Péron N, Brochard-Wyart F, Duval H. Dewetting of low-viscosity films at solid/liquid interfaces.
LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012;
28:15844-15852. [PMID:
23072493 DOI:
10.1021/la303374m]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report new experimental results on the dewetting of a mercury film (A) intercalated between a glass slab and an external nonmiscible liquid phase (B) under conditions of a large equilibrium contact angle. The viscosity of the external phase, ηB, was varied over 7 orders of magnitude. We observe a transition between two regimes of dewetting at a threshold viscosity of η(B)* ≈ (ρ(A)e|S̃|)(1/2), where ρ(A) is the mercury density, e is the film thickness, and |S̃| is the effective spreading coefficient. For η(B) < η(B)*, the regime is inertial. The velocity of dewetting is constant and ruled by Culick’s law, V ≈ (|S̃|/(ρ(A)e))(1/2). Capillary waves were observed at high dewetting velocities: they are a signature of hydraulic shock. For η(B) > η(B)*, the regime is viscous. The dewetting velocity is constant and scales as V ≈ |S̃|/η(B) in the limit of large η(B). We interpret this regime by a balance between the surface energy released during dewetting and the viscous dissipation in the surrounding liquid.
Collapse