1
|
Abstract
Gastropods (class Gastropoda) form the largest of the classes in the phylum Mollusca and inhabit terrestrial, fresh water and marine environments. A large number of these species are of major conservation importance and are an essential component of ecosystems. Gastropods may be deemed as pests, having a negative impact in horticulture and agriculture, whereas others may be used as a food source for human consumption and therefore are beneficial. Gastropods are susceptible to primary diseases and also act as intermediate hosts for diseases which affect other animals, including humans. The diseases described include two that are notifiable to the World Organisation for Animal Health (OIE): Xenohaliotis californiensis and Abalone viral ganglioneuritis caused by Haliotid herpesvirus-1 (HaHV-1). Research into the diseases of gastropods has often focused on those species that act as intermediate disease hosts, those that are used in research or those cultured for food. In this paper we review the viral, bacterial, fungal, parasitic and miscellaneous conditions that have been reported in gastropods and mention some of the factors that appear to predispose them to disease. The pathogenicity of a number of these conditions has not been fully ascertained and more research is needed into specifying both the etiological agent and significance in some of the diseases reported.
Collapse
|
2
|
Davidovich N, Morick D, Carella F. Mycobacteriosis in Aquatic Invertebrates: A Review of Its Emergence. Microorganisms 2020; 8:E1249. [PMID: 32824567 PMCID: PMC7464023 DOI: 10.3390/microorganisms8081249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/05/2020] [Accepted: 08/14/2020] [Indexed: 12/30/2022] Open
Abstract
Mycobacteriosis is a chronic bacterial disease reported in aquatic and terrestrial animals, including humans. The disease affects a wide range of cultured and wild organisms worldwide. Mycobacteriosis is well-known in aquatic vertebrates (e.g., finfish, marine mammals), while in the last few years, reports of its presence in aquatic invertebrates have been on the rise, for both freshwater and marine species. The number of cases is likely to increase as a result of increased awareness, surveillance and availability of diagnostic methods. Domestication of wild aquatic species and the intensification of modern aquaculture are also leading to an increase in the number of reported cases. Moreover, climate changes are affecting fresh and marine aquatic ecosystems. The increasing reports of mycobacteriosis in aquatic invertebrates may also be influenced by global climate warming, which could contribute to the microbes' development and survival rates, pathogen transmission and host susceptibility. Several species of the genus Mycobacterium have been diagnosed in aquatic invertebrates; a few of them are significant due to their wide host spectrum, economic impact in aquaculture, and zoonotic potential. The impact of mycobacteriosis in aquatic invertebrates is probably underestimated, and there is currently no effective treatment other than facility disinfection. In this review, we provide an overview of the diversity of mycobacterial infections reported in molluscs, crustaceans, cnidarians, echinoderms and sponges. We highlight important issues relating to its pathological manifestation, diagnosis and zoonotic considerations.
Collapse
Affiliation(s)
| | - Danny Morick
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel;
- Morris Kahn Marine Research Station, University of Haifa, Haifa 3498838, Israel
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong, China
| | - Francesca Carella
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Via Cinthia, Ed. 7, 80136 Naples, Italy;
| |
Collapse
|
3
|
Duval D, Galinier R, Mouahid G, Toulza E, Allienne JF, Portela J, Calvayrac C, Rognon A, Arancibia N, Mitta G, Théron A, Gourbal B. A novel bacterial pathogen of Biomphalaria glabrata: a potential weapon for schistosomiasis control? PLoS Negl Trop Dis 2015; 9:e0003489. [PMID: 25719489 PMCID: PMC4342248 DOI: 10.1371/journal.pntd.0003489] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/17/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Schistosomiasis is the second-most widespread tropical parasitic disease after malaria. Various research strategies and treatment programs for achieving the objective of eradicating schistosomiasis within a decade have been recommended and supported by the World Health Organization. One of these approaches is based on the control of snail vectors in endemic areas. Previous field studies have shown that competitor or predator introduction can reduce snail numbers, but no systematic investigation has ever been conducted to identify snail microbial pathogens and evaluate their molluscicidal effects. METHODOLOGY/PRINCIPAL FINDINGS In populations of Biomphalaria glabrata snails experiencing high mortalities, white nodules were visible on snail bodies. Infectious agents were isolated from such nodules. Only one type of bacteria, identified as a new species of Paenibacillus named Candidatus Paenibacillus glabratella, was found, and was shown to be closely related to P. alvei through 16S and Rpob DNA analysis. Histopathological examination showed extensive bacterial infiltration leading to overall tissue disorganization. Exposure of healthy snails to Paenibacillus-infected snails caused massive mortality. Moreover, eggs laid by infected snails were also infected, decreasing hatching but without apparent effects on spawning. Embryonic lethality was correlated with the presence of pathogenic bacteria in eggs. CONCLUSIONS/SIGNIFICANCE This is the first account of a novel Paenibacillus strain, Ca. Paenibacillus glabratella, as a snail microbial pathogen. Since this strain affects both adult and embryonic stages and causes significant mortality, it may hold promise as a biocontrol agent to limit schistosomiasis transmission in the field.
Collapse
Affiliation(s)
- David Duval
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
- * E-mail:
| | - Richard Galinier
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Gabriel Mouahid
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Eve Toulza
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Jean François Allienne
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Julien Portela
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Christophe Calvayrac
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Laboratoire de Chimie des Biomolécules et de l’Environnement (LCBE, EA 4215), Perpignan, France
| | - Anne Rognon
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Nathalie Arancibia
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Guillaume Mitta
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - André Théron
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Benjamin Gourbal
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
4
|
Adema CM, Hanington PC, Lun CM, Rosenberg GH, Aragon AD, Stout BA, Lennard Richard ML, Gross PS, Loker ES. Differential transcriptomic responses of Biomphalaria glabrata (Gastropoda, Mollusca) to bacteria and metazoan parasites, Schistosoma mansoni and Echinostoma paraensei (Digenea, Platyhelminthes). Mol Immunol 2009; 47:849-60. [PMID: 19962194 DOI: 10.1016/j.molimm.2009.10.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 10/22/2009] [Accepted: 10/25/2009] [Indexed: 01/09/2023]
Abstract
A 70-mer-oligonucleotide-based microarray (1152 features) that emphasizes stress and immune responses factors was constructed to study transcriptomic responses of the snail Biomphalaria glabrata to different immune challenges. In addition to sequences with relevant putative ID and Gene Ontology (GO) annotation, the array features non-immune factors and unknown B. glabrata ESTs for functional gene discovery. The transcription profiles of B. glabrata (3 biological replicates, each a pool of 5 snails) were recorded at 12h post-wounding, exposure to Gram negative or Gram positive bacteria (Escherichia coli and Micrococcus luteus, respectively), or infection with compatible trematode parasites (Schistosoma mansoni or Echinostoma paraensei, 20 miracidia/snail), relative to controls, using universal reference RNA. The data were subjected to Significance Analysis for Microarrays (SAM), with a false positive rate (FPR) <or=10%. Wounding yielded a modest differential expression profile (27 up/21 down) with affected features mostly dissimilar from other treatments. Partially overlapping, yet distinct expression profiles were recorded from snails challenged with E. coli (83 up/20 down) or M. luteus (120 up/42 down), mostly showing up-regulation of defense and stress-related features. Significantly altered expression of selected immune features indicates that B. glabrata detects and responds differently to compatible trematodes. Echinostoma paraensei infection was associated mostly with down-regulation of many (immune-) transcripts (42 up/68 down), whereas S. mansoni exposure yielded a preponderance of up-regulated features (140 up/23 down), with only few known immune genes affected. These observations may reflect the divergent strategies developed by trematodes during their evolution as specialized pathogens of snails to negate host defense responses. Clearly, the immune defenses of B. glabrata distinguish and respond differently to various immune challenges.
Collapse
Affiliation(s)
- Coen M Adema
- Center for Evolutionary and Theoretical Immunology, Biology MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hertel LA, Barbosa CS, Santos RAAL, Loker ES. Molecular identification of symbionts from the pulmonate snail Biomphalaria glabrata in Brazil. J Parasitol 2004; 90:759-63. [PMID: 15357065 DOI: 10.1645/ge-223r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The icthyosporean, Capsaspora owczarzaki, a known predator of Schistosoma mansoni sporocysts in vitro, is more prevalent in laboratory-reared strains of the intermediate snail host, Biomphalaria glabrata resistant to S. mansoni, than from the susceptible M line strain. We examined whether B. glabrata resistant to the NIH-PR-1 strain of S. mansoni from 2 regions in Brazil were also host to C. owczarzaki. Symbiont presence was examined using hemolymph culturing and nested polymerase chain reaction of snail genomic DNA with primers designed to specifically amplify sequences from relatives of the Icthyosporea. All B. glabrata of the resistant Salvador strain from the laboratory of Dr. Lobato Paraense in Rio de Janeiro, Brazil (n = 46) tested negative for symbionts. Three of 18 semiresistant 10-R2 B. glabrata from the laboratory of Dr. Barbosa in Recife, Brazil tested positive for C. owczarzaki. Another icthyosporean, Anurofeca sp., was identified from 1, 10-R2 snail and from 2 of 12 field-collected B. glabrata from Praia do Forte Orange, Ilha de Itamaracá. Snails from 2 other sites, Hotel Colibri, Pontezinha and Praia do Sossego, Ilha de Itamaracá, were negative for Anurofeca. Two genera of ciliates were also identified. Paruroleptus sp. was found in 4, 10-R2 snails and Trichodina sp. was identified in 2 field-collected snails from Praia do Forte Orange and Praia do Sossego.
Collapse
MESH Headings
- Animals
- Biomphalaria/parasitology
- Brazil
- DNA, Protozoan/chemistry
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/isolation & purification
- Eukaryota/classification
- Eukaryota/genetics
- Eukaryota/isolation & purification
- Likelihood Functions
- Phylogeny
- Polymerase Chain Reaction
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 5.8S/genetics
- Sequence Analysis, DNA
- Symbiosis/genetics
Collapse
Affiliation(s)
- Lynn A Hertel
- Biology Department, University of New Mexico, Castetter Hall, Albuquerque, New Mexico 87131, USA.
| | | | | | | |
Collapse
|
6
|
Abstract
As a result of the advent of new drugs and diagnostic techniques, the emphasis in the control of schistosomiasis has changed from snail control to chemotherapy for infected individuals. However, chemotherapy does not prevent reinfection and there remains a need to reduce snail densities in human water supplies. In the past, treatment with molluscicides has proved ineffective, expensive and has had environmental drawbacks. Here, Henry Madsen describes research into alternative methods of snail control. As yet, little is known of the predators and parasites of schistosome intermediate hosts, but such agents could be suitable as biocontrol agents. To date, the most promising results have been obtained from experimental introductions of competitive snail species, but this strategy still has its drawbacks under many environmental conditions and the development of a universal method of biological control for the intermediate hosts of schistosomes is still a long way off.
Collapse
Affiliation(s)
- H Madsen
- Danish Bilharziasis Laboratory, WHO Collaborating Centre for Applied Medical Malacology and Schistomiasis Control, Jaegersborg Allé I D, DK2920 Charlottenlund, Denmark
| |
Collapse
|