1
|
Regulatory Mechanisms, Protein Expression and Biological Activity of Photolyase Gene from Spodoptera littoralis Granulovirus Genome. Mol Biotechnol 2023; 65:433-440. [PMID: 35980593 PMCID: PMC9935652 DOI: 10.1007/s12033-022-00537-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
Abstract
One of the most important factor that affects the efficient using of baculoviruses as a biopesticide is their sensitivity to UV irradiation. In this study, a photolyase gene (phr) of 1.4 kbp DNA fragment was cloned and characterized from Spodoptera littoralis granulovirus, an Egyptian isolate (SpliGV-EG1). A sequence of 466 amino acid were deduced when the gene was completely sequenced with a predicted molecular mass of ~ 55 kDa. Transcriptional regulation analyses revealed that phr transcripts were detected early at 6-h post-infection (hpi) and remained detectable until 72 hpi, suggesting their transcriptional regulation from a putative early promoter motif. An approximately ~ 55 kDa protein fragment was expressed from phr-induced bacterial culture and detected by SDS-PAGE and western blotting. In addition, direct exposure to UV irradiation resulted in a twofold decrease in SpliGV-EG1 occlusion bodies activation compared with Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) occlusion bodies which decreased with about 129-fold after exposure to UV irradiation based on median lethal concentration value (LC50). The obtained results suggested that the presence of photolyase gene possibly alters the inactivation of SpliGV-EG1-occluded bodies by UV irradiation. These results support the role and application of the photolyase protein to improve the damaged DNA repair mechanism as well as resistance of SpliGV to UV light inactivation.
Collapse
|
2
|
Erlandson MA, Toprak U, Hegedus DD. Role of the peritrophic matrix in insect-pathogen interactions. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103894. [PMID: 31175854 DOI: 10.1016/j.jinsphys.2019.103894] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/27/2019] [Accepted: 06/05/2019] [Indexed: 05/12/2023]
Abstract
The peritrophic matrix (PM) is an acellular chitin and glycoprotein layer that lines the invertebrate midgut. The PM has long been considered a physical as well as a biochemical barrier, protecting the midgut epithelium from abrasive food particles, digestive enzymes and pathogens infectious per os. This short review will focus on the latter function, as a barrier to pathogens infectious per os. We focus on the evidence confirming the role of the PM as protective barrier against pathogenic microorganisms of insects, mainly bacteria and viruses, as well as the evolution of a variety of mechanisms used by pathogens to overcome the PM barrier.
Collapse
Affiliation(s)
- Martin A Erlandson
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada; Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Umut Toprak
- Molecular Entomology Laboratory, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne D Hegedus
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada; Department of Food and Bioproduct Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Djukic M, Brzuszkiewicz E, Fünfhaus A, Voss J, Gollnow K, Poppinga L, Liesegang H, Garcia-Gonzalez E, Genersch E, Daniel R. How to kill the honey bee larva: genomic potential and virulence mechanisms of Paenibacillus larvae. PLoS One 2014; 9:e90914. [PMID: 24599066 PMCID: PMC3944939 DOI: 10.1371/journal.pone.0090914] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 02/05/2014] [Indexed: 12/20/2022] Open
Abstract
Paenibacillus larvae, a Gram positive bacterial pathogen, causes American Foulbrood (AFB), which is the most serious infectious disease of honey bees. In order to investigate the genomic potential of P. larvae, two strains belonging to two different genotypes were sequenced and used for comparative genome analysis. The complete genome sequence of P. larvae strain DSM 25430 (genotype ERIC II) consisted of 4,056,006 bp and harbored 3,928 predicted protein-encoding genes. The draft genome sequence of P. larvae strain DSM 25719 (genotype ERIC I) comprised 4,579,589 bp and contained 4,868 protein-encoding genes. Both strains harbored a 9.7 kb plasmid and encoded a large number of virulence-associated proteins such as toxins and collagenases. In addition, genes encoding large multimodular enzymes producing nonribosomally peptides or polyketides were identified. In the genome of strain DSM 25719 seven toxin associated loci were identified and analyzed. Five of them encoded putatively functional toxins. The genome of strain DSM 25430 harbored several toxin loci that showed similarity to corresponding loci in the genome of strain DSM 25719, but were non-functional due to point mutations or disruption by transposases. Although both strains cause AFB, significant differences between the genomes were observed including genome size, number and composition of transposases, insertion elements, predicted phage regions, and strain-specific island-like regions. Transposases, integrases and recombinases are important drivers for genome plasticity. A total of 390 and 273 mobile elements were found in strain DSM 25430 and strain DSM 25719, respectively. Comparative genomics of both strains revealed acquisition of virulence factors by horizontal gene transfer and provided insights into evolution and pathogenicity.
Collapse
Affiliation(s)
- Marvin Djukic
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Elzbieta Brzuszkiewicz
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Anne Fünfhaus
- Department for Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Jörn Voss
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Kathleen Gollnow
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Lena Poppinga
- Department for Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Heiko Liesegang
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Eva Garcia-Gonzalez
- Department for Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Elke Genersch
- Department for Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Toprak U, Harris S, Baldwin D, Theilmann D, Gillott C, Hegedus DD, Erlandson MA. Role of enhancin in Mamestra configurata nucleopolyhedrovirus virulence: selective degradation of host peritrophic matrix proteins. J Gen Virol 2012; 93:744-753. [DOI: 10.1099/vir.0.038117-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To infect per os, baculovirus virions cross the peritrophic matrix (PM) to reach the midgut epithelium. Insect intestinal mucins (IIMs) are PM proteins that protect the PM and aid passage of the food bolus through the gut. Some baculoviruses, including Mamestra configurata nucleopolyhedrovirus (MacoNPV-A), encode metalloproteases, known as enhancins, that facilitate infection by degrading IIMs. We examined the interaction between MacoNPV-A enhancin and M. configurata IIMs both in vivo and in vitro. Per os inoculation of M. configurata larvae with MacoNPV-A occlusion bodies (OBs) resulted in the degradation of McIIM4 within 4 h of OB ingestion, while McIIM2 was unaffected. The PM recovered by 8 h post-inoculation. To investigate whether enhancin was responsible for the degradation of IIM, a recombinant Autographa californica multiple nucleopolyhedrovirus expressing MacoNPV enhancin (AcMNPV-enMP2) was constructed. Enhancin was found to be a component of occlusion-derived virions in AcMNPV-enMP2 and MacoNPV-A. In in vitro assays, McIIM4 was degraded after MacoNPV-A and AcMNPV-enMP2 treatments. Degradation of McIIM4 was inhibited by EDTA, a metalloprotease inhibitor, indicating that the degradation was due to enhancin activity. Thus, MacoNPV-A enhancin is able to degrade major structural PM proteins, but exhibits target substrate specificity.
Collapse
Affiliation(s)
- Umut Toprak
- Department of Plant Protection, College of Agriculture, University of Ankara, Ankara, Turkey
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | | | | | | | - Cedric Gillott
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dwayne D. Hegedus
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Martin A. Erlandson
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Bacillus thuringiensis bel protein enhances the toxicity of Cry1Ac protein to Helicoverpa armigera larvae by degrading insect intestinal mucin. Appl Environ Microbiol 2009; 75:5237-43. [PMID: 19542344 DOI: 10.1128/aem.00532-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus thuringiensis has been used as a bioinsecticide to control agricultural insects. Bacillus cereus group genomes were found to have a Bacillus enhancin-like (bel) gene, encoding a peptide with 20 to 30% identity to viral enhancin protein, which can enhance viral infection by degradation of the peritrophic matrix (PM) of the insect midgut. In this study, the bel gene was found to have an activity similar to that of the viral enhancin gene. A bel knockout mutant was constructed by using a plasmid-free B. thuringiensis derivative, BMB171. The 50% lethal concentrations of this mutant plus the cry1Ac insecticidal protein gene were about 5.8-fold higher than those of the BMB171 strain. When purified Bel was mixed with the Cry1Ac protein and fed to Helicoverpa armigera larvae, 3 mug/ml Cry1Ac alone induced 34.2% mortality. Meanwhile, the mortality rate rose to 74.4% when the same amount of Cry1Ac was mixed with 0.8 mug/ml of Bel. Microscopic observation showed a significant disruption detected on the midgut PM of H. armigera larvae after they were fed Bel. In vitro degradation assays showed that Bel digested the intestinal mucin (IIM) of Trichoplusia ni and H. armigera larvae to various degrading products, similar to findings for viral enhancin. These results imply Bel toxicity enhancement depends on the destruction of midgut PM and IIM, similar to the case with viral enhancin. This discovery showed that Bel has the potential to enhance insecticidal activity of B. thuringiensis-based biopesticides and transgenic crops.
Collapse
|
6
|
Jakubowska AK, Peters SA, Ziemnicka J, Vlak JM, van Oers MM. Genome sequence of an enhancin gene-rich nucleopolyhedrovirus (NPV) from Agrotis segetum: collinearity with Spodoptera exigua multiple NPV. J Gen Virol 2006; 87:537-551. [PMID: 16476975 DOI: 10.1099/vir.0.81461-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The genome sequence of a Polish isolate of Agrotis segetum nucleopolyhedrovirus (AgseNPV-A) was determined and analysed. The circular genome is composed of 147,544 bp and has a G+C content of 45.7 mol%. It contains 153 putative, non-overlapping open reading frames (ORFs) encoding predicted proteins of more than 50 aa, together making up 89.8 % of the genome. The remaining 10.2 % of the DNA constitutes non-coding regions and homologous-repeat regions. One hundred and forty-three AgseNPV-A ORFs are homologues of previously reported baculovirus gene sequences. There are ten unique ORFs and they account for 3 % of the genome in total. All 62 lepidopteran baculovirus genes, including the 29 core baculovirus genes, were found in the AgseNPV-A genome. The gene content and gene order of AgseNPV-A are most similar to those of Spodoptera exigua (Se) multiple NPV and their shared homologous genes are 100 % collinear. Three putative enhancin genes were identified in the AgseNPV-A genome. In phylogenetic analysis, the AgseNPV-A enhancins form a cluster separated from enhancins of the Mamestra species NPVs.
Collapse
Affiliation(s)
- Agata K Jakubowska
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
- Department of Biological Control and Quarantine, Institute of Plant Protection, Miczurina 20, Poznan 60-318, Poland
| | - Sander A Peters
- Greenomics, Plant Research International, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Jadwiga Ziemnicka
- Department of Biological Control and Quarantine, Institute of Plant Protection, Miczurina 20, Poznan 60-318, Poland
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| |
Collapse
|
7
|
Li Q, Li L, Moore K, Donly C, Theilmann DA, Erlandson M. Characterization of Mamestra configurata nucleopolyhedrovirus enhancin and its functional analysis via expression in an Autographa californica M nucleopolyhedrovirus recombinant. J Gen Virol 2003; 84:123-132. [PMID: 12533708 DOI: 10.1099/vir.0.18679-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enhancin genes have been identified in a number of baculoviruses and enhancin proteins are characterized by their ability to enhance the oral infectivity of heterologous baculoviruses in various lepidopteran insects. Here, we describe the putative enhancin gene from Mamestra configurata nucleopolyhedrovirus (MacoNPV), only the second NPV in which an enhancin-like ORF has been identified. The putative enhancin gene from MacoNPV has a typical baculovirus late promoter (ATAAG) 15 bp upstream from the ATG codon. The enhancin ORF encodes an 847 amino acid protein with a predicted molecular mass of 98 kDa and contains a conserved zinc-binding domain (HEIAH) common to metalloproteases. The MacoNPV enhancin shows approximately 20 % amino acid identity with other baculovirus enhancins. An Autographa californica M nucleopolyhedrovirus (AcMNPV) recombinant, AcMNPV-enMP2, expressing the MacoNPV enhancin gene under control of its native promoter was developed and characterized. Northern blot analysis showed expression of enhancin from 24 through 72 h post-infection. In 2nd-instar Trichoplusia ni larvae, the LD50 of the AcMNPV-enMP2 recombinant was 2.8 polyhedral inclusion bodies (PIB) per larva, 4.4 times lower than that of AcMNPV E2 wild-type virus (12.4 PIB per larva). At biologically equivalent doses, i.e. LD90, the survival time 50 % (ST50) of AcMNPV-enMP2 recombinant and AcMNPV E2 wild-type viruses were not significantly different.
Collapse
Affiliation(s)
- Qianjun Li
- Saskatoon Research Centre, AAFC-Saskatoon, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
| | - Lulin Li
- Pacific Agri-Food Research Centre, AAFC, Summerland, BC, Canada
| | - Keith Moore
- Saskatoon Research Centre, AAFC-Saskatoon, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
| | - Cam Donly
- Southern Crop Protection and Food Research Centre, AAFC, London, Ontario, Canada
| | | | - Martin Erlandson
- Saskatoon Research Centre, AAFC-Saskatoon, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
| |
Collapse
|
8
|
Wijonarko A, Hukuhara T. Detection of a virus enhancing factor in the spheroid, spindle, and virion of an entomopoxvirus. J Invertebr Pathol 1998; 72:82-6. [PMID: 9647705 DOI: 10.1006/jipa.1998.4756] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spheroids, spindles, and virions of an entomopoxvirus (EPV) enhanced the infectivity of a nuclear polyhedrosis virus (NPV) when they were perorally administered to larvae of the armyworm, Pseudaletia separata. Spheroids and spindles at the same dose exhibited nearly the same enhancing activity. When the dose of spheroids or spindles was reduced 10 times, the median infectious dose of the NPV was increased approximately 100 times. An antiserum against an enhancing factor detected the homologous antigen in spheroids, spindles, and tissue-derived EPV virions but not in spheroid-derived virions.
Collapse
Affiliation(s)
- A Wijonarko
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183, Japan
| | | |
Collapse
|
9
|
Bischoff DS, Slavicek JM. Molecular analysis of an enhancin gene in the Lymantria dispar nuclear polyhedrosis virus. J Virol 1997; 71:8133-40. [PMID: 9343163 PMCID: PMC192269 DOI: 10.1128/jvi.71.11.8133-8140.1997] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A Lymantria dispar nuclear polyhedrosis virus (LdMNPV) gene has been identified that encodes a homolog to the granulovirus (GV) enhancin proteins that are capable of enhancing the infection of other baculoviruses. Enhancin genes have been identified and sequenced for three species of GVs but have not been found in any other nuclear polyhedrosis virus to date. The LdMNPV enhancin gene is located between 67.6 and 70.1 kbp on the viral genome. Northern and primer extension analyses of viral RNAs indicate that the enhancin gene transcripts are expressed at late times postinfection from a consensus baculovirus late promoter. The LdMNPV enhancin exhibits 29% amino acid identity to the enhancin proteins of the Trichoplusia ni, Pseudaletia unipuncta, and Helicoverpa armigera GVs. All four proteins contain a conserved zinc-binding domain characteristic of metalloproteases. A recombinant virus (enhancin::cat) was constructed in which the LdMNPV enhancin gene was inactivated by insertion mutagenesis in order to ascertain the effect of the enhancin protein on viral potency. The bioassay results indicate that disruption of the enhancin gene in the LdMNPV results in a reduction in viral potency.
Collapse
Affiliation(s)
- D S Bischoff
- Forestry Sciences Laboratory, Northeastern Forest Experiment Station, USDA Forest Service, Delaware, Ohio 43015, USA
| | | |
Collapse
|
10
|
Enhanced infection of a nuclear polyhedrosis virus in larvae of the armyworm, Pseudaletia separata, by a factor in the spheroids of an entomopoxvirus. J Invertebr Pathol 1992. [DOI: 10.1016/0022-2011(92)90007-q] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Gallo LG, Corsaro BG, Hughes PR, Granados RR. In vivo enhancement of baculovirus infection by the viral enhancing factor of a granulosis virus of the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae). J Invertebr Pathol 1991. [DOI: 10.1016/0022-2011(91)90064-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|