1
|
Autoreactive B cell responses targeting nuclear antigens in systemic sclerosis: Implications for disease pathogenesis. Semin Arthritis Rheum 2023; 58:152136. [PMID: 36403538 DOI: 10.1016/j.semarthrit.2022.152136] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
A hallmark of disease pathogenesis of systemic sclerosis (SSc) is the presence of autoreactive B cell responses targeting nuclear proteins. Almost all SSc-patients harbour circulating antinuclear autoantibodies of which anti-topoisomerase 1, anti-centromere protein, anti-RNA polymerase III and anti-fibrillarin autoantibodies (ATA, ACA, ARA and AFA, respectively) are the most common and specific for SSc. In clinical practice, autoantibodies serve as diagnostic biomarkers and can aid in the identification of clinical phenotypes of the disease. However, factors driving disease progression in SSc are still poorly understood, and it is difficult to predict disease trajectories in individual patients. Moreover, treatment decisions remain rather empirical, with variable response rates in clinical trials due to patient heterogeneity. Current evidence has indicated that certain patients may benefit from B cell targeting therapies. Hence, it is important to understand the contribution of the antinuclear autoantibodies and their underlying B cell response to the disease pathogenesis of SSc.
Collapse
|
2
|
Satoh M, Ceribelli A, Hasegawa T, Tanaka S. Clinical Significance of Antinucleolar Antibodies: Biomarkers for Autoimmune Diseases, Malignancies, and others. Clin Rev Allergy Immunol 2022; 63:210-239. [PMID: 35258843 DOI: 10.1007/s12016-022-08931-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2022] [Indexed: 01/13/2023]
Abstract
Nucleolar staining is one of the standard patterns in immunofluorescence antinuclear antibodies (ANA), seen in 5-9% of ANA in various conditions. Antinucleolar antibodies (ANoA) are classified into 3 patterns in the International Consensus on ANA Patterns (ICAP) classification; AC-8 homogeneous pattern, AC-9 clumpy pattern, and AC-10 punctate pattern. Specificities known to show AC-8 include anti-Th/To, -PM-Scl, -nucleophosmin/B23, -nucleolin/C23, -No55, and others. AC-9 is seen by anti-fibrillarin/U3RNP and AC-10 by anti-RNA polymerase I and hUBF/NOR-90. ANoA has been classically known to be associated with scleroderma (SSc) and the characterization of nucleolar antigens identified several autoantigens recognized by SSc autoantibodies. The clinical association of anti-Th/To, PM-Scl, fibrillarin/U3RNP, and RNA polymerase I with SSc or SSc-overlap syndrome is well established, and commercial assays are developed. Anti-hUBF/NOR90, nucleophosmin/B23, and nucleolin/C23 are known for decades and reported in systemic autoimmune rheumatic diseases (SARDs), malignancies, graft versus host disease (GVHD), and others; however, their clinical significance remains to be established.
Collapse
Affiliation(s)
- Minoru Satoh
- Department of Clinical Nursing, School of Health Sciences, University of Occupational and Environmental Health, 1-1 Isei-gaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.
| | - Angela Ceribelli
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano (Milan), 20089, Italy
- Department of Biomedical Sciences, Humanitas University, Via A. Manzoni 56, Pieve Emnuele (Milan), 20089, Italy
| | - Tomoko Hasegawa
- Department of Clinical Nursing, School of Health Sciences, University of Occupational and Environmental Health, 1-1 Isei-gaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Shin Tanaka
- Department of Human, Information and Sciences, School of Health Sciences, University of Occupational and Environmental Health, 1-1 Isei-gaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| |
Collapse
|
3
|
Cavazzana I, Ceribelli A, Taraborelli M, Fredi M, Norman G, Tincani A, Satoh M, Franceschini F. Primary biliary cirrhosis-related autoantibodies in a large cohort of italian patients with systemic sclerosis. J Rheumatol 2011; 38:2180-5. [PMID: 21921093 DOI: 10.3899/jrheum.110167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To analyze the prevalence, associations, and fine specificity of autoantibodies to primary biliary cirrhosis (PBC)-associated antigens (MIT3, Sp100, and gp210) in a cohort of Italian patients with systemic sclerosis (SSc). METHODS Sera samples from 201 patients with SSc were tested for antibodies to MIT3, gp210, and Sp100 by ELISA (the PBC screen). Anti-MIT3-positive sera were studied for IgG or IgA isotypes. All sera were analyzed by indirect immunofluorescence on HEp-2 cells and on rodent kidney/stomach/liver tissue sections in order to detect antinuclear and antimitochondrial antibodies (AMA). SSc was selected by American College of Rheumatology criteria and classified based on LeRoy's criteria. RESULTS Forty-three (21.4%) sera samples were positive for PBC screen antibodies. Anti-MIT3 antibodies were detected in 36 samples, anti-Sp100 in 5, and anti-gp210 in 1 sample. The other 3 PBC screen-positive samples showed no specificity for the single antigens. PBC screen-positive patients more frequently showed a limited cutaneous SSc subtype (p = 0.04), anticentromere antibodies (ACA; p = 0.0013), elevated alkaline phosphatase (ALP) (p < 0.0001), PBC (p = 0.002), and AMA (p = 0.008). Teleangiectasia and calcinosis were less frequent in this group of patients. IgG+IgA anti-MIT3-positive patients had higher prevalence of AMA (p = 0.0035), diagnosis of PBC (p = 0.014), and increased ALP (p = 0.039), all considered biochemical markers of severe liver disease. CONCLUSION PBC screen antibodies were detected in 20% of patients with SSc, strongly associated with ACA. ACA+/PBC screen+ patients had higher risk of developing PBC or elevation of ALP.
Collapse
Affiliation(s)
- Ilaria Cavazzana
- Rheumatology Unit, Spedali Civili, Piazzale Spedali Civili 1, 25100 Brescia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Comparative qualitative and quantitative analysis of scleroderma (systemic sclerosis) serologic immunoassays. J Autoimmun 2008; 31:166-74. [DOI: 10.1016/j.jaut.2008.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 06/30/2008] [Accepted: 07/01/2008] [Indexed: 11/23/2022]
|
5
|
Wang Y, Liu J, Zhao H, Lü W, Zhao J, Yang L, Li N, Du X, Ke Y. Human 1A6/DRIM, the homolog of yeast Utp20, functions in the 18S rRNA processing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:863-8. [PMID: 17498821 DOI: 10.1016/j.bbamcr.2007.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 04/05/2007] [Accepted: 04/05/2007] [Indexed: 11/29/2022]
Abstract
1A6/DRIM is a nucleolar protein with a nucleolar targeting sequence in its 3'-terminus. Bioinformatic analysis indicated that human 1A6/DRIM shares 23% identity and 43% similarity with yeast Utp20, which has been reported as a component of U3 snoRNA protein complex and has been implicated in 18S rRNA processing. In the present study, we found, by utilizing RT-PCR with RNA extracted from anti-1A6/DRIM immunoprecipitates and Northern blotting, that 1A6/DRIM is associated with U3 snoRNA. Pulse-chase labeling assays showed that silencing of 1A6/DRIM expression in HeLa cells resulted in a delayed 18S rRNA processing. Furthermore, immunoprecipitations revealed that 1A6/DRIM was also associated with fibrillarin, another U3 RNP component in HeLa cells. These results indicate that 1A6/DRIM is involved in 18S rRNA processing and is the bona fide mammalian Utp20.
Collapse
Affiliation(s)
- You Wang
- Beijing Institute for Cancer Research, School of Oncology, Peking University, 52 Fucheng Road, Beijing 100036, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Welting TJM, Kikkert BJ, van Venrooij WJ, Pruijn GJM. Differential association of protein subunits with the human RNase MRP and RNase P complexes. RNA (NEW YORK, N.Y.) 2006; 12:1373-82. [PMID: 16723659 PMCID: PMC1484433 DOI: 10.1261/rna.2293906] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
RNase MRP is a eukaryotic endoribonuclease involved in nucleolar and mitochondrial RNA processing events. RNase MRP is a ribonucleoprotein particle, which is structurally related to RNase P, an endoribonuclease involved in pre-tRNA processing. Most of the protein components of RNase MRP have been reported to be associated with RNase P as well. In this study we determined the association of these protein subunits with the human RNase MRP and RNase P particles by glycerol gradient sedimentation and coimmunoprecipitation. In agreement with previous studies, RNase MRP sedimented at 12S and 60-80S. In contrast, only a single major peak was observed for RNase P at 12S. The analysis of individual protein subunits revealed that hPop4 (also known as Rpp29), Rpp21, Rpp20, and Rpp25 only sedimented in 12S fractions, whereas hPop1, Rpp40, Rpp38, and Rpp30 were also found in 60-80S fractions. In agreement with their cosedimentation with RNase P RNA in the 12S peak, coimmunoprecipitation with VSV-epitope-tagged protein subunits revealed that hPop4, Rpp21, and in addition Rpp14 preferentially associate with RNase P. These data show that hPop4, Rpp21, and Rpp14 may not be associated with RNase MRP. Furthermore, Rpp20 and Rpp25 appear to be associated with only a subset of RNase MRP particles, in contrast to hPop1, Rpp40, Rpp38, and Rpp30 (and possibly also hPop5), which are probably associated with all RNase MRP complexes. Our data are consistent with a transient association of Rpp20 and Rpp25 with RNase MRP, which may be inversely correlated to its involvement in pre-rRNA processing.
Collapse
Affiliation(s)
- Tim J M Welting
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
7
|
Van Eenennaam H, Vogelzangs JHP, Bisschops L, Te Boome LCJ, Seelig HP, Renz M, De Rooij DJ, Brouwer R, Pluk H, Pruijn GJM, Van Venrooij WJ, Van Den Hoogen FHJ. Autoantibodies against small nucleolar ribonucleoprotein complexes and their clinical associations. Clin Exp Immunol 2002; 130:532-40. [PMID: 12452846 PMCID: PMC1906554 DOI: 10.1046/j.1365-2249.2002.01991.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sera from patients suffering from systemic autoimmune diseases such as systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) have been shown to contain reactivities to nuclear components. Autoantibodies specifically targeting nucleolar antigens are found most frequently in patients suffering from SSc or SSc overlap syndromes. We determined the prevalence and clinical significance of autoantibodies directed to nucleolar RNA-protein complexes, the so-called small nucleolar ribonucleoprotein complexes (snoRNPs). A total of 172 patient sera with antinucleolar antibodies were analysed by immunoprecipitation. From 100 of these patients clinical information was obtained by chart review. Autoantibodies directed to snoRNPs were detected not only in patients suffering from SSc and primary Raynaud's phenomenon (RP), but also in patients suffering from SLE, rheumatoid arthritis (RA) and myositis (PM/DM). Antibodies against box C/D small snoRNPs can be subdivided in antifibrillarin positive and antifibrillarin negative reactivity. Antifibrillarin-positive patient sera were associated with a poor prognosis in comparison with antifibrillarin negative (reactivity with U3 or U8 snoRNP only) patient sera. Anti-Th/To autoantibodies were associated with SSc, primary RP and SLE and were found predominantly in patients suffering from decreased co-diffusion and oesophagus motility and xerophthalmia. For the first time autoantibodies that recognize box H/ACA snoRNPs are described, identifying this class of snoRNPs as a novel autoantigenic activity. Taken together, our data show that antinucleolar patient sera directed to small nucleolar ribonucleoprotein complexes are found frequently in other diseases than SSc and that categorization of diagnoses and clinical manifestations based on autoantibody profiles seems particularly informative in patient sera recognizing box C/D snoRNPs.
Collapse
Affiliation(s)
- H Van Eenennaam
- Department of Biochemistry, University of Nijmegen, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Van Eenennaam H, Vogelzangs JHP, Lugtenberg D, Van Den Hoogen FHJ, Van Venrooij WJ, Pruijn GJM. Identity of the RNase MRP- and RNase P-associated Th/To autoantigen. ARTHRITIS AND RHEUMATISM 2002; 46:3266-72. [PMID: 12483731 DOI: 10.1002/art.10673] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To characterize the molecular identity of the Th/To autoantigen, which is targeted by autoantibodies in scleroderma and which is associated with the human RNase MRP and RNase P ribonucleoprotein complexes. METHODS Proteins immunoprecipitated by anti-Th/To+ patient antisera from biotinylated total HeLa cell extracts were analyzed by immunoblotting. The association of autoantigenic proteins with the RNase MRP complex was analyzed by reconstitution experiments and ultraviolet crosslinking. The reactivity of patient sera with all known RNase MRP/RNase P proteins was analyzed by immunoprecipitation of the individual recombinant proteins. RESULTS The previously defined Th40 autoantigen appeared to be identical to the Rpp38 protein. Paradoxically, Rpp38 did not bind to the P3 domain of the RNase MRP RNA, as suggested by previously published data for Th40, and only half of the anti-Th/To+ sera contained anti-Rpp38 reactivity. Two other RNase MRP/RNase P subunits, Rpp20 and Rpp25, were found to interact with the P3 domain. The previously reported 40-kd species associated with this domain appeared to consist of Rpp20 and/or Rpp25 associated with a nuclease-resistant RNA fragment. Finally, we demonstrated that almost all tested anti-Th/To+ patient sera contained autoantibodies to Rpp25 and hPop1, indicating that these proteins harbor the most frequently targeted Th/To determinants. CONCLUSION Our data unequivocally define the identity of the Th/To autoantigen and demonstrate that Th/To autoepitopes are found on several protein subunits of RNase MRP/RNase P.
Collapse
|
9
|
van Eenennaam H, van der Heijden A, Janssen RJ, van Venrooij WJ, Pruijn GJ. Basic domains target protein subunits of the RNase MRP complex to the nucleolus independently of complex association. Mol Biol Cell 2001; 12:3680-9. [PMID: 11694598 PMCID: PMC60285 DOI: 10.1091/mbc.12.11.3680] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The RNase MRP and RNase P ribonucleoprotein particles both function as endoribonucleases, have a similar RNA component, and share several protein subunits. RNase MRP has been implicated in pre-rRNA processing and mitochondrial DNA replication, whereas RNase P functions in pre-tRNA processing. Both RNase MRP and RNase P accumulate in the nucleolus of eukaryotic cells. In this report we show that for three protein subunits of the RNase MRP complex (hPop1, hPop4, and Rpp38) basic domains are responsible for their nucleolar accumulation and that they are able to accumulate in the nucleolus independently of their association with the RNase MRP and RNase P complexes. We also show that certain mutants of hPop4 accumulate in the Cajal bodies, suggesting that hPop4 traverses through these bodies to the nucleolus. Furthermore, we characterized a deletion mutant of Rpp38 that preferentially associates with the RNase MRP complex, giving a first clue about the difference in protein composition of the human RNase MRP and RNase P complexes. On the basis of all available data on nucleolar localization sequences, we hypothesize that nucleolar accumulation of proteins containing basic domains proceeds by diffusion and retention rather than by an active transport process. The existence of nucleolar localization sequences is discussed.
Collapse
Affiliation(s)
- H van Eenennaam
- Department of Biochemistry, University of Nijmegen, NL-6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
10
|
van Eenennaam H, Lugtenberg D, Vogelzangs JH, van Venrooij WJ, Pruijn GJ. hPop5, a protein subunit of the human RNase MRP and RNase P endoribonucleases. J Biol Chem 2001; 276:31635-41. [PMID: 11413139 DOI: 10.1074/jbc.m103399200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNase MRP and RNase P particles both function as endoribonucleases. RNase MRP has been implicated in the processing of precursor-rRNA, whereas RNase P has been shown to function in the processing of pre-tRNA. Both ribonucleoprotein particles have an RNA component that can be folded into a similar secondary structure and share several protein components. We have identified human, rat, mouse, cow, and Drosophila homologues of the Pop5p protein subunit of the yeast RNase MRP and RNase P complexes. The human Pop5 cDNA encodes a protein of 163 amino acids with a predicted molecular mass of 18.8 kDa. Polyclonal antibodies raised against recombinant hPop5 identified a 19-kDa polypeptide in HeLa cells and showed that hPop5 is associated with both RNase MRP and RNase P. Using affinity-purified anti-hPop5 antibodies, we demonstrated that the endogenous hPop5 protein is localized in the nucleus and accumulates in the nucleolus, which is consistent with its association with RNase MRP and RNase P. Catalytically active RNase P was partially purified from HeLa cells, and hPop5 was shown to be associated with it. Finally, the evolutionarily conserved acidic C-terminal tail of hPop5 appeared to be required neither for complex formation nor for RNase P activity.
Collapse
Affiliation(s)
- H van Eenennaam
- Department of Biochemistry, University of Nijmegen, P. O. Box 9101, NL-6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Ridanpää M, van Eenennaam H, Pelin K, Chadwick R, Johnson C, Yuan B, vanVenrooij W, Pruijn G, Salmela R, Rockas S, Mäkitie O, Kaitila I, de la Chapelle A. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell 2001; 104:195-203. [PMID: 11207361 DOI: 10.1016/s0092-8674(01)00205-7] [Citation(s) in RCA: 325] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The recessively inherited developmental disorder, cartilage-hair hypoplasia (CHH) is highly pleiotropic with manifestations including short stature, defective cellular immunity, and predisposition to several cancers. The endoribonuclease RNase MRP consists of an RNA molecule bound to several proteins. It has at least two functions, namely, cleavage of RNA in mitochondrial DNA synthesis and nucleolar cleaving of pre-rRNA. We describe numerous mutations in the untranslated RMRP gene that cosegregate with the CHH phenotype. Insertion mutations immediately upstream of the coding sequence silence transcription while mutations in the transcribed region do not. The association of protein subunits with RNA appears unaltered. We conclude that mutations in RMRP cause CHH by disrupting a function of RNase MRP RNA that affects multiple organ systems.
Collapse
Affiliation(s)
- M Ridanpää
- Folkhälsan Institute of Genetics, 00280-Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lukowiak AA, Granneman S, Mattox SA, Speckmann WA, Jones K, Pluk H, Venrooij WJ, Terns RM, Terns MP. Interaction of the U3-55k protein with U3 snoRNA is mediated by the box B/C motif of U3 and the WD repeats of U3-55k. Nucleic Acids Res 2000; 28:3462-71. [PMID: 10982864 PMCID: PMC110750 DOI: 10.1093/nar/28.18.3462] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
U3 small nucleolar RNA (snoRNA) is a member of the Box C/D family of snoRNAs which functions in ribosomal RNA processing. U3-55k is a protein that has been found to interact with U3 but not other members of the Box C/D snoRNA family. We have found that interaction of the U3-55k protein with U3 RNA in vivo is mediated by the conserved Box B/C motif which is unique to U3 snoRNA. Mutation of Box B and Box C, but not of other conserved sequence elements, disrupted interaction of U3-55k with U3 RNA. Furthermore, a fragment of U3 containing only these two conserved elements was bound by U3-55k in vivo. RNA binding assays performed in vitro indicate that Box C may be the primary determinant of the interaction. We have cloned the cDNA encoding the Xenopus laevis U3-55k protein and find strong homology to the human sequence, including six WD repeats. Deletion of WD repeats or sequences near the C-terminus of U3-55k resulted in loss of association with U3 RNA and also loss of localization of U3-55k to the nucleolus, suggesting that protein-protein interactions contribute to the localization and RNA binding of U3-55k in vivo.
Collapse
Affiliation(s)
- A A Lukowiak
- Department of Biochemistry and Molecular Biology and Department of Genetics, University of Georgia, Life Science Building, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
de Wildt RM, Mundy CR, Gorick BD, Tomlinson IM. Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotechnol 2000; 18:989-94. [PMID: 10973222 DOI: 10.1038/79494] [Citation(s) in RCA: 426] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have developed a novel technique for high-throughput screening of recombinant antibodies, based on the creation of antibody arrays. Our method uses robotic picking and high-density gridding of bacteria containing antibody genes followed by filter-based enzyme-linked immunosorbent assay (ELISA) screening to identify clones that express binding antibody fragments. By eliminating the need for liquid handling, we can thereby screen up to 18,342 different antibody clones at a time and, because the clones are arrayed from master stocks, the same antibodies can be double spotted and screened simultaneously against 15 different antigens. We have used our technique in several different applications, including isolating antibodies against impure proteins and complex antigens, where several rounds of phage display often fail. Our results indicate that antibody arrays can be used to identify differentially expressed proteins.
Collapse
Affiliation(s)
- R M de Wildt
- MRC Laboratory of Molecular Biology and MRC Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, UK.
| | | | | | | |
Collapse
|
14
|
Pluk H, Soffner J, Lührmann R, van Venrooij WJ. cDNA cloning and characterization of the human U3 small nucleolar ribonucleoprotein complex-associated 55-kilodalton protein. Mol Cell Biol 1998; 18:488-98. [PMID: 9418896 PMCID: PMC121518 DOI: 10.1128/mcb.18.1.488] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The eukaryotic nucleolus contains a large number of small RNA molecules (snoRNAs) which, in the form of small nucleolar ribonucleoprotein complexes (snoRNPs), are involved in the processing and modification of pre-rRNA. The most abundant and one of the best-conserved snoRNAs is the U3 RNA. So far, only one human U3 snoRNA-associated protein, fibrillarin, has been characterized. Previously, the U3 snoRNPwas purified from CHO cells, and three proteins of 15, 50, and 55 kDa were found to copurify with the U3 snoRNA (B. Lübben, C. Marshallsay, N. Rottmann, and R. Lührmann, Nucleic Acids Res. 21:5377-5385, 1993). Here we report the cDNA cloning and characterization of the human U3 snoRNP-associated 55-kDa protein. The isolated cDNA codes for a novel nucleolar protein which is specifically associated with the U3 snoRNA. This protein, referred to as hU3-55k, is the first characterized U3 snoRNP-specific protein from humans. hU3-55k is a new member of the family of WD-40 repeat proteins and is conserved throughout evolution. It appears that the C-terminal end of hU3-55k is required for nucleolar localization and U3 snoRNA binding.
Collapse
Affiliation(s)
- H Pluk
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
15
|
de Wildt RM, Finnern R, Ouwehand WH, Griffiths AD, van Venrooij WJ, Hoet RM. Characterization of human variable domain antibody fragments against the U1 RNA-associated A protein, selected from a synthetic and patient-derived combinatorial V gene library. Eur J Immunol 1996; 26:629-39. [PMID: 8605931 DOI: 10.1002/eji.1830260319] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This is the first study describing recombinant human antibody fragments directed to the U1 RNA-associated A protein (U1A). Three anti-U1A antibody fragments (Fab) were isolated from a semi-synthetic human Fab library and one anti-U1A single-chain variable fragment (scFv) was isolated from a library which was derived from the IgG-positive splenic lymphocytes of an autoimmune patient. Competition studies with autoantibodies against the U1 small nuclear ribonucleoprotein (snRNP) particle from patients with systemic lupus erythematosus (SLE) and SLE-overlap syndromes revealed that U1A binding of these antibody fragments can be inhibited by about 40% of the patient sera. All antibody fragments recognized the native U1 snRNP in immunoprecipitation assays. Two of three Fab clones as well as the scFv clone derived from the repertoire of an autoimmune patient use the same heavy chain germ-line gene DP-65. Epitope mapping revealed that these three clones appear to recognize an identical epitope domain present on the C-terminal RNP motif of the U1A protein. The DP-65 heavy chain gene is used in less than 1% of the B cells in healthy individuals, while three out of four anti-U1A antibody fragments use this gene. This points to a restricted VH gene usage in the case of U1A, suggesting that the DP-65 heavy chain has a natural shape complementarity to the U1A protein.
Collapse
Affiliation(s)
- R M de Wildt
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Pruijn GJ, Thijssen JP, Smith PR, Williams DG, Van Venrooij WJ. Anti-La monoclonal antibodies recognizing epitopes within the RNA-binding domain of the La protein show differential capacities to immunoprecipitate RNA-associated La protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 232:611-9. [PMID: 7556214 DOI: 10.1111/j.1432-1033.1995.611zz.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The La (SS-B) autoimmune antigen is an RNA-binding protein that is present in both the nucleus and cytoplasm of eukaryotic cells, where it is found associated with RNA polymerase III transcripts. We have investigated the capacity of anti-La monoclonal antibodies SW1, SW3, and SW5 to immunoprecipitate human La ribonucleoprotein particles. Distinct differences were observed for SW3 in comparison with SW1 and SW5. While SW1 and SW5 precipitated ribonucleoproteins containing pre-tRNA, pre-5S rRNA, hY RNAs, pre-U6 snRNA or the viral EBER1 and VA RNAs, SW3 precipitated only ribonucleoproteins containing VA RNAs or (the precursor of) 7-2 RNA. Mapping of the epitopes recognized by SW1, SW3, and SW5 revealed that all three monoclonal antibodies recognize an epitope within the domain of the protein formed by the ribonucleoprotein motif. Cross-competition studies suggested that the epitope recognized by SW1 and SW5 are identical but distinct from the epitope recognized by SW3. Further analyses of the recognition of La from other species by these monoclonal antibodies revealed that they all reacted with bovine La and were not reactive with La from rodents and Xenopus laevis. Replacement of a single amino acid in the human protein by its murine counterpart abolished recognition by SW1 and SW5, but had no effect on recognition by SW3. Taken together, our results indicate that SW1 and SW5 recognize the same epitope and that SW3 recognizes a distinct epitope, both of which are located in the RNA-binding domain of La, and that the accessibility of these epitopes is differentially influenced by the association of La with various RNA polymerase III transcripts.
Collapse
Affiliation(s)
- G J Pruijn
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|