Minnicozzi M, Anthes JC, Siegel MI, Billah MM, Egan RW. Activation of phospholipase D in normodense human eosinophils.
Biochem Biophys Res Commun 1990;
170:540-7. [PMID:
2116791 DOI:
10.1016/0006-291x(90)92125-j]
[Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Normodense human eosinophils have been labeled in 1-0-alkyl-phosphatidylcholine (alkyl-PC) with 32P by incubating isolated cells with alkyl-[32P]lysoPC. Stimulation of these 32P-labeled cells with C5a, A23187 or PMA in the presence of 0.5% ethanol resulted in time- and dose-dependent formation of alkyl-[32P]phosphatidic acid (alkyl-[32P]PA) and alkyl-[32P]phosphatidylethanol (alkyl-[32P]PEt). Because cellular ATP does not contain 32P, alkyl-[32P]PA must have been formed by the hydrolytic action of phospholipase D (PLD) and not by the combined actions of phospholipase C and DG kinase. Regardless of the stimulating agent, alkyl-[32P]PEt formation paralleled that of alkyl-[32P]PA, suggesting that alkyl-PEt was the result of a PLD-catalyzed transphosphatidylation reaction between alkyl-PC and ethanol. These data provide the first definitive proof of receptor- and nonreceptor-mediated activation of PLD in normodense eosinophils derived from human blood.
Collapse