Streetz KL, Doyonnas R, Grimm D, Jenkins DD, Fuess S, Perryman S, Lin J, Trautwein C, Shizuru J, Blau H, Sylvester KG, Kay MA. Hepatic parenchymal replacement in mice by transplanted allogeneic hepatocytes is facilitated by bone marrow transplantation and mediated by CD4 cells.
Hepatology 2008;
47:706-18. [PMID:
18220289 DOI:
10.1002/hep.22012]
[Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
UNLABELLED
The lack of adequate donor organs is a major limitation to the successful widespread use of liver transplantation for numerous human hepatic diseases. A desirable alternative therapeutic option is hepatocyte transplantation (HT), but this approach is similarly restricted by a shortage of donor cells and by immunological barriers. Therefore, in vivo expansion of tolerized transplanted cells is emerging as a novel and clinically relevant potential alternative cellular therapy. Toward this aim, in the present study we established a new mouse model that combines HT with prior bone marrow transplantation (BMT). Donor hepatocytes were derived from human alpha(1)-antitrypsin (hAAT) transgenic mice of the FVB strain. Serial serum enzyme-linked immunosorbent assays for hAAT protein were used to monitor hepatocyte engraftment and expansion. In control recipient mice lacking BMT, we observed long-term yet modest hepatocyte engraftment. In contrast, animals undergoing additional syngeneic BMT prior to HT showed a 3- to 5-fold increase in serum hAAT levels after 24 weeks. Moreover, complete liver repopulation was observed in hepatocyte-transplanted Balb/C mice that had been transplanted with allogeneic FVB-derived bone marrow. These findings were validated by a comparison of hAAT levels between donor and recipient mice and by hAAT-specific immunostaining. Taken together, these findings suggest a synergistic effect of BMT on transplanted hepatocytes for expansion and tolerance induction. Livers of repopulated animals displayed substantial mononuclear infiltrates, consisting predominantly of CD4(+) cells. Blocking the latter prior to HT abrogated proliferation of transplanted hepatocytes, and this implied an essential role played by CD4(+) cells for in vivo hepatocyte selection following allogeneic BMT.
CONCLUSION
The present mouse model provides a versatile platform for investigation of the mechanisms governing HT with direct relevance to the development of clinical strategies for the treatment of human hepatic failure.
Collapse