones (top-down mass spectrometry) are described.
Collapse
Affiliation(s)
- Rosalynn C Molden
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Chen Y, Wang K, Liu Y, Yang H, Yao S, Chen B, Nie L, Xu G. Improved sulfoalkylbetaine-based organic-silica hybrid monolith for high efficient hydrophilic interaction liquid chromatography of polar compounds. Electrophoresis 2014; 34:1877-85. [PMID: 23977682 DOI: 10.1002/elps.201200600] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A novel sulfoalkylbetaine-based zwitterionic organic-silica hybrid monolith was synthesized by using 3-dimethyl-(3-(N-methacrylamido) propyl) ammonium propane sulfonate (DMMPPS, neutral sulfoalkyl-betaine monomer). The added amount of zwitterionic monomer was significantly increased when DMMPPS was used instead of the conventionally used acidic sulfoalkyl-betaine monomer, that is, the N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) ammonium betaine, and this led to a significantly improved hydrophilicity of the monolith. The DMMPPS-based organic-silica hybridmonolith exhibited good mechanical stability and excellent separation performance. About ∼20 mμ plate height (corresponding to column efficiency of ∼50,000 plates/m) was obtained for nucleoside at the linear velocity of 1 mm/s. The proposed monolithic column was successfully applied to separate purines/pyrimidines, nucleotides, and tryptic digest of bovine hemoglobin in a nano-HILIC mode, and the results demonstrated that such monolith has the potential for separation of a variety of hydrophilic substances.
Collapse
Affiliation(s)
- Yingzhuang Chen
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kahsay G, Song H, Van Schepdael A, Cabooter D, Adams E. Hydrophilic interaction chromatography (HILIC) in the analysis of antibiotics. J Pharm Biomed Anal 2014; 87:142-54. [DOI: 10.1016/j.jpba.2013.04.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/10/2013] [Accepted: 04/13/2013] [Indexed: 10/26/2022]
|
18
|
Dillinger S, Garea AV, Deutzmann R, Németh A. Analysis of histone posttranslational modifications from nucleolus-associated chromatin by mass spectrometry. Methods Mol Biol 2014; 1094:277-93. [PMID: 24162996 DOI: 10.1007/978-1-62703-706-8_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chromatin is unevenly distributed within the eukaryote nucleus and it contributes to the formation of morphologically and functionally distinct substructures, called chromatin domains and nuclear bodies. Here we describe an approach to assess specific chromatin features, the histone posttranslational modifications (PTMs), of the largest nuclear sub-compartment, the nucleolus. In this chapter, methods for the isolation of nucleolus-associated chromatin from native or formaldehyde-fixed cells and the effect of experimental procedures on the outcome of mass spectrometry analysis of histone PTMs are compared.
Collapse
Affiliation(s)
- Stefan Dillinger
- Biochemistry Center Regensburg, University of Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
19
|
INOUE Y, YAMAMOTO A. Stationary Phases for the Separation of Reducing Sugars by Normal-Phase Partition Chromatography. CHROMATOGRAPHY 2014. [DOI: 10.15583/jpchrom.2014.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yoshinori INOUE
- Adsep Business Promotion Dep., Nippon Filcon Co., LTD
- College of Bioscience and Biotechnology, Chubu University
| | | |
Collapse
|
20
|
Shen A, Li X, Dong X, Wei J, Guo Z, Liang X. Glutathione-based zwitterionic stationary phase for hydrophilic interaction/cation-exchange mixed-mode chromatography. J Chromatogr A 2013; 1314:63-9. [DOI: 10.1016/j.chroma.2013.09.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/29/2013] [Accepted: 09/01/2013] [Indexed: 10/26/2022]
|
21
|
Di Palma S, Zoumaro-Djayoon A, Peng M, Post H, Preisinger C, Munoz J, Heck AJ. Finding the same needles in the haystack? A comparison of phosphotyrosine peptides enriched by immuno-affinity precipitation and metal-based affinity chromatography. J Proteomics 2013; 91:331-7. [DOI: 10.1016/j.jprot.2013.07.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/07/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
|
22
|
Jung HR, Sidoli S, Haldbo S, Sprenger RR, Schwämmle V, Pasini D, Helin K, Jensen ON. Precision Mapping of Coexisting Modifications in Histone H3 Tails from Embryonic Stem Cells by ETD-MS/MS. Anal Chem 2013; 85:8232-9. [DOI: 10.1021/ac401299w] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hye Ryung Jung
- Centre for Epigenetics, Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Simone Sidoli
- Centre for Epigenetics, Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Simon Haldbo
- Centre for Epigenetics, Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Richard R. Sprenger
- Centre for Epigenetics, Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Veit Schwämmle
- Centre for Epigenetics, Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Diego Pasini
- Centre for Epigenetics, Biotech
Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Kristian Helin
- Centre for Epigenetics, Biotech
Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
- The Danish Stem Cell Center, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen
N, Denmark
| | - Ole N. Jensen
- Centre for Epigenetics, Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
23
|
Zhang Z, Wu Z, Wirth MJ. Polyacrylamide brush layer for hydrophilic interaction liquid chromatography of intact glycoproteins. J Chromatogr A 2013; 1301:156-61. [PMID: 23806357 DOI: 10.1016/j.chroma.2013.05.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 12/25/2022]
Abstract
A chromatographic column of nonporous silica particles with a bonded phase of linear polyacrylamide chains is evaluated for hydrophilic interaction liquid chromatography (HILIC) of intact glycoproteins. The column is shown to retain glycoproteins significantly more strongly than non-glycoproteins. A particle diameter of 700nm gives two-fold higher resolution than does a 1.4μm particle diameter, and the column efficiency is found to be mostly limited by packing heterogeneity. LCMS is able to resolve the five glycoforms of ribonuclease B and give high quality mass spectra, but there is loss of resolution of the isomers of glycoforms due to the lower amount of TFA. Compared to two leading commercial HILIC columns operated at 60°C, the polyacrylamide column operated at 30°C provided at least two-fold higher resolution for intact ribonuclease B, and showed peaks for glycoforms of prostate specific antigen, although not resolved.
Collapse
Affiliation(s)
- Zhaorui Zhang
- Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
24
|
Sarg B, Faserl K, Kremser L, Halfinger B, Sebastiano R, Lindner HH. Comparing and combining capillary electrophoresis electrospray ionization mass spectrometry and nano-liquid chromatography electrospray ionization mass spectrometry for the characterization of post-translationally modified histones. Mol Cell Proteomics 2013; 12:2640-56. [PMID: 23720761 DOI: 10.1074/mcp.m112.024109] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We present the first comprehensive capillary electrophoresis electrospray ionization mass spectrometry (CESI-MS) analysis of post-translational modifications derived from H1 and core histones. Using a capillary electrophoresis system equipped with a sheathless high-sensitivity porous sprayer and nano-liquid chromatography electrospray ionization mass spectrometry (nano-LC-ESI-MS) as two complementary techniques, we characterized H1 histones isolated from rat testis. Without any pre-separation of the perchloric acid extraction, a total of 70 different modified peptides, including 50 phosphopeptides, were identified in the rat linker histones H1.0, H1a-H1e, and H1t. Out of the 70 modified H1 histone peptides, 27 peptides could be identified with CESI-MS only, and 11 solely with LC-ESI-MS. Immobilized metal-affinity chromatography enrichment prior to MS analysis yielded a total of 55 phosphopeptides; 22 of these peptides could be identified only by CESI-MS, and 19 only by LC-ESI-MS, showing the complementarity of the two techniques. We mapped 42 H1 modification sites, including 31 phosphorylation sites, of which 8 were novel sites. For the analysis of core histones, we chose a different strategy. In a first step, the sulfuric-acid-extracted core histones were pre-separated using reverse-phase high-performance liquid chromatography. Individual rat testis core histone fractions obtained in this way were digested and analyzed via bottom-up CESI-MS. This approach yielded the identification of 42 different modification sites including acetylation (lysine and N(α)-terminal); mono-, di-, and trimethylation; and phosphorylation. When we applied CESI-MS for the analysis of intact core histone subtypes from butyrate-treated mouse tumor cells, we were able to rapidly detect their degree of modification, and we found this method very useful for the separation of isobaric trimethyl and acetyl modifications. Taken together, our results highlight the need for additional techniques for the comprehensive analysis of post-translational modifications. CESI-MS is a promising new proteomics tool as demonstrated by this, the first comprehensive analysis of histone modifications, using rat testis as an example.
Collapse
Affiliation(s)
- Bettina Sarg
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
25
|
Preparation and Characterization of the Neomycin-Bonded Silica Stationary Phase for Hydrophilic-Interaction Chromatography. Chromatographia 2013. [DOI: 10.1007/s10337-013-2412-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Abstract
Multidimensional liquid chromatography (LC) combined with mass spectrometry (MS) has become a standard technique in proteomics to reduce sample complexity and to tackle the dynamic range in protein abundance. Fractionation is necessary to obtain a comprehensive analysis of complex biological samples such as tissue and mammalian cell lines. However, extensive fractionation comes at the expense of sample loss, presenting a bottleneck in the analysis of limited amounts of material. In this protocol, we describe a two-dimensional chromatographic strategy based on a combination of hydrophilic interaction liquid chromatography (HILIC; with a zwitterionic packing material, ZIC-cHILIC) and reversed-phase chromatography, which allows proteomic analyses with minimal sample loss. Experimental aspects related to obtaining maximum recovery are discussed, including how to optimally prepare samples for this system. Examples involving protein lysates originating from cultured cell lines and cells sorted by flow cytometry are used to show the power, sensitivity and versatility of the technique. Once the ZIC-cHILIC fractionation system has been optimized and standardized, this protocol requires ∼5-6 d, including sample preparation and fraction analysis.
Collapse
|
27
|
Tian Z, Tolić N, Zhao R, Moore RJ, Hengel SM, Robinson EW, Stenoien DL, Wu S, Smith RD, Paša-Tolić L. Enhanced top-down characterization of histone post-translational modifications. Genome Biol 2012; 13:R86. [PMID: 23034525 PMCID: PMC3491414 DOI: 10.1186/gb-2012-13-10-r86] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 10/03/2012] [Indexed: 02/08/2023] Open
Abstract
Post-translational modifications (PTMs) of core histones work synergistically to fine tune chromatin structure and function, generating a so-called histone code that can be interpreted by a variety of chromatin interacting proteins. We report a novel online two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) platform for high-throughput and sensitive characterization of histone PTMs at the intact protein level. The platform enables unambiguous identification of 708 histone isoforms from a single 2D LC-MS/MS analysis of 7.5 µg purified core histones. The throughput and sensitivity of comprehensive histone modification characterization is dramatically improved compared with more traditional platforms.
Collapse
|
28
|
Shvartsburg AA, Zheng Y, Smith RD, Kelleher NL. Separation of variant methylated histone tails by differential ion mobility. Anal Chem 2012; 84:6317-20. [PMID: 22812477 PMCID: PMC3418378 DOI: 10.1021/ac301541r] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Differential ion mobility spectrometry (field asymmetric waveform ion mobility spectrometry (FAIMS)) is emerging as a broadly useful tool for separation of isomeric modified peptides with post-translational modifications (PTMs) attached to alternative residues. Such separations were anticipated to become more challenging for smaller PTMs and longer peptides. Here, we show that FAIMS can fully resolve localization variants involving a PTM as minuscule as methylation, even for larger peptides in the middle-down range.
Collapse
|
29
|
Brunner AM, Tweedie-Cullen RY, Mansuy IM. Epigenetic modifications of the neuroproteome. Proteomics 2012; 12:2404-20. [PMID: 22696459 DOI: 10.1002/pmic.201100672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/12/2012] [Accepted: 04/12/2012] [Indexed: 01/17/2023]
Abstract
In the central nervous system, epigenetic processes are involved in a multitude of brain functions ranging from the development and differentiation of the nervous system through to higher-order cognitive processes such as learning and memory. This review summarises the current state of the art for the proteomic analysis of the epigenetic regulation of gene expression, in particular the PTM of histones, in the brain and cellular model systems. It describes the MS technologies that have helped the identification and analysis of histones, histone variants and PTMs in the brain. Strategies for the isolation of histones that allow the qualitative analysis of PTMs and their combinatorial patterns are introduced, methods for the relative and absolute quantification of histone PTMs are described, and future challenges are discussed.
Collapse
Affiliation(s)
- Andrea M Brunner
- Brain Research Institute, University of Zürich and Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
30
|
Di Palma S, Hennrich ML, Heck AJ, Mohammed S. Recent advances in peptide separation by multidimensional liquid chromatography for proteome analysis. J Proteomics 2012; 75:3791-813. [DOI: 10.1016/j.jprot.2012.04.033] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/19/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
|
31
|
Sidoli S, Cheng L, Jensen ON. Proteomics in chromatin biology and epigenetics: Elucidation of post-translational modifications of histone proteins by mass spectrometry. J Proteomics 2012; 75:3419-33. [PMID: 22234360 DOI: 10.1016/j.jprot.2011.12.029] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/18/2011] [Accepted: 12/20/2011] [Indexed: 12/11/2022]
Affiliation(s)
- Simone Sidoli
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|
32
|
Yeh CH, Chen SH, Li DT, Lin HP, Huang HJ, Chang CI, Shih WL, Chern CL, Shi FK, Hsu JL. Magnetic bead-based hydrophilic interaction liquid chromatography for glycopeptide enrichments. J Chromatogr A 2012; 1224:70-8. [DOI: 10.1016/j.chroma.2011.12.057] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 12/14/2011] [Accepted: 12/19/2011] [Indexed: 11/25/2022]
|
33
|
Činčárová L, Lochmanová G, Nováková K, Šultesová P, Konečná H, Fajkusová L, Fajkus J, Zdráhal Z. A combined approach for the study of histone deacetylase inhibitors. MOLECULAR BIOSYSTEMS 2012; 8:2937-45. [DOI: 10.1039/c2mb25136a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Buszewski B, Noga S. Hydrophilic interaction liquid chromatography (HILIC)--a powerful separation technique. Anal Bioanal Chem 2012; 402:231-47. [PMID: 21879300 PMCID: PMC3249561 DOI: 10.1007/s00216-011-5308-5] [Citation(s) in RCA: 800] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 11/03/2022]
Abstract
Hydrophilic interaction liquid chromatography (HILIC) provides an alternative approach to effectively separate small polar compounds on polar stationary phases. The purpose of this work was to review the options for the characterization of HILIC stationary phases and their applications for separations of polar compounds in complex matrices. The characteristics of the hydrophilic stationary phase may affect and in some cases limit the choices of mobile phase composition, ion strength or buffer pH value available, since mechanisms other than hydrophilic partitioning could potentially occur. Enhancing our understanding of retention behavior in HILIC increases the scope of possible applications of liquid chromatography. One interesting option may also be to use HILIC in orthogonal and/or two-dimensional separations. Bioapplications of HILIC systems are also presented.
Collapse
Affiliation(s)
- Bogusław Buszewski
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.
| | | |
Collapse
|
35
|
Cui W, Rohrs HW, Gross ML. Top-down mass spectrometry: recent developments, applications and perspectives. Analyst 2011; 136:3854-64. [PMID: 21826297 PMCID: PMC3505190 DOI: 10.1039/c1an15286f] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Top-down mass spectrometry is an emerging approach for the analysis of intact proteins. The term was coined as a contrast with the better-established, bottom-up strategy for analysis of peptide fragments derived from digestion, either enzymatically or chemically, of intact proteins. Although the term top-down originates from proteomics, it can also be applied to mass spectrometric analysis of intact large biomolecules that are constituents of protein assemblies or complexes. Traditionally, mass spectrometry has usually started with intact molecules, and in this regard, top-down approaches reflect the spirit of mass spectrometry. This article provides an overview of the methodologies in top-down mass spectrometry and then reviews applications covering protein posttranslational modifications, protein biophysics, DNAs/RNAs, and protein assemblies. Finally, challenges and future directions are discussed.
Collapse
Affiliation(s)
- Weidong Cui
- NIH NCRR Center for Biomedical and Bio-Organic Mass Spectrometry, Department of Chemistry, Washington University, St. Louis, MO 63130, USA.
| | | | | |
Collapse
|
36
|
Intact protein analysis in the biopharmaceutical field. J Pharm Biomed Anal 2011; 55:810-22. [DOI: 10.1016/j.jpba.2011.01.031] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 01/18/2011] [Accepted: 01/21/2011] [Indexed: 01/09/2023]
|
37
|
Badaloni E, Barbarino M, Cabri W, D’Acquarica I, Forte M, Gasparrini F, Giorgi F, Pierini M, Simone P, Ursini O, Villani C. Efficient organic monoliths prepared by γ-radiation induced polymerization in the evaluation of histone deacetylase inhibitors by capillary(nano)-high performance liquid chromatography and ion trap mass spectrometry. J Chromatogr A 2011; 1218:3862-75. [DOI: 10.1016/j.chroma.2011.04.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/14/2011] [Accepted: 04/16/2011] [Indexed: 11/25/2022]
|
38
|
Jiang Z, Smith NW, Liu Z. Preparation and application of hydrophilic monolithic columns. J Chromatogr A 2011; 1218:2350-61. [DOI: 10.1016/j.chroma.2011.02.024] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 01/25/2011] [Accepted: 02/10/2011] [Indexed: 11/29/2022]
|
39
|
Tian Z, Zhao R, Tolić N, Moore RJ, Stenoien DL, Robinson EW, Smith RD, Paša-Tolić L. Two-dimensional liquid chromatography system for online top-down mass spectrometry. Proteomics 2011; 10:3610-20. [PMID: 20879039 DOI: 10.1002/pmic.201000367] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An online metal-free weak cation exchange-hydrophilic interaction LC/RPLC system has been developed for sensitive, high-throughput top-down MS. Here, we report results for analyzing PTMs of core histones, with a focus on histone H4, using this system. With just ∼24 μg on-column of core histones (H4, H2B, H2A, and H3) purified from human fibroblasts, 41 H4 isoforms were identified, with the type and location of PTMs unambiguously mapped for 20 of these variants. Compared to corresponding offline studies reported previously, the online weak cation exchange-hydrophilic interaction LC/RPLC platform offers significant improvement in sensitivity, with several orders of magnitude reduction in sample requirements and a reduction in the overall analysis time. To the best of our knowledge, this study represents the first online 2-D LC-MS/MS characterization of core histone mixture at the intact protein level.
Collapse
Affiliation(s)
- Zhixin Tian
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Young NL, Dimaggio PA, Garcia BA. The significance, development and progress of high-throughput combinatorial histone code analysis. Cell Mol Life Sci 2010; 67:3983-4000. [PMID: 20683756 PMCID: PMC11115713 DOI: 10.1007/s00018-010-0475-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 07/05/2010] [Accepted: 07/20/2010] [Indexed: 01/18/2023]
Abstract
The physiological state of eukaryotic DNA is chromatin. Nucleosomes, which consist of DNA in complex with histones, are the fundamental unit of chromatin. The post-translational modifications (PTMs) of histones play a critical role in the control of gene transcription, epigenetics and other DNA-templated processes. It has been known for several years that these PTMs function in concert to allow for the storage and transduction of highly specific signals through combinations of modifications. This code, the combinatorial histone code, functions much like a bar code or combination lock providing the potential for massive information content. The capacity to directly measure these combinatorial histone codes has mostly been laborious and challenging, thus limiting efforts often to one or two samples. Recently, progress has been made in determining such information quickly, quantitatively and sensitively. Here we review both the historical and recent progress toward routine and rapid combinatorial histone code analysis.
Collapse
Affiliation(s)
- Nicolas L Young
- Department of Molecular Biology, Princeton University, 415 Schultz Laboratory, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
41
|
Guerrouache M, Pantazaki A, Millot MC, Carbonnier B. Zwitterionic polymeric monoliths for HILIC/RP mixed mode for CEC separation applications. J Sep Sci 2010; 33:787-92. [PMID: 20222072 DOI: 10.1002/jssc.200900681] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polymer-based monoliths with zwitterionic surface character were synthesized in capillary columns following a two-step approach to provide versatile electrochromatographic stationary phases exhibiting potentiality of both hydrophilic interaction and RP separation modes. UV-initiated free radical copolymerization of N-acryloxysuccinimide and ethylene dimethacrylate was performed using azobisisobutyronitrile as initiator and toluene as porogen. One of the originalities of this approach relies on the dual role of the N-acryloxysuccinimide monomer that is successively used during the preparation protocol to first covalently graft chromatographic selectors on the monolith surface via simple nucleophilic substitution reaction and then to generate negative charges through hydrolysis of remaining N-hydroxysuccinimide units. In this respect, the grafting of hexyldiamine affords potential cationic surface charges. It is shown that it is possible to tune, controlling the pH of the mobile phase, the intensity and direction of the generated EOF. Moreover, the nature of the interfacial interaction process responsible for the observed separations is well governed by the composition of the mobile phase. Polymer backbone hydrophilization is proposed as an efficient way to improve the HILIC behavior of poly(N-acryloxysuccinimide-co-ethylene dimethacrylate) based monolithic CEC columns together with the grafting of an alkyldiamine incorporating a shorter aliphatic segment.
Collapse
Affiliation(s)
- Mohamed Guerrouache
- Institut de Chimie et Matériaux de Paris Est-Equipe Systèmes Polymères Complexes, UMR 7182 CNRS-Université Paris Est, Faculté des Sciences Paris 12 Val de Marne, Thiais, France
| | | | | | | |
Collapse
|
42
|
Johnson JR, Karlsson D, Dalene M, Skarping G. Determination of aromatic amines in aqueous extracts of polyurethane foam using hydrophilic interaction liquid chromatography and mass spectrometry. Anal Chim Acta 2010; 678:117-23. [DOI: 10.1016/j.aca.2010.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/13/2010] [Accepted: 08/18/2010] [Indexed: 10/19/2022]
|
43
|
Chirita RI, West C, Finaru AL, Elfakir C. Approach to hydrophilic interaction chromatography column selection: Application to neurotransmitters analysis. J Chromatogr A 2010; 1217:3091-104. [DOI: 10.1016/j.chroma.2010.03.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 02/24/2010] [Accepted: 03/01/2010] [Indexed: 01/07/2023]
|
44
|
Van Dorpe S, Vergote V, Pezeshki A, Burvenich C, Peremans K, De Spiegeleer B. Hydrophilic interaction LC of peptides: Columns comparison and clustering. J Sep Sci 2010; 33:728-39. [DOI: 10.1002/jssc.200900476] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Garcia BA. What does the future hold for Top Down mass spectrometry? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:193-202. [PMID: 19942451 DOI: 10.1016/j.jasms.2009.10.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 10/14/2009] [Accepted: 10/21/2009] [Indexed: 05/28/2023]
Abstract
Mass spectrometry (MS) research has revolutionized modern biological and biomedical fields. At the heart of the majority of mass spectrometry experiments is the use of Bottom Up mass spectrometry methods where proteins are first proteolyzed into smaller fragments before MS interrogation. The advent of electron capture dissociation and, more recently, electron-transfer dissociation, however, has allowed Top Down (analysis of intact proteins) or middle down (analysis of large polypeptides) mass spectrometry to both experience large increases in development, growth, and overall usage. Nevertheless, for high-throughput large-scale proteomic studies, Bottom Up mass spectrometry has easily dominated the field. As Top Down mass spectrometry methodology and technology continue to develop, will it genuinely be able to compete with Bottom Up mass spectrometry for whole proteome analysis? Discussed here are the current approaches, applications, issues, and future view of high-throughput Top Down mass spectrometry.
Collapse
Affiliation(s)
- Benjamin A Garcia
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|
46
|
Sneekes EJ, Han J, Elliot M, Ausio J, Swart R, Heck AJR, Borchers C. Accurate molecular weight analysis of histones using FFE and RP-HPLC on monolithic capillary columns. J Sep Sci 2009; 32:2691-8. [DOI: 10.1002/jssc.200800627] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Novel zwitterionic polyphosphorylcholine monolithic column for hydrophilic interaction chromatography. J Chromatogr A 2009; 1216:2439-48. [DOI: 10.1016/j.chroma.2009.01.028] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/06/2009] [Accepted: 01/12/2009] [Indexed: 11/13/2022]
|
48
|
Lindner HH. Analysis of histones, histone variants, and their post-translationally modified forms. Electrophoresis 2008; 29:2516-32. [PMID: 18494025 DOI: 10.1002/elps.200800094] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For many years, histones were considered passive structural components of eukaryotic chromatin. Meanwhile it has been proven that histones also participate in gene regulation and repression via post-translational modification. The multitude of these post-translational modifications and the existence of numerous histone variants require particular separation strategies for their analysis, a prerequisite for studying biological processes. The most widely utilized techniques for the separation of histones, namely PAGE, HPCE, RP-HPLC, and hydrophilic Interaction LC, are reviewed here. Problems inherent to the analysis of histones owing to their unique physical and chemical properties along with advantages and shortcomings of particular methods are discussed.
Collapse
Affiliation(s)
- Herbert H Lindner
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
49
|
Mant CT, Hodges RS. Mixed-mode hydrophilic interaction/cation-exchange chromatography (HILIC/CEX) of peptides and proteins. J Sep Sci 2008; 31:2754-73. [PMID: 18668504 PMCID: PMC2774265 DOI: 10.1002/jssc.200800243] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review represents a summary of the development and application of a novel mixed-mode HPLC approach to the separation and analysis of peptides and proteins termed hydrophilic interaction/cation-exchange chromatography (HILIC/CEX). This approach combines the most advantageous aspects of two widely different separation mechanisms, i.e. a separation based on hydrophilicity/hydrophobicity differences between polypeptides overlaid on a separation based on net charge. Applications described include HILIC/CEX separations of cyclic peptides, alpha-helical peptides, random coil peptides and modified or deletion products of synthetic peptides. In addition, the excellent resolving ability of HILIC/CEX for modified histone proteins is described. This approach is shown to represent an excellent complement to RP chromatography (RPC), as well as being a potent analytical tool in its own right.
Collapse
Affiliation(s)
- Colin T Mant
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | | |
Collapse
|
50
|
Mant CT, Hodges RS. Mixed-mode hydrophilic interaction/cation-exchange chromatography: separation of complex mixtures of peptides of varying charge and hydrophobicity. J Sep Sci 2008; 31:1573-84. [PMID: 18461566 DOI: 10.1002/jssc.200700619] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mixed-mode hydrophilic interaction/cation-exchange chromatography (HILIC/CEX) was applied to the separation of two mixtures of synthetic peptide standards: (i) a 27-peptide mixture containing three groups of peptides (each group containing nine peptides of the same net charge of +1, +2 or +3), where the hydrophilicity/hydrophobicity of adjacent peptides within the groups varied only subtly (generally by only a single carbon atom); and (ii) peptide pairs with the same composition but different sequences, where the sole difference between the peptides was the position of a single amino acid substitution. HILIC/CEX is essentially CEX chromatography in the presence of high levels of organic modifier (generally ACN). The present study demonstrated the dramatic effect of increasing ACN concentration (optimum levels of 60-80%, depending on the application) on the separation of both mixtures of peptides. The greater the charge on the peptides, the better the separation achievable by HILIC/CEX. In addition, HILIC/CEX separation of both the peptide mixtures used in the present study was shown to be superior to that of the more commonly applied RP-HPLC mode. Our results highlight again the efficacy of HILIC/CEX as a peptide separation mode in its own right as well as an excellent complement to RP-HPLC.
Collapse
Affiliation(s)
- Colin T Mant
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, CO, USA
| | | |
Collapse
|