1
|
Decoding on the ribosome depends on the structure of the mRNA phosphodiester backbone. Proc Natl Acad Sci U S A 2018; 115:E6731-E6740. [PMID: 29967153 DOI: 10.1073/pnas.1721431115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
During translation, the ribosome plays an active role in ensuring that mRNA is decoded accurately and rapidly. Recently, biochemical studies have also implicated certain accessory factors in maintaining decoding accuracy. However, it is currently unclear whether the mRNA itself plays an active role in the process beyond its ability to base pair with the tRNA. Structural studies revealed that the mRNA kinks at the interface of the P and A sites. A magnesium ion appears to stabilize this structure through electrostatic interactions with the phosphodiester backbone of the mRNA. Here we examined the role of the kink structure on decoding using a well-defined in vitro translation system. Disruption of the kink structure through site-specific phosphorothioate modification resulted in an acute hyperaccurate phenotype. We measured rates of peptidyl transfer for near-cognate tRNAs that were severely diminished and in some instances were almost 100-fold slower than unmodified mRNAs. In contrast to peptidyl transfer, the modifications had little effect on GTP hydrolysis by elongation factor thermal unstable (EF-Tu), suggesting that only the proofreading phase of tRNA selection depends critically on the kink structure. Although the modifications appear to have no effect on typical cognate interactions, peptidyl transfer for a tRNA that uses atypical base pairing is compromised. These observations suggest that the kink structure is important for decoding in the absence of Watson-Crick or G-U wobble base pairing at the third position. Our findings provide evidence for a previously unappreciated role for the mRNA backbone in ensuring uniform decoding of the genetic code.
Collapse
|
2
|
Kolpen M, Appeldorff CF, Brandt S, Mousavi N, Kragh KN, Aydogan S, Uppal HA, Bjarnsholt T, Ciofu O, Høiby N, Jensen PØ. Increased bactericidal activity of colistin on Pseudomonas aeruginosa biofilms in anaerobic conditions. Pathog Dis 2015; 74:ftv086. [PMID: 26458402 PMCID: PMC4655427 DOI: 10.1093/femspd/ftv086] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 12/19/2022] Open
Abstract
Tolerance towards antibiotics of Pseudomonas aeruginosa biofilms is recognized as a major cause of therapeutic failure of chronic lung infection in cystic fibrosis (CF) patients. This lung infection is characterized by antibiotic-tolerant biofilms in mucus with zones of O2 depletion mainly due to polymorphonuclear leukocytic activity. In contrast to the main types of bactericidal antibiotics, it has not been possible to establish an association between the bactericidal effects of colistin and the production of detectable levels of OH ˙ on several strains of planktonic P. aeruginosa. Therefore, we propose that production of OH ˙ may not contribute significantly to the bactericidal activity of colistin on P. aeruginosa biofilm. Thus, we investigated the effect of colistin treatment on biofilm of wild-type PAO1, a catalase-deficient mutant (ΔkatA) and a colistin-resistant CF isolate cultured in microtiter plates in normoxic- or anoxic atmosphere with 1 mM nitrate. The killing of bacteria during colistin treatment was measured by CFU counts, and the OH⋅ formation was measured by 3(')-(p-hydroxylphenyl fluorescein) fluorescein (HPF) fluorescence. Validation of the assay was done by hydrogen peroxide treatment. OH⋅ formation was undetectable in aerobic PAO1 biofilms during 3 h of colistin treatment. Interestingly, we demonstrate increased susceptibility of P. aeruginosa biofilms towards colistin during anaerobic conditions. In fact, the maximum enhancement of killing by anaerobic conditions exceeded 2 logs using 4 mg L(-1) of colistin compared to killing at aerobic conditions.
Collapse
Affiliation(s)
- Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark Department of Immunology and Microbiology, UC-CARE, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Sarah Brandt
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Nabi Mousavi
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Kasper N Kragh
- Department of Immunology and Microbiology, UC-CARE, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sevtap Aydogan
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Haleema A Uppal
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark Department of Immunology and Microbiology, UC-CARE, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | - Oana Ciofu
- Department of Immunology and Microbiology, UC-CARE, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark Department of Immunology and Microbiology, UC-CARE, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | - Peter Ø Jensen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
3
|
Youngren B, Nielsen HJ, Jun S, Austin S. The multifork Escherichia coli chromosome is a self-duplicating and self-segregating thermodynamic ring polymer. Genes Dev 2014; 28:71-84. [PMID: 24395248 PMCID: PMC3894414 DOI: 10.1101/gad.231050.113] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
At all but the slowest growth rates, Escherichia coli cell cycles overlap, and its nucleoid is segregated to daughter cells as a forked DNA circle with replication ongoing-a state fundamentally different from eukaryotes. We have solved the chromosome organization, structural dynamics, and segregation of this constantly replicating chromosome. It is locally condensed to form a branched donut, compressed so that the least replicated DNA spans the cell center and the newest DNA extends toward the cell poles. Three narrow zones at the cell center and quarters contain both the replication forks and nascent DNA and serve to segregate the duplicated chromosomal information as it flows outward. The overall pattern is smoothly self-replicating, except when the duplicated terminus region is released from the septum and recoils to the center of a sister nucleoid. In circular cross-section of the cell, the left and right arms of the chromosome form separate, parallel structures that lie in each cell half along the radial cell axis. In contrast, replication forks and origin and terminus regions are found mostly at the center of the cross section, balanced by the parallel chromosome arms. The structure is consistent with the model in which the nucleoid is a constrained ring polymer that develops by spontaneous thermodynamics. The ring polymer pattern extrapolates to higher growth rates and also provides a structural basis for the form of the chromosome during very slow growth.
Collapse
Affiliation(s)
- Brenda Youngren
- Gene Regulation and Chromosome Biology Laboratory, NCI-Frederick, National Cancer Institute, Frederick, Maryland 21702, USA
| | | | | | | |
Collapse
|
4
|
Demeshkina N, Jenner L, Westhof E, Yusupov M, Yusupova G. New structural insights into the decoding mechanism: translation infidelity via a G·U pair with Watson-Crick geometry. FEBS Lett 2013; 587:1848-57. [PMID: 23707250 DOI: 10.1016/j.febslet.2013.05.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/06/2013] [Accepted: 05/06/2013] [Indexed: 11/15/2022]
Abstract
Pioneer crystallographic studies of the isolated 30S ribosomal subunit provided the first structural insights into the decoding process. Recently, new crystallographic data on full 70S ribosomes with mRNA and tRNAs have shown that the formation of the tight decoding centre is ensured by conformational rearrangement of the 30S subunit (domain closure), which is identical for cognate or near-cognate tRNA. When a G·U forms at the first or second codon-anticodon positions (near-cognate tRNA), the ribosomal decoding centre forces the adoption of Watson-Crick G·C-like geometry rather than that of the expected Watson-Crick wobble pair. Energy expenditure for rarely occuring tautomeric base required for Watson-Crick G·C-like G·U pair or the repulsion energy due to steric clash within the mismatched base pair could constitute the only cause for efficient rejection of a near-cognate tRNA. Our data suggest that "geometrical mimicry" can explain how wrong aminoacyl-tRNAs with G·U pairs in the codon-anticodon helix forming base pairs with Watson-Crick geometry in the decoding center can be incorporated into the polypeptide chain.
Collapse
Affiliation(s)
- Natalia Demeshkina
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch 67400, France
| | | | | | | | | |
Collapse
|
5
|
Yang L, Hengzhuang W, Wu H, Damkiaer S, Jochumsen N, Song Z, Givskov M, Høiby N, Molin S. Polysaccharides serve as scaffold of biofilms formed by mucoid Pseudomonas aeruginosa. ACTA ACUST UNITED AC 2012; 65:366-76. [PMID: 22309122 DOI: 10.1111/j.1574-695x.2012.00936.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/31/2011] [Accepted: 01/24/2012] [Indexed: 12/16/2022]
Abstract
Chronic lung infection by mucoid Pseudomonas aeruginosa is one of the major pathologic features in patients with cystic fibrosis. Mucoid P. aeruginosa is notorious for its biofilm forming capability and resistance to immune attacks. In this study, the roles of extracellular polymeric substances from biofilms formed by mucoid P. aeruginosa were investigated. Alginate is not an essential structure component for mucoid P. aeruginosa biofilms. Genetic studies revealed that Pel and Psl polysaccharides serve as essential scaffold and mediate macrocolony formation in mucoid P. aeruginosa biofilms. The Psl polysaccharide is more important than Pel polysaccharide in mucoid P. aeruginosa biofilm structure maintenance and phagocytosis resistance. The polysaccharides were further found to protect mucoid P. aeruginosa strain from host immune clearance in a mouse model of acute lung infection.
Collapse
Affiliation(s)
- Liang Yang
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Shoji S, Dambacher CM, Shajani Z, Williamson JR, Schultz PG. Systematic chromosomal deletion of bacterial ribosomal protein genes. J Mol Biol 2011; 413:751-61. [PMID: 21945294 DOI: 10.1016/j.jmb.2011.09.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 08/30/2011] [Accepted: 09/02/2011] [Indexed: 01/12/2023]
Abstract
Detailed studies of ribosomal proteins (RPs), essential components of the protein biosynthetic machinery, have been hampered by the lack of readily accessible chromosomal deletions of the corresponding genes. Here, we report the systematic genomic deletion of 41 individual RP genes in Escherichia coli, which are not included in the Keio collection. Chromosomal copies of these genes were replaced by an antibiotic resistance gene in the presence of an inducible, easy-to-exchange plasmid-born allele. Using this knockout collection, we found nine RPs (L15, L21, L24, L27, L29, L30, L34, S9, and S17) nonessential for survival under induction conditions at various temperatures. Taken together with previous results, this analysis revealed that 22 of the 54 E. coli RP genes can be individually deleted from the genome. These strains also allow expression of truncated protein variants to probe the importance of RNA-protein interactions in functional sites of the ribosome. This set of strains should enhance in vivo studies of ribosome assembly/function and may ultimately allow systematic substitution of RPs with RNA.
Collapse
Affiliation(s)
- Shinichiro Shoji
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
7
|
Skovgaard O, Bak M, Løbner-Olesen A, Tommerup N. Genome-wide detection of chromosomal rearrangements, indels, and mutations in circular chromosomes by short read sequencing. Genome Res 2011; 21:1388-93. [PMID: 21555365 DOI: 10.1101/gr.117416.110] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Whole-genome sequencing (WGS) with new short-read sequencing technologies has recently been applied for genome-wide identification of mutations. Genomic rearrangements have, however, often remained undetected by WGS, and additional analyses are required for their detection. Here, we have applied a combination of WGS and genome copy number analysis, for the identification of mutations that suppress the growth deficiency imposed by excessive initiations from the Escherichia coli origin of replication, oriC. The E. coli chromosome, like the majority of bacterial chromosomes, is circular, and DNA replication is initiated by assembling two replication complexes at the origin, oriC. These complexes then replicate the chromosome bidirectionally toward the terminus, ter. In a population of growing cells, this results in a copy number gradient, so that origin-proximal sequences are more frequent than origin-distal sequences. Major rearrangements in the chromosome are, therefore, readily identified by changes in copy number, i.e., certain sequences become over- or under-represented. Of the eight mutations analyzed in detail here, six were found to affect a single gene only, one was a large chromosomal inversion, and one was a large chromosomal duplication. The latter two mutations could not be detected solely by WGS, validating the present approach for identification of genomic rearrangements. We further suggest the use of copy number analysis in combination with WGS for validation of newly assembled bacterial chromosomes.
Collapse
Affiliation(s)
- Ole Skovgaard
- Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde, Denmark.
| | | | | | | |
Collapse
|
8
|
Wu H, Lee B, Yang L, Wang H, Givskov M, Molin S, Høiby N, Song Z. Effects of ginseng on Pseudomonas aeruginosa motility and biofilm formation. ACTA ACUST UNITED AC 2011; 62:49-56. [PMID: 21303421 DOI: 10.1111/j.1574-695x.2011.00787.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biofilm-associated chronic Pseudomonas aeruginosa lung infections in patients with cystic fibrosis are virtually impossible to eradicate with antibiotics because biofilm-growing bacteria are highly tolerant to antibiotics and host defense mechanisms. Previously, we found that ginseng treatments protected animal models from developing chronic lung infection by P. aeruginosa. In the present study, the effects of ginseng on the formation of P. aeruginosa biofilms were further investigated in vitro and in vivo. Ginseng aqueous extract at concentrations of 0.5-2.0% did not inhibit the growth of P. aeruginosa, but significantly prevented P. aeruginosa from forming biofilm. Exposure to 0.5% ginseng aqueous extract for 24 h destroyed most 7-day-old mature biofilms formed by both mucoid and nonmucoid P. aeruginosa strains. Ginseng treatment enhanced swimming and twitching motility, but reduced swarming of P. aeruginosa at concentrations as low as 0.25%. Oral administration of ginseng extracts in mice promoted phagocytosis of P. aeruginosa PAO1 by airway phagocytes, but did not affect phagocytosis of a PAO1-filM mutant. Our study suggests that ginseng treatment may help to eradicate the biofilm-associated chronic infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Hong Wu
- Department of Clinical Microbiology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Zaher HS, Green R. Hyperaccurate and error-prone ribosomes exploit distinct mechanisms during tRNA selection. Mol Cell 2010; 39:110-20. [PMID: 20603079 PMCID: PMC2947859 DOI: 10.1016/j.molcel.2010.06.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/15/2010] [Accepted: 04/28/2010] [Indexed: 11/18/2022]
Abstract
Escherichia coli strains displaying hyperaccurate (restrictive) and ribosomal ambiguity (ram) phenotypes have long been associated with alterations in rpsL and rpsD/rpsE, respectively. Crystallographic evidence shows the ribosomal proteins S12 and S4/S5 (corresponding to these genes) to be located in separate regions of the small ribosomal subunit that are important for domain closure thought to take place during tRNA selection. Mechanistically, the process of tRNA selection is separated into two distinct phases, initial selection and proofreading. Here, we explore the effects of mutations in rpsL and rpsD on these steps. Surprisingly, both restrictive and ram ribosomes primarily affect tRNA selection through alteration of the off rates of the near-cognate tRNA species but during distinct phases of the overall process (proofreading and initial selection, respectively). These observations suggest that closure interfaces (S12/h27/h44 versus S4/S5) in two distinct regions of the small ribosomal subunit function independently to promote high-fidelity tRNA selection.
Collapse
Affiliation(s)
- Hani S. Zaher
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rachel Green
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
10
|
Affiliation(s)
- M Nomura
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
11
|
Skindersoe ME, Zeuthen LH, Brix S, Fink LN, Lazenby J, Whittall C, Williams P, Diggle SP, Froekiaer H, Cooley M, Givskov M. Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell-induced T-cell proliferation. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2009; 55:335-45. [PMID: 19187218 DOI: 10.1111/j.1574-695x.2008.00533.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pseudomonas aeruginosa releases a wide array of toxins and tissue-degrading enzymes. Production of these malicious virulence factors is controlled by interbacterial communication in a process known as quorum sensing. An increasing body of evidence reveals that the bacterial signal molecule N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL) exhibits both quorum-sensing signalling and immune-modulating properties. Recently, yet another quorum-sensing signal molecule, the Pseudomonas quinolone signal (PQS), has been shown to affect cytokine release by mitogen-stimulated human T cells. In the present article we demonstrate that both OdDHL and PQS decrease the production of interleukin-12 (IL-12) by Escherichia coli lipopolysaccharide-stimulated bone marrow-derived dendritic cells (BM-DCs) without altering their IL-10 release. Moreover, BM-DCs exposed to PQS and OdDHL during antigen stimulation exhibit a decreased ability to induce T-cell proliferation in vitro. Collectively, this suggests that OdDHL and PQS change the maturation pattern of stimulated DCs away from a proinflammatory T-helper type I directing response, thereby decreasing the antibacterial activity of the adaptive immune defence. OdDHL and PQS thus seem to possess dual activities in the infection process: as inducers of virulence factors as well as immune-modulators facilitating the infective properties of this pathogen.
Collapse
Affiliation(s)
- Mette E Skindersoe
- Center for Biomedical Microbiology, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hussain S. Streptomycin dependence. Hereditas 2009; 91:115-6. [PMID: 387674 DOI: 10.1111/j.1601-5223.1979.tb01650.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
13
|
Riber L, Olsson JA, Jensen RB, Skovgaard O, Dasgupta S, Marinus MG, Løbner-Olesen A. Hda-mediated inactivation of the DnaA protein and dnaA gene autoregulation act in concert to ensure homeostatic maintenance of the Escherichia coli chromosome. Genes Dev 2006; 20:2121-34. [PMID: 16882985 PMCID: PMC1536062 DOI: 10.1101/gad.379506] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 05/19/2006] [Indexed: 11/24/2022]
Abstract
Initiation of DNA replication in Eschericia coli requires the ATP-bound form of the DnaA protein. The conversion of DnaA-ATP to DnaA-ADP is facilitated by a complex of DnaA, Hda (homologous to DnaA), and DNA-loaded beta-clamp proteins in a process termed RIDA (regulatory inactivation of DnaA). Hda-deficient cells initiate replication at each origin mainly once per cell cycle, and the rare reinitiation events never coincide with the end of the origin sequestration period. Therefore, RIDA is not the predominant mechanism to prevent immediate reinitiation from oriC. The cellular level of Hda correlated directly with dnaA gene expression such that Hda deficiency led to reduced dnaA gene expression, and overproduction of Hda led to DnaA overproduction. Hda-deficient cells were very sensitive to variations in the cellular level of DnaA, and DnaA overproduction led to uncontrolled initiation of replication from oriC, causing severe growth retardation or cell death. Based on these observations, we propose that both RIDA and dnaA gene autoregulation are required as homeostatic mechanisms to ensure that initiation of replication occurs at the same time relative to cell mass in each cell cycle.
Collapse
Affiliation(s)
- Leise Riber
- Department of Life Sciences and Chemistry, Roskilde University, Denmark
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The underlying basis for the accuracy of protein synthesis has been the subject of over four decades of investigation. Recent biochemical and structural data make it possible to understand at least in outline the structural basis for tRNA selection, in which codon recognition by cognate tRNA results in the hydrolysis of GTP by EF-Tu over 75 A away. The ribosome recognizes the geometry of codon-anticodon base pairing at the first two positions but monitors the third, or wobble position, less stringently. Part of the additional binding energy of cognate tRNA is used to induce conformational changes in the ribosome that stabilize a transition state for GTP hydrolysis by EF-Tu and subsequently result in accelerated accommodation of tRNA into the peptidyl transferase center. The transition state for GTP hydrolysis is characterized, among other things, by a distorted tRNA. This picture explains a large body of data on the effect of antibiotics and mutations on translational fidelity. However, many fundamental questions remain, such as the mechanism of activation of GTP hydrolysis by EF-Tu, and the relationship between decoding and frameshifting.
Collapse
Affiliation(s)
- James M Ogle
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom.
| | | |
Collapse
|
15
|
Yamada T, Masuda K, Shoji K, Hori M. Pleiotropic antibiotic resistance mutations associated with ribosomes and ribosomal subunits in Mycobacterium smegmatis. Antimicrob Agents Chemother 2005; 6:46-53. [PMID: 15828170 PMCID: PMC429046 DOI: 10.1128/aac.6.1.46] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viomycin-resistant strains isolated from Mycobacterium smegmatis demonstrated pleiotropic resistance to tuberactinomycin-N, capreomycin, streptomycin, and kanamycin as a result of mutational alteration of ribosomes, even though they were selected for resistance to a single antibiotic. The pleiotropic drug resistance of three mutants isolated by stepwise selection for resistance to viomycin was due to alteration of the 30S ribosomal subunit. One mutant, strain A, isolated independently by multiple-step selection to viomycin resistance, was resistant to viomycin, tuberactinomycin-N, and capreomycin through an alteration of the 50S ribosomal subunit, whereas it was sensitive to kanamycin but resistant to streptomycin through an alteration of the 30S ribosomal subunit. Three streptomycin-resistant strains, which were isolated by one-step selection at a high concentration of streptomycin, did not show significant co-resistance to any other antibiotics tested in culture and cell-free systems; streptomycin resistance in these mutants was localized on the 30S ribosomal subunit.
Collapse
|
16
|
Møller T, Franch T, Udesen C, Gerdes K, Valentin-Hansen P. Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev 2002; 16:1696-706. [PMID: 12101127 PMCID: PMC186370 DOI: 10.1101/gad.231702] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The physiological role of Escherichia coli Spot 42 RNA has remained obscure, even though the 109-nucleotide RNA was discovered almost three decades ago. Structural features of Spot 42 RNA and previous work suggested to us that the RNA might be a regulator of discoordinate gene expression of the galactose operon, a control that is only understood at the phenomenological level. The effects of controlled expression of Spot 42 RNA or deleting the gene (spf) encoding the RNA supported this hypothesis. Down-regulation of galK expression, the third gene in the gal operon, was only observed in the presence of Spot 42 RNA and required growth conditions that caused derepression of the spf gene. Subsequent biochemical studies showed that Spot 42 RNA specifically bound at the galK Shine-Dalgarno region of the galETKM mRNA, thereby blocking ribosome binding. We conclude that Spot 42 RNA is an antisense RNA that acts to differentially regulate genes that are expressed from the same transcription unit. Our results reveal an interesting mechanism by which the expression of a promoter distal gene in an operon can be modulated and underline the importance of antisense control in bacterial gene regulation.
Collapse
Affiliation(s)
- Thorleif Møller
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | | | |
Collapse
|
17
|
Andersson DI, Andersson SG, Kurland CG. Functional interactions between mutated forms of ribosomal proteins S4, S5 and S12. Biochimie 1986; 68:705-13. [PMID: 3089329 DOI: 10.1016/s0300-9084(86)80164-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Here we show that ram mutations, either in ribosomal protein S4 or S5, decrease the proofreading flows for both cognate and noncognate ternary complexes bound by streptomycin-dependent (SmD) ribosomes. This effect is accompanied by a slight increase in the overall error frequency. More important, however, is the decreased proofreading of the cognate species which is almost reduced to wild-type levels. The data suggest that it may be the reduction of the proofreading of the cognate substrate that is important for suppressing streptomycin dependence. Furthermore, we show that rpsE mutants, selected from streptomycin-dependent strains, behave kinetically very similarly to the previously described rpsD mutants.
Collapse
|
18
|
Ruusala T, Kurland CG. Streptomycin preferentially perturbs ribosomal proofreading. MOLECULAR & GENERAL GENETICS : MGG 1984; 198:100-4. [PMID: 6394958 DOI: 10.1007/bf00328707] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We have studied the influence of streptomycin (Sm) on the kinetics and accuracy of translation by wild-type as well as Ram-mutant ribosomes in an in vitro system that mimics the performance characteristics of ribosomes in bacteria. It can be shown in this system that the accuracy of translation is made up of an initial selection step and one or more proofreading steps. The data show that the antibiotic has only a small influence on the initial selectivity step of wild-type or mutant ribosomes. Streptomycin stimulates the missense rate primarily by suppressing the proofreading of the ribosomes. The kinetic effects of Sm and of Ram alteration are not additive, but seem to be overlapping if not identical.
Collapse
|
19
|
Schaup HW. A paradigm for ribosome fidelity modulation in protein synthesis. J Theor Biol 1978; 71:215-24. [PMID: 642526 DOI: 10.1016/0022-5193(78)90268-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Davidson JN, Bogorad L. Suppression of erythromycin resistance in ery-M1 mutants of Chlamydomonas reinhardi. MOLECULAR & GENERAL GENETICS : MGG 1977; 157:39-46. [PMID: 600267 DOI: 10.1007/bf00268685] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Saltzman L, Apirion D. Binding of erythromycin to the 50S ribosomal subunit is affected by alterations in the 30S ribosomal subunit. MOLECULAR & GENERAL GENETICS : MGG 1976; 143:301-6. [PMID: 765762 DOI: 10.1007/bf00269407] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Expression of resistance to erythromycin in Escherichia coli, caused by an altered L4 protein in the 50S ribosomal subunit, can be masked when two additional ribosomal mutations affecting the 30S proteins S5 and S12 are introduced into the strain (Saltzman, Brown, and Apriion, 1974). Ribosomes from such strains bind erythromycin to the same extent as ribosomes from erythromycin sensitive parental strains (Apirion and Saltzman, 1974). Among mutants isolated for the reappearance of erythromycin resistance, kasugamycin resistant mutants were found. One such mutant was analysed and found to be due to undermethylation of the rRNA. The ribosomes of this strain do not bind erythromycin, thus there is a complete correlation between phenotype of cells with respect to erythromycin resistance and binding of erythromycin to ribosomes. Furthermore, by separating the ribosomal subunits we showed that 50S ribosomes bind or do not bind erythromycin according to their L4 protein; 50S with normal L4 bind and 50S with altered L4 do not bind erythromycin. However, the 30S ribosomes with altered S5 and S12 can restore binding in resistant 50S ribosomes while the 30S ribosomes in which the rRNA also became undermethylated did not allow erythromycin binding to occur. Thus, evidence for an intimate functional relationship between 30S and 50S ribosomal elements in the function of the ribosome could be demonstrated. These functional interrelationships concerns four ribosomal components, two proteins from the 30S ribosomal subunit, S5, and S12, one protein from the 50S subunit L4, and 16S rRNA.
Collapse
|
22
|
De Wilde M, Cabezón T, Villarroel R, Herzog A, Bollen A. Cooperative control of translation fidelity by ribosomal proteins in Escherichia coli. I. Properties of ribosomal mutants whose resistance to neamine is the cumulative effect of two distinct mutations. MOLECULAR & GENERAL GENETICS : MGG 1975; 142:19-33. [PMID: 765735 DOI: 10.1007/bf00268752] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two spontaneous mutants of Escherichia coli strain KMBL-146 selected for resistance to the aminoglycoside antibiotic neamine show severe restriction of amber suppressors in vivo. Purified ribosomes from the mutant strains exhibit low neamine-induced misreading in vitro and a decreased affinity for the related antibiotic streptomycin. Biochemical analysis shows that the mutants each have two modified 30S ribosmal proteins, S12 and S5. In agreement with these results, genetic analysis shows that two mutations are present, neither of which confers resistance to neamine by itself; the mutation located in gene rpxL (the structural gene for protein S12) confers streptomycin dependence but this dependence is suppressed in the presence of the second mutation, located in gene rpxE (the structural gene for protein S5).
Collapse
|
23
|
Olsson M, Isaksson L, Kurland CG. Pleiotropic effects of ribosomal protein s4 studied in Escherichia coli mutants. MOLECULAR & GENERAL GENETICS : MGG 1974; 135:191-202. [PMID: 4617167 DOI: 10.1007/bf00268615] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Saltzman LA, Brown M, Apirion D. Functional interdependence among ribosomal elements as revealed by genetic analysis. MOLECULAR & GENERAL GENETICS : MGG 1974; 133:201-7. [PMID: 4280504 DOI: 10.1007/bf00267669] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Pinkett MO, Brownstein BL. Streptomycin-induced synthesis of abnormal protein in an Escherichia coli mutant. J Bacteriol 1974; 119:345-50. [PMID: 4605145 PMCID: PMC245613 DOI: 10.1128/jb.119.2.345-350.1974] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
To determine directly the effects of streptomycin on translational fidelity in intact cells, we studied the synthesis of beta-galactosidase and of the coat protein of bacteriophage R17 in an Escherichia coli mutant in which the bactericidal effects of streptomycin are delayed. After the addition of streptomycin to exponentially growing mutant cells, protein synthesis continues at an undiminished rate for approximately an hour; however, as measured by enzyme assays, little functional protein is produced. Serological assays designed to detect beta-galactosidase and bacteriophage R17 coat protein show that substantial amounts of the protein synthesized can react with antisera prepared against active beta-galactosidase and phage R17, indicating the aberrance of the protein produced in the presence of the antibiotic. The polypeptides synthesized in the presence of streptomycin are degraded in the cell to a much greater extent than protein synthesized in the absence of the antibiotic. The proteolytic attack on this protein is not affected by inhibitors of serine proteases, suggesting that enzymes other than those involved in "normal turnover" of cellular protein are responsible. In this strain, certain of the multiple effects of streptomycin are separated in time and the production of abnormal protein (enzymatically inactive and susceptible to proteolytic attack) could be studied in the absence of the lethal effect of the drug.
Collapse
|
26
|
Apirion D, Saltzman L. Functional interdependence of 50S and 30S ribosomal subunits. MOLECULAR & GENERAL GENETICS : MGG 1974; 135:11-8. [PMID: 4280506 DOI: 10.1007/bf00433896] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Hasenbank R, Guthrie C, Stöffler G, Wittmann HG, Rosen L, Apirion D. Electrophoretic and immunological studies on ribosomal proteins of 100 Escherichia coli revertants from streptomycin dependence. MOLECULAR & GENERAL GENETICS : MGG 1973; 127:1-18. [PMID: 4589343 DOI: 10.1007/bf00267778] [Citation(s) in RCA: 99] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Kreider G, Brownstein BL. Ribosomal proteins involved in the suppression of streptomycin dependence in Escherichia coli. J Bacteriol 1972; 109:780-5. [PMID: 4258063 PMCID: PMC285205 DOI: 10.1128/jb.109.2.780-783.1972] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Suppression of streptomycin dependence in Escherichia coli strain K-114, a spectinomycin-sensitive strain, is correlated with modification of 30S ribosomal protein P4, the component modified in spectinomycin-resistant mutants. The mutant is unusual in that reversion from dependence has previously been correlated only with modification in 30S protein P4a. Introduction into K-114 of another mutation conferring spectinomycin resistance results in a further alteration in protein P4.
Collapse
|
29
|
Green M, Kurland CG. Mutant ribosomal protein with defective RNA binding site. NATURE: NEW BIOLOGY 1971; 234:273-5. [PMID: 4943840 DOI: 10.1038/newbio234273a0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Stöffler G, Deusser E, Wittmann HG, Apirion D. Ribosomal proteins. XIX. Altered S5 ribosomal protein in an Escherichia coli revertant from strptomycin dependence to independence. MOLECULAR & GENERAL GENETICS : MGG 1971; 111:334-41. [PMID: 4936310 DOI: 10.1007/bf00569785] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
A mutation suppressing streptomycin dependence. II. An altered protein on the 30 s ribosomal subunit. J Mol Biol 1971; 61:135-42. [PMID: 4947692 DOI: 10.1016/0022-2836(71)90211-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Birge EA, Kurland CG. Reversion of a streptomycin-dependent strain of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1970; 109:356-69. [PMID: 4925047 DOI: 10.1007/bf00267704] [Citation(s) in RCA: 93] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
33
|
Kaji H. Intraribosomal environment of the nascent peptide chain. INTERNATIONAL REVIEW OF CYTOLOGY 1970; 29:169-211. [PMID: 4928380 DOI: 10.1016/s0074-7696(08)60035-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
34
|
Turnock G. A genetic analysis of a mutant of Escherichia coli with a defect in the assembly of ribosomes. MOLECULAR & GENERAL GENETICS : MGG 1969; 104:295-312. [PMID: 4904507 DOI: 10.1007/bf00334229] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
35
|
Lewandowski LJ, Brownstein BL. Characterization of a 43 s ribonucleoprotein component of a mutant of Escherichia coli. J Mol Biol 1969; 41:277-90. [PMID: 4895600 DOI: 10.1016/0022-2836(69)90392-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
36
|
Breckenridge L, Gorini L. The dominance of streptomycin sensitivity re-examined. Proc Natl Acad Sci U S A 1969; 62:979-85. [PMID: 4895222 PMCID: PMC223695 DOI: 10.1073/pnas.62.3.979] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Several aspects of the strA phenotype were studied in strains of Escherichia coli diploid in the strA chromosomal region. It was found that alleles causing different levels of interference with amber suppression can complement each other, the less restrictive effects being predominant. The sensitive strA(+) allele determines two responses to streptomycin: a dominant effect consisting of a sudden, complete, but reversible inhibition of growth, and a recessive effect manifested as cell killing. Both restriction of suppression and inhibition of growth reflect ribosomal involvement in translation.
Collapse
|
37
|
Tai PC, Kessler DP, Ingraham J. Cold-sensitive mutations in Salmonella typhimurium which affect ribosome synthesis. J Bacteriol 1969; 97:1298-304. [PMID: 4887510 PMCID: PMC249847 DOI: 10.1128/jb.97.3.1298-1304.1969] [Citation(s) in RCA: 97] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A number of mutations (45) expressed as cold-sensitive conditional lethal pheno-types were screened by transduction for their linkage to the streptomycin-resistance locus; 7 showed such linkage. Of these, two were studied in greater detail. The sedimentation profiles of ribosomes from cultures grown at low temperature differed from wild type and from one another. Both mutants lost ribonucleic acid control at low temperature. It is suggested that a high proportion of mutants expressing a cold-sensitive phenotype harbor mutations in genes affecting ribosome synthesis or regulation.
Collapse
|
38
|
Petitpas-Dewandre A, Barbason H, Verly WG. Affinite pour la streptomycine des ribosomes d'Escherichia coli. ACTA ACUST UNITED AC 1969. [DOI: 10.1111/j.1432-1033.1969.tb19608.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Luzzatto L, Apirion D, Schlessinger D. Mechanism of action of streptomycin in E. coli: interruption of the ribosome cycle at the initiation of protein synthesis. Proc Natl Acad Sci U S A 1968; 60:873-80. [PMID: 4875806 PMCID: PMC225133 DOI: 10.1073/pnas.60.3.873] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
40
|
The Genetic Code After The Excitement. ADVANCES IN GENETICS 1968. [DOI: 10.1016/s0065-2660(08)60429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
41
|
Hofemeister J, Böhme H. [Streptomycin-dependant mutants of Proteus mirabilis: their genetics, suppression and modification]. MOLECULAR & GENERAL GENETICS : MGG 1967; 99:219-47. [PMID: 5594049 DOI: 10.1007/bf01797728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|