1
|
Khan RH, Rotich NC, Morris A, Ahammad T, Baral B, Sahu ID, Lorigan GA. Probing the Structural Topology and Dynamic Properties of gp28 Using Continuous Wave Electron Paramagnetic Resonance Spectroscopy. J Phys Chem B 2023; 127:9236-9247. [PMID: 37856870 DOI: 10.1021/acs.jpcb.3c03679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Lysis of Gram-negative bacteria by dsDNA phages is accomplished through either the canonical holin-endolysin pathway or the pinholin-SAR endolysin pathway. During lysis, the outer membrane (OM) is disrupted, typically by two-component spanins or unimolecular spanins. However, in the absence of spanins, phages use alternative proteins called Disruptin to disrupt the OM. The Disruptin family includes the cationic antimicrobial peptide gp28, which is found in the virulent podophage φKT. In this study, EPR spectroscopy was used to analyze the dynamics and topology of gp28 incorporated into a lipid bilayer, revealing differences in mobility, depth parameter, and membrane interaction among different segments and residues of the protein. Our results indicate that multiple points of helix 2 and helix 3 interact with the phospholipid membrane, while others are solvent-exposed, suggesting that gp28 is a surface-bound peptide. The CW-EPR power saturation data and helical wheel analysis confirmed the amphipathic-helical structure of gp28. Additionally, course-grain molecular dynamics simulations were further used to develop the structural model of the gp28 peptide associated with the lipid bilayers. Based on the data obtained in this study, we propose a structural topology model for gp28 with respect to the membrane. This work provides important insights into the structural and dynamic properties of gp28 incorporated into a lipid bilayer environment.
Collapse
Affiliation(s)
- Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Nancy C Rotich
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Andrew Morris
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Binaya Baral
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
2
|
Subczynski WK, Widomska J, Raguz M, Pasenkiewicz-Gierula M. Molecular oxygen as a probe molecule in EPR spin-labeling studies of membrane structure and dynamics. OXYGEN (BASEL, SWITZERLAND) 2022; 2:295-316. [PMID: 36852103 PMCID: PMC9965258 DOI: 10.3390/oxygen2030021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular oxygen (O2) is the perfect probe molecule for membrane studies carried out using the saturation recovery EPR technique. O2 is a small, paramagnetic, hydrophobic enough molecule that easily partitions into a membrane's different phases and domains. In membrane studies, the saturation recovery EPR method requires two paramagnetic probes: a lipid-analog nitroxide spin label and an oxygen molecule. The experimentally derived parameters of this method are the spin-lattice relaxation times (T 1s) of spin labels and rates of bimolecular collisions between O2 and the nitroxide fragment. Thanks to the long T 1 of lipid spin labels (from 1 to 10 μs), the approach is very sensitive to changes of the local (around the nitroxide fragment) O2 diffusion-concentration product. Small variations in the lipid packing affect O2 solubility and O2 diffusion, which can be detected by the shortening of T 1 of spin labels. Using O2 as a probe molecule and a different lipid spin label inserted into specific phases of the membrane and membrane domains allows data about the lateral arrangement of lipid membranes to be obtained. Moreover, using a lipid spin label with the nitroxide fragment attached to its head group or a hydrocarbon chain at different positions also enables data about molecular dynamics and structure at different membrane depths to be obtained. Thus, the method can be used to investigate not only the lateral organization of the membrane (i.e., the presence of membrane domains and phases), but also the depth-dependent membrane structure and dynamics, and, hence, the membrane properties in three dimensions.
Collapse
Affiliation(s)
- Witold K. Subczynski
- Department of Biophysics, Medical College on Wisconsin, Milwaukee, United States
| | - Justyna Widomska
- Department of Biophysics, Medical University of Lublin, Lublin, Poland
| | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, Split, Croatia
| | | |
Collapse
|
3
|
Alagna N, Lustres JLP, Roozbeh A, Han J, Hahn S, Berger FJ, Zaumseil J, Dreuw A, Bunz UHF, Buckup T. Ultrafast Singlet Fission in Rigid Azaarene Dimers with Negligible Orbital Overlap. J Phys Chem B 2020; 124:9163-9174. [DOI: 10.1021/acs.jpcb.0c07096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nicolò Alagna
- Physikalisch Chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jose Luis Pérez Lustres
- Physikalisch Chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Ashkan Roozbeh
- Physikalisch Chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jie Han
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Sebastian Hahn
- Organisch Chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Felix J. Berger
- Physikalisch Chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jana Zaumseil
- Physikalisch Chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Uwe H. F. Bunz
- Organisch Chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch Chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
4
|
Ahammad T, Drew DL, Khan RH, Sahu ID, Faul E, Li T, Lorigan GA. Structural Dynamics and Topology of the Inactive Form of S 21 Holin in a Lipid Bilayer Using Continuous-Wave Electron Paramagnetic Resonance Spectroscopy. J Phys Chem B 2020; 124:5370-5379. [PMID: 32501696 DOI: 10.1021/acs.jpcb.0c03575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacteriophage infection cycle plays a crucial role in recycling the world's biomass. Bacteriophages devise various cell lysis systems to strictly control the length of the infection cycle for an efficient phage life cycle. Phages evolved with lysis protein systems, which can control and fine-tune the length of this infection cycle depending on the host and growing environment. Among these lysis proteins, holin controls the first and rate-limiting step of host cell lysis by permeabilizing the inner membrane at an allele-specific time and concentration hence known as the simplest molecular clock. Pinholin S21 is the holin from phage Φ21, which defines the cell lysis time through a predefined ratio of active pinholin and antipinholin (inactive form of pinholin). Active pinholin and antipinholin fine-tune the lysis timing through structural dynamics and conformational changes. Previously we reported the structural dynamics and topology of active pinholin S2168. Currently, there is no detailed structural study of the antipinholin using biophysical techniques. In this study, the structural dynamics and topology of antipinholin S2168IRS in DMPC proteoliposomes is investigated using electron paramagnetic resonance (EPR) spectroscopic techniques. Continuous-wave (CW) EPR line shape analysis experiments of 35 different R1 side chains of S2168IRS indicated restricted mobility of the transmembrane domains (TMDs), which were predicted to be inside the lipid bilayer when compared to the N- and C-termini R1 side chains. In addition, the R1 accessibility test performed on 24 residues using the CW-EPR power saturation experiment indicated that TMD1 and TMD2 of S2168IRS were incorporated into the lipid bilayer where N- and C-termini were located outside of the lipid bilayer. Based on this study, a tentative model of S2168IRS is proposed where both TMDs remain incorporated into the lipid bilayer and N- and C-termini are located outside of the lipid bilayer. This work will pave the way for the further studies of other holins using biophysical techniques and will give structural insights into these biological clocks in molecular detail.
Collapse
Affiliation(s)
- Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States.,Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Emily Faul
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Tianyan Li
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
5
|
Ahammad T, Drew DL, Sahu ID, Serafin RA, Clowes KR, Lorigan GA. Continuous Wave Electron Paramagnetic Resonance Spectroscopy Reveals the Structural Topology and Dynamic Properties of Active Pinholin S 2168 in a Lipid Bilayer. J Phys Chem B 2019; 123:8048-8056. [PMID: 31478671 DOI: 10.1021/acs.jpcb.9b06480] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pinholin S2168 is an essential part of the phage Φ21 lytic protein system to release the virus progeny at the end of the infection cycle. It is known as the simplest natural timing system for its precise control of hole formation in the inner cytoplasmic membrane. Pinholin S2168 is a 68 amino acid integral membrane protein consisting of two transmembrane domains (TMDs) called TMD1 and TMD2. Despite its biological importance, structural and dynamic information of the S2168 protein in a membrane environment is not well understood. Systematic site-directed spin labeling and continuous wave electron paramagnetic resonance (CW-EPR) spectroscopic studies of pinholin S2168 in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) proteoliposomes are used to reveal the structural topology and dynamic properties in a native-like environment. CW-EPR spectral line-shape analysis of the R1 side chain for 39 residue positions of S2168 indicates that the TMDs have more restricted mobility when compared to the N- and C-termini. CW-EPR power saturation data indicate that TMD1 partially externalizes from the lipid bilayer and interacts with the membrane surface, whereas TMD2 remains buried in the lipid bilayer in the active conformation of pinholin S2168. A tentative structural topology model of pinholin S2168 is also suggested based on EPR spectroscopic data reported in this study.
Collapse
Affiliation(s)
- Tanbir Ahammad
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Daniel L Drew
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Rachel A Serafin
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Katherine R Clowes
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| |
Collapse
|
6
|
Wilson CB, Aronson S, Clayton JA, Glaser SJ, Han S, Sherwin MS. Multi-step phase-cycling in a free-electron laser-powered pulsed electron paramagnetic resonance spectrometer. Phys Chem Chem Phys 2018; 20:18097-18109. [PMID: 29938285 DOI: 10.1039/c8cp01876f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron paramagnetic resonance (EPR) is a powerful tool for research in chemistry, biology, physics and materials science, which can benefit significantly from moving to frequencies above 100 GHz. In pulsed EPR spectrometers driven by powerful sub-THz oscillators, such as the free electron laser (FEL)-powered EPR spectrometer at UCSB, control of the duration, power and relative phases of the pulses in a sequence must be performed at the frequency and power level of the oscillator. Here we report on the implementation of an all-quasioptical four-step phase cycling procedure carried out directly at the kW power level of the 240 GHz pulses used in the FEL-powered EPR spectrometer. Phase shifts are introduced by modifying the optical path length of a 240 GHz pulse with precision-machined dielectric plates in a procedure we call phase cycling with optomechanical phase shifters (POPS), while numerical receiver phase cycling is implemented in post-processing. The POPS scheme was successfully used to reduce experimental dead times, enabling pulsed EPR of fast-relaxing spin systems such as gadolinium complexes at temperatures above 190 K. Coherence transfer pathway selection with POPS was used to perform spin echo relaxation experiments to measure the phase memory time of P1 centers in diamond in the presence of a strong unwanted FID signal in the background. The large excitation bandwidth of FEL-EPR, together with phase cycling, enabled the quantitative measurement of instantaneous electron spectral diffusion, from which the P1 center concentration was estimated to within 10%. Finally, phase cycling enabled saturation-recovery measurements of T1 in a trityl-water solution at room temperature - the first FEL-EPR measurement of electron T1.
Collapse
Affiliation(s)
- C Blake Wilson
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Yin J, Hyde JS. Use of high observing power in electron spin resonance saturation‐recovery experiments in spin‐labeled membranes. J Chem Phys 1989. [DOI: 10.1063/1.457420] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|