1
|
Wu Z, Wang C, Liu B, Liang C, Lu J, Li J, Tang X, Li C, Li T. Smartphone-Based High-Throughput Fiber-Integrated Immunosensing System for Point-of-Care Testing of the SARS-CoV-2 Nucleocapsid Protein. ACS Sens 2022; 7:1985-1995. [PMID: 35766020 PMCID: PMC9261833 DOI: 10.1021/acssensors.2c00754] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
To control the coronavirus disease 2019 (COVID-19) pandemic, there is an urgent need for simple, rapid, and reliable detection methods to identify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, especially in community hospitals or clinical centers. The SARS-CoV-2 nucleocapsid protein (NP) is an important index for diagnosis of COVID-19. Here, we proposed a smartphone-based high-throughput fiber-integrated immunosensing system (HFIS) for detecting the SARS-CoV-2 NP in serum samples within 45 min. For the testing of NP standards, the linear detection range was 7.8-1000 pg/mL, the limit of detection was 7.5 pg/mL, and the cut-off value was 8.923 pg/mL. Twenty-five serum samples from clinically diagnosed COVID-19 patients and 100 negative control samples from healthy blood donors were tested for SARS-CoV-2 NP by HFIS, and the obtained results were compared with those of ELISA and Simple Western analysis. The results showed that the HFIS sensitivity and specificity were 72% [95% confidence interval (CI): 52.42-85.72%] and 100% (95% CI: 96.11-100%), respectively, which significantly correlated with those from the commercial ELISA kit and Simple Western analysis. This portable high-throughput HFIS assay could be an alternative test for detecting SARS-CoV-2 NP in blood samples on site.
Collapse
Affiliation(s)
- Ze Wu
- Department of Transfusion Medicine, School of
Laboratory Medicine and Biotechnology, Southern Medical
University, Guangzhou 510515, P. R. China
- Department of Laboratory Medicine, Nanfang Hospital,
Southern Medical University, Guangzhou 510515, P. R.
China
| | - Cong Wang
- Department of Transfusion Medicine, School of
Laboratory Medicine and Biotechnology, Southern Medical
University, Guangzhou 510515, P. R. China
| | - Bochao Liu
- Department of Transfusion Medicine, School of
Laboratory Medicine and Biotechnology, Southern Medical
University, Guangzhou 510515, P. R. China
- Guangzhou Blood Center,
Guangzhou 510091, P. R. China
| | - Chaolan Liang
- Department of Transfusion Medicine, School of
Laboratory Medicine and Biotechnology, Southern Medical
University, Guangzhou 510515, P. R. China
| | - Jinhui Lu
- Department of Transfusion Medicine, School of
Laboratory Medicine and Biotechnology, Southern Medical
University, Guangzhou 510515, P. R. China
| | - Jinfeng Li
- Shenzhen Key Laboratory of Molecular Epidemiology,
Shenzhen Center for Disease Control and Prevention, Shenzhen
518054, P. R. China
| | - Xi Tang
- Department of Infection, The First
People’s Hospital of Foshan, Foshan 528010,
China
| | - Chengyao Li
- Department of Transfusion Medicine, School of
Laboratory Medicine and Biotechnology, Southern Medical
University, Guangzhou 510515, P. R. China
| | - Tingting Li
- Department of Transfusion Medicine, School of
Laboratory Medicine and Biotechnology, Southern Medical
University, Guangzhou 510515, P. R. China
| |
Collapse
|
2
|
He G, Dong T, Yang Z, Jiang Z. Mitigating hook effect in one-step quantitative sandwich lateral flow assay by timed conjugate release. Talanta 2021; 240:123157. [PMID: 34968809 DOI: 10.1016/j.talanta.2021.123157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
Sandwich lateral flow assay (LFA) is one of the most successfully commercialized paper-based biosensors, which offers a rapid, low-cost, one-step assay. Despite its advantages, conventional sandwich LFA is fundamentally limited by the high-dose "hook" effect-a phenomenon that occurs at very high analyte concentrations and results in false-negative results. In this paper, we present a novel strategy of automatic timed detection antibody release to mitigate the hook effect in sandwich LFA without additional manual steps. We introduced an intermediate pad treated with saturated sucrose solution to regulate the flow between the nitrocellulose membrane and the conjugate pad in order to delay the reaction between detection antibodies and analytes. Using C-reactive protein (CRP) as a representative analyte, we demonstrated that our strategy exhibited a range of detection 10 times wider than that of our conventional LFA, without sacrificing the limit of detection. Comparing to other published strategies, our work could offer a one-step, cost-effective approach that is closely unified with the benefits of the LFA.
Collapse
Affiliation(s)
- Guozhen He
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603, Kongsberg, Norway
| | - Tao Dong
- Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603, Kongsberg, Norway.
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Zhuangde Jiang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| |
Collapse
|
3
|
Smith LD, Willard MC, Smith JP, Cunningham BT. Development of a Linker-Mediated Immunoassay Using Chemically Transitioned Nanosensors. Anal Chem 2020; 92:3627-3635. [DOI: 10.1021/acs.analchem.9b04518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lucas D. Smith
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro & Nanotechnology Lab, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- EnterpriseWorks, University of Illinois at Urbana−Champaign, Champaign, Illinois 61820, United States
| | - Michael C. Willard
- EnterpriseWorks, University of Illinois at Urbana−Champaign, Champaign, Illinois 61820, United States
| | - Jordan P. Smith
- EnterpriseWorks, University of Illinois at Urbana−Champaign, Champaign, Illinois 61820, United States
| | - Brian T. Cunningham
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro & Nanotechnology Lab, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Gasperino DJ, Leon D, Lutz B, Cate DM, Nichols KP, Bell D, Weigl BH. Threshold-Based Quantification in a Multiline Lateral Flow Assay via Computationally Designed Capture Efficiency. Anal Chem 2018; 90:6643-6650. [DOI: 10.1021/acs.analchem.8b00440] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Daniel Leon
- University of Washington, Seattle, Washington 98195, United States
| | - Barry Lutz
- University of Washington, Seattle, Washington 98195, United States
| | - David M. Cate
- Intellectual Ventures, Bellevue, Washington 98005, United States
| | - Kevin P. Nichols
- Intellectual Ventures, Bellevue, Washington 98005, United States
| | - David Bell
- Intellectual Ventures, Bellevue, Washington 98005, United States
| | - Bernhard H. Weigl
- Intellectual Ventures, Bellevue, Washington 98005, United States
- University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
5
|
Thompson CM, Bloom LR, Ogiue-Ikeda M, Machida K. SH2-PLA: a sensitive in-solution approach for quantification of modular domain binding by proximity ligation and real-time PCR. BMC Biotechnol 2015; 15:60. [PMID: 26112401 PMCID: PMC4482279 DOI: 10.1186/s12896-015-0169-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is a great interest in studying phosphotyrosine dependent protein-protein interactions in tyrosine kinase pathways that play a critical role in many aspects of cellular function. We previously established SH2 profiling, a phosphoproteomic approach based on membrane binding assays that utilizes purified Src Homology 2 (SH2) domains as a molecular tool to profile the global tyrosine phosphorylation state of cells. However, in order to use this method to investigate SH2 binding sites on a specific target in cell lysate, additional procedures such as pull-down or immunoprecipitation which consume large amounts of sample are required. RESULTS We have developed PLA-SH2, an alternative in-solution modular domain binding assay that takes advantage of Proximity Ligation Assay and real-time PCR. The SH2-PLA assay utilizes oligonucleotide-conjugated anti-GST and anti-EGFR antibodies recognizing a GST-SH2 probe and cellular EGFR, respectively. If the GST-SH2 and EGFR are in close proximity as a result of SH2-phosphotyrosine interactions, the two oligonucleotides are brought within a suitable distance for ligation to occur, allowing for efficient complex amplification via real-time PCR. The assay detected signal across at least 3 orders of magnitude of lysate input with a linear range spanning 1-2 orders and a low femtomole limit of detection for EGFR phosphotyrosine. SH2 binding kinetics determined by PLA-SH2 showed good agreement with established far-Western analyses for A431 and Cos1 cells stimulated with EGF at various times and doses. Further, we showed that PLA-SH2 can survey lung cancer tissues using 1 μl lysate without requiring phospho-enrichment. CONCLUSIONS We showed for the first time that interactions between SH2 domain probes and EGFR in cell lysate can be determined in a microliter-scale assay using SH2-PLA. The obvious benefit of this method is that the low sample requirement allows detection of SH2 binding in samples which are difficult to analyze using traditional protein interaction assays. This feature along with short assay runtime makes this method a useful platform for the development of high throughput assays to determine modular domain-ligand interactions which could have wide-ranging applications in both basic and translational cancer research.
Collapse
Affiliation(s)
- Christopher M Thompson
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, 06030, Farmington, CT, USA.
| | - Lee R Bloom
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, 06030, Farmington, CT, USA.
| | - Mari Ogiue-Ikeda
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, 06030, Farmington, CT, USA.
| | - Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, 06030, Farmington, CT, USA.
| |
Collapse
|
6
|
A high-throughput, precipitating colorimetric sandwich ELISA microarray for Shiga toxins. Toxins (Basel) 2014; 6:1855-72. [PMID: 24921195 PMCID: PMC4073133 DOI: 10.3390/toxins6061855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/30/2014] [Accepted: 06/03/2014] [Indexed: 11/16/2022] Open
Abstract
Shiga toxins 1 and 2 (Stx1 and Stx2) from Shiga toxin-producing E. coli (STEC) bacteria were simultaneously detected with a newly developed, high-throughput antibody microarray platform. The proteinaceous toxins were immobilized and sandwiched between biorecognition elements (monoclonal antibodies) and pooled horseradish peroxidase (HRP)-conjugated monoclonal antibodies. Following the reaction of HRP with the precipitating chromogenic substrate (metal enhanced 3,3-diaminobenzidine tetrahydrochloride or DAB), the formation of a colored product was quantitatively measured with an inexpensive flatbed page scanner. The colorimetric ELISA microarray was demonstrated to detect Stx1 and Stx2 at levels as low as ~4.5 ng/mL within ~2 h of total assay time with a narrow linear dynamic range of ~1-2 orders of magnitude and saturation levels well above background. Stx1 and/or Stx2 produced by various strains of STEC were also detected following the treatment of cultured cells with mitomycin C (a toxin-inducing antibiotic) and/or B-PER (a cell-disrupting, protein extraction reagent). Semi-quantitative detection of Shiga toxins was demonstrated to be sporadic among various STEC strains following incubation with mitomycin C; however, further reaction with B-PER generally resulted in the detection of or increased detection of Stx1, relative to Stx2, produced by STECs inoculated into either axenic broth culture or culture broth containing ground beef.
Collapse
|
7
|
Affiliation(s)
- IGOR HOCHEL
- a Department of Biochemistry and Microbiology , Institute of Chemical Technology , Technická 5, 166 28 Prague 6, Czech Republic
| | - MAREK MUSIL
- a Department of Biochemistry and Microbiology , Institute of Chemical Technology , Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
8
|
Urata M, Iwata R, Noda K, Murakami Y, Kuroda A. Detection of living Salmonella cells using bioluminescence. Biotechnol Lett 2009; 31:737-41. [PMID: 19169891 DOI: 10.1007/s10529-009-9924-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 12/23/2008] [Indexed: 11/26/2022]
Abstract
ATP-based bioluminescence using mutant firefly luciferase was combined with an immunochromatographic lateral flow test strip assay for Salmonella enteritidis detection. In this combination method, the Salmonella-antibody-gold complex captured at the test line on the test strip was lysed by heat-treatment, and the ATP released from the cells was measured using mutant luciferase. This method resulted in approximately 1,000 times higher sensitivity in the detection of Salmonella (i.e. 10(3) c.f.u./ml) compared to immunochromatographic lateral flow assay.
Collapse
Affiliation(s)
- Masaaki Urata
- Research Institute for Nanodevice and Bio Systems, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan
| | | | | | | | | |
Collapse
|
9
|
Frost SJ, Firth GB, Chakraborty J. A Novel Colourimetric Homogeneous Liposomal Immunoassay Using Sulphorhodamine B. J Liposome Res 2008; 4:1159-1182. [DOI: 10.3109/08982109409018627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Stephen J Frost
- Department of Clinical Biochemistry, The Princess Royal Hospital, Haywards Heath, Sussex, UK
- School of Biological Sciences, University of Surrey, Guildford, Surrey, UK
| | - Gary B Firth
- Department of Clinical Biochemistry, The Princess Royal Hospital, Haywards Heath, Sussex, UK
| | - Jessie Chakraborty
- School of Biological Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
10
|
Xu YF, Velasco-Garcia M, Mottram TT. Quantitative analysis of the response of an electrochemical biosensor for progesterone in milk. Biosens Bioelectron 2005; 20:2061-70. [PMID: 15741076 DOI: 10.1016/j.bios.2004.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 08/24/2004] [Accepted: 09/14/2004] [Indexed: 11/23/2022]
Abstract
An electrochemical biosensor for progesterone in cow's milk was developed and used in a competitive immunoassay by Hart et al. (1977, Studies towards a disposable screenprinted amperometric biosensor for progesterone, Biosens. Bioelectron. 12, 1113-1121). The sensor was fabricated by depositing anti-progesterone monoclonal antibody (mAb) onto screen-printed carbon electrodes (SPCEs) which were coated with rabbit anti-sheep IgG (rIgG). This sensor was operated following the steps of competitive binding between sample and conjugate (alkaline-phosphatase-labelled progesterone) for the immobilised mAb sites and measurements of an amperometric signal in the presence of p-nitrophenylphosphate using either colorimetric assays or cyclic voltammetry. The hook effect of the progesterone biosensor was found in the concentration range of milk progesterone between 0 and 5 ng/ml when the sensor was fabricated using a loading of 25 ng rIgG per electrode of a diameter of 3 mm and a 1/50 dilution of mAb. A computer model has been developed in this study to simulate the operation of this progesterone biosensor with consideration of the fabrication processes. This paper presents the results of validating the computer model and the model has predicted the hook effect as observed in tests. The model thus reveals that the hook effect is determined by the total number of binding sites available and the rates of labelled and unlabelled progesterone diffusing towards the sensor surface and the binding rates.
Collapse
Affiliation(s)
- Y F Xu
- Silsoe Research Institute, Bedfordshire MK45 4HS, UK.
| | | | | |
Collapse
|
11
|
Haes AJ, Chang L, Klein WL, Van Duyne RP. Detection of a Biomarker for Alzheimer's Disease from Synthetic and Clinical Samples Using a Nanoscale Optical Biosensor. J Am Chem Soc 2005; 127:2264-71. [PMID: 15713105 DOI: 10.1021/ja044087q] [Citation(s) in RCA: 429] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A nanoscale optical biosensor based on localized surface plasmon resonance (LSPR) spectroscopy has been developed to monitor the interaction between the antigen, amyloid-beta derived diffusible ligands (ADDLs), and specific anti-ADDL antibodies. Using the sandwich assay format, this nanosensor provides quantitative binding information for both antigen and second antibody detection that permits the determination of ADDL concentration and offers the unique analysis of the aggregation mechanisms of this putative Alzheimer's disease pathogen at physiologically relevant monomer concentrations. Monitoring the LSPR-induced shifts from both ADDLs and a second polyclonal anti-ADDL antibody as a function of ADDL concentration reveals two ADDL epitopes that have binding constants to the specific anti-ADDL antibodies of 7.3 x 10(12) M(-1) and 9.5 x 10(8) M(-1). The analysis of human brain extract and cerebrospinal fluid samples from control and Alzheimer's disease patients reveals that the LSPR nanosensor provides new information relevant to the understanding and possible diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Amanda J Haes
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | | | | | | |
Collapse
|
12
|
Qian W, Yao D, Yu F, Xu B, Zhou R, Bao X, Lu Z. Immobilization of Antibodies on Ultraflat Polystyrene Surfaces. Clin Chem 2000. [DOI: 10.1093/clinchem/46.9.1456] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Background: Functional antibody surfaces were prepared on ultraflat polystyrene surfaces by physical adsorption, and the uniform distribution of monoclonal antibodies against hepatitis B surface antigen (anti-HBs) on such surfaces and the presence of dense hepatitis B surface antigen (HBsAg) particles captured by immobilized antibodies were identified.
Methods: A model polystyrene film was spin-coated directly onto a silicon wafer surface. Atomic force microscopy was used to directly monitor the immobilization of anti-HBs antibodies and their specific molecular interaction with HBsAg. Enzyme immunoassay was also used to characterize functional antibody surfaces.
Results: A mean roughness of 2 Å for areas of 25 μm2 was produced. We found a uniform distribution of anti-HBs antibodies on ultraflat polystyrene surfaces and the presence of dense HBsAg particles bound to such anti-HBs surfaces after incubation with HBsAg.
Conclusions: This study confirmed the potential of preparing dense, homogeneous, highly specific, and highly stable antibody surfaces by immobilizing antibodies on polystyrene surfaces with controlled roughness. It is expected that such biofunctional surfaces could be of interest for the development of new solid-phase immunoassay techniques and biosensor techniques.
Collapse
Affiliation(s)
- Weiping Qian
- National Laboratory of Molecular and Biomolecular Electronics, Southeast University, Nanjing 210096, Peoples Republic of China
| | - Danfeng Yao
- National Laboratory of Molecular and Biomolecular Electronics, Southeast University, Nanjing 210096, Peoples Republic of China
| | - Fang Yu
- National Laboratory of Molecular and Biomolecular Electronics, Southeast University, Nanjing 210096, Peoples Republic of China
| | - Bin Xu
- Center for Clinical Laboratory Science, Jiangsu Province, Nanjing 210009, Peoples Republic of China
| | - Rong Zhou
- National Laboratory of Molecular and Biomolecular Electronics, Southeast University, Nanjing 210096, Peoples Republic of China
| | - Xiang Bao
- National Laboratory of Molecular and Biomolecular Electronics, Southeast University, Nanjing 210096, Peoples Republic of China
| | - Zuhong Lu
- National Laboratory of Molecular and Biomolecular Electronics, Southeast University, Nanjing 210096, Peoples Republic of China
| |
Collapse
|
13
|
Yu F, Yao D, Qian W. Reflectometry Interference Spectroscopy in Detection of Hepatitis B Surface Antigen. Clin Chem 2000. [DOI: 10.1093/clinchem/46.9.1489] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Fang Yu
- National Laboratory of Molecular and Biomolecular Electronics, Southeast University, Nanjing 210096, Peoples Republic of China
| | - Danfeng Yao
- National Laboratory of Molecular and Biomolecular Electronics, Southeast University, Nanjing 210096, Peoples Republic of China
| | - Weiping Qian
- National Laboratory of Molecular and Biomolecular Electronics, Southeast University, Nanjing 210096, Peoples Republic of China
| |
Collapse
|
14
|
Kim JH, Cho JH, Cha GS, Lee CW, Kim HB, Paek SH. Conductimetric membrane strip immunosensor with polyaniline-bound gold colloids as signal generator. Biosens Bioelectron 2000; 14:907-15. [PMID: 10722148 DOI: 10.1016/s0956-5663(99)00063-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
For point-of-care examination, an immuno-chromatographic assay system based on conductimetric detection was investigated by utilizing, as signal generator, colloidal gold with polyaniline bound on the metal surface. Although the gold is a widely used label for antibodies to produce colorimetric signals, the tracer does not lend itself for a suitable electric conduction along the gold particles due to the presence of protein barriers (e.g. immunoglobulin and blocking agent) against electron transfer. To overcome this problem, we introduced a conducting polymer, for instance, polyaniline, as a conductivity-modulating agent on the gold surface after immobilizing an antibody specific to human albumin used as model analyte. This novel signal generator amplified the conductimetric signal 4.7 times compared with the plain gold, and the signal was also maximum 2.3-fold higher than that from the photometric system under the same analytical conditions. The latter effect resulted from an exponential pattern in the dose-response curve of the electric signal that was different from the conventional sigmoidal shape.
Collapse
Affiliation(s)
- J H Kim
- Graduate School of Biotechnology, Korea University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- C Selby
- Department of Clinical Biochemistry, City Hospital, Nottingham, UK
| |
Collapse
|
16
|
Abstract
The one-step sandwich immunoassay is increasingly replacing the traditional two-step immunoassay due to obvious advantages such as assay speed. However, the one-step sandwich immunoassay suffers from the 'hook' effect irrespective of the analyte characteristics. The 'hook' effect is dependent primarily on the analyte concentration. Three different model analytes, human growth hormone (hGH), the dimeric form of hGH (D-hGH, having a discrete number of repeating epitopes) and ferritin (multiple epitopes) having different immunological properties have been employed in studies of the one-step sandwich immunoassay. The characteristics of each of the model analytes offer new insights into general guidelines for assay procedures. These guidelines permit rapid optimization of assay conditions for an immunoassay without a priori knowledge of the immunological characteristics of the antibody or antigen. Both experimental and theoretical data show several instances where high capacity solid-phase antibodies can effectively shift the 'hook' to relatively higher analyte concentrations. The effect of the concentration of labeled antibody on assay response was examined theoretically.
Collapse
Affiliation(s)
- S A Fernando
- Department of Chemistry, University of Kansas, Lawrence 66045
| | | |
Collapse
|