1
|
Pliss A, Koberna K, Vecerová J, Malínský J, Masata M, Fialová M, Raska I, Berezney R. Spatio-temporal dynamics at rDNA foci: Global switching between DNA replication and transcription. J Cell Biochem 2004; 94:554-65. [PMID: 15543556 DOI: 10.1002/jcb.20317] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have investigated the in situ organization of ribosomal gene (rDNA) transcription and replication in HeLa cells. Fluorescence in situ hybridization (FISH) revealed numerous rDNA foci in the nucleolus. Each rDNA focus corresponds to a higher order chromatin domain containing multiple ribosomal genes. Multi-channel labeling experiments indicated that, in the majority of cells, all the rDNA foci were active in transcription as demonstrated by co-localization with signals to transcription and fibrillarin, a protein involved in ribosomal RNA processing. In some cells, however, a small portion of the rDNA foci did not overlap with signals to transcription and fibrillarin. Labeling for DNA replication revealed that those rDNA foci inactive in transcription were restricted to the S-phase of the cell cycle and were replicated predominantly from mid to late S-phase. Electron microscopic analysis localized the nucleolar transcription, replication, and fibrillarin signals to the dense fibrillar components of the nucleolus and at the borders of the fibrillar centers. We propose that the rDNA foci are the functional units for coordinating replication and transcription of the rRNA genes in space and time. This involves a global switching mechanism, active from mid to late S-phase, for turning off transcription and turning on replication at individual rDNA foci. Once all the rRNA genes at individual foci are replicated, these higher order chromatin domains are reprogrammed for transcription.
Collapse
Affiliation(s)
- Artem Pliss
- Department of Cell Biology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Albertov 4, CZ-12800 Prague 2, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Abstract
To investigate the molecular basis of the regulatory mechanisms responsible for the orderly replication of the mammalian genome, we have developed an experimental system by which the replication order of various genes can be defined with relative ease and precision. Exponentially growing CHO-K1 cells were separated into populations representing various stages of the cell cycle by centrifugal elutriation and analyzed for cell cycle status flow cytometry. The replication of specific genes in each elutriated fraction was measured by labeling with 5-mercuri-dCTP and [3H]dTPP under conditions of optimal DNA synthesis after cell permeabilization with lysolecithin. Newly synthesized mercurated DNA from each elutriated fraction was purified by affinity chromatography on thiol-agarose and replicated with the large fragment of Escherichia coli DNA polymerase I by using [alpha-32P]dATP and random primers. The 32P-labeled DNA representative of various stages of the cell cycle was then hybridized with dot blots of plasmid DNA containing specific cloned genes. From these results, it was possible to deduce the nuclear DNA content at the time each specific gene replicated during S phase (C value). The C values of 29 genes, which included single-copy genes, multifamily genes, oncogenes, and repetitive sequences, were determined and found to be distributed over the entire S phase. Of the 28 genes studied, 19 had been examined by others using in vivo labeling techniques, with results which agreed with the replication pattern observed in this study. The replication times of nine other genes are described here for the first time. Our method of analysis is sensitive enough to determine the replication time of single-copy genes. The replication times of various genes and their levels of expression in exponentially growing CHO cells were compared. Although there was a general correlation between transcriptional activity and replication in the first half of S phase, examination of specific genes revealed a number of exceptions. Approximately 25% of total poly(A) RNA was transcribed from the late-replicating DNA.
Collapse
|
3
|
Taljanidisz J, Popowski J, Sarkar N. Temporal order of gene replication in Chinese hamster ovary cells. Mol Cell Biol 1989; 9:2881-9. [PMID: 2476659 PMCID: PMC362754 DOI: 10.1128/mcb.9.7.2881-2889.1989] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To investigate the molecular basis of the regulatory mechanisms responsible for the orderly replication of the mammalian genome, we have developed an experimental system by which the replication order of various genes can be defined with relative ease and precision. Exponentially growing CHO-K1 cells were separated into populations representing various stages of the cell cycle by centrifugal elutriation and analyzed for cell cycle status flow cytometry. The replication of specific genes in each elutriated fraction was measured by labeling with 5-mercuri-dCTP and [3H]dTPP under conditions of optimal DNA synthesis after cell permeabilization with lysolecithin. Newly synthesized mercurated DNA from each elutriated fraction was purified by affinity chromatography on thiol-agarose and replicated with the large fragment of Escherichia coli DNA polymerase I by using [alpha-32P]dATP and random primers. The 32P-labeled DNA representative of various stages of the cell cycle was then hybridized with dot blots of plasmid DNA containing specific cloned genes. From these results, it was possible to deduce the nuclear DNA content at the time each specific gene replicated during S phase (C value). The C values of 29 genes, which included single-copy genes, multifamily genes, oncogenes, and repetitive sequences, were determined and found to be distributed over the entire S phase. Of the 28 genes studied, 19 had been examined by others using in vivo labeling techniques, with results which agreed with the replication pattern observed in this study. The replication times of nine other genes are described here for the first time. Our method of analysis is sensitive enough to determine the replication time of single-copy genes. The replication times of various genes and their levels of expression in exponentially growing CHO cells were compared. Although there was a general correlation between transcriptional activity and replication in the first half of S phase, examination of specific genes revealed a number of exceptions. Approximately 25% of total poly(A) RNA was transcribed from the late-replicating DNA.
Collapse
Affiliation(s)
- J Taljanidisz
- Department of Metabolic Regulation, Boston Biomedical Research Institute, Massachusetts 02114
| | | | | |
Collapse
|
4
|
Vintermyr OK, Døskeland SO. Cell cycle parameters of adult rat hepatocytes in a defined medium. A note on the timing of nucleolar DNA replication. J Cell Physiol 1987; 132:12-21. [PMID: 3298287 DOI: 10.1002/jcp.1041320103] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hepatocytes, isolated from adult (250-350 g) rats, attached and survived well in primary culture on highly diluted (less than 1 microgram/cm2) collagen gel in a synthetic medium without serum or hormones. About 20% of the cells "spontaneously" entered S phase during the first 4 days of culturing, and mitoses were easily demonstrated at the near physiological concentration (1.25 mM) of Ca++ prevailing in the medium. Cultures given 9 nM epidermal growth factor (EGF) and 20 nM insulin 20 h after inoculation showed vigorous DNA synthesis and mitotic activity. Autoradiography of such cells exposed to [3H]thymidine allowed the determination of the following cell cycle parameters: Lag period from EGF/insulin stimulation till onset of increased DNA synthesis, 17 h; rate of entry into S phase (kG1/S), 0.028/h; duration of S phase, 8.4 h; duration of G2 phase, 2.7 h. The peak DNA synthesis (pulse labelling index, 24%) and peak mitotic activity (mitotic index, 1.7%) occurred 35 and 43 h, respectively, after the stimulation with EGF/insulin. These values are comparable to those reported during the in vivo compensatory hyperplasia following partial hepatectomy of adult rats. A marked variation of the intranuclear [3H]thymidine pulse labelling pattern was noted: During the first 1.5 h of the S phase, the labelling was extranucleolar and during the last 1.5 h chiefly nucleolar. The cells survived well in the absence of glucocorticoid, whose effect on cell cycle parameters therefore could be studied. Dexamethasone (25-250 nM) did not appreciably affect the durations of S phase and G2 phase or the pattern of preferential extranucleolar and nucleolar DNA synthesis within the S phase.
Collapse
|
5
|
Hof JV, Hernandez P, Bjerknes CA, Kraszewska EK, Lamm SS. Replication of the rRNA and legumin genes in synchronized root cells of pea (Pisum sativum): evidence for transient EcoR I sites in replicating rRNA genes. PLANT MOLECULAR BIOLOGY 1987; 8:133-143. [PMID: 24301048 DOI: 10.1007/bf00025324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/1986] [Accepted: 08/29/1986] [Indexed: 06/02/2023]
Abstract
The temporal pattern of replication of the rRNA and legumin genes differs in synchronized pea root cells. The relative number of rRNA genes replicated hourly during the first five hours of S phase ranges between 5 and 10 percent. In late S phase, during hours six through nine, the number of rRNA genes replicated increases reaching a maximum of about 25 percent at the ninth hour. Unlike the rRNA genes, the legumin genes have a wave-like pattern of replication peaking in early S phase at the third hour and again in late S phase at the eighth hour.Replicating rDNA, isolated by benzoylated naphthoylated DEAE-column chromatography, has EcoR I restriction sites that are absent in non-replicating rDNA sequences. The cleavage of these sites is independent of the time of rDNA replication. The transient nature of the EcoR I sites suggests that they exist in a hemimethylated state in parental DNA.The two Hind III repeat-size classes of rDNA of var. Alaska peas are replicated simultaneously as cells progress through S phase. Thus, even if the 9.0 kb and 8.6 kb repeat classes are located on different chromosomes, their temporal order of replication is the same.
Collapse
Affiliation(s)
- J V Hof
- Biology Department, Brookhaven National Laboratory, 11973, Upton, NY, U.S.A
| | | | | | | | | |
Collapse
|
6
|
Abstract
An electron microscopic study was made of the replication of rDNA chromatin of Saccharomyces cerevisiae. Two different methods were used to synchronize cells. cdc7-1 cells were raised to a restrictive temperature, whereas A364a cells were blocked with mating factor. Replication bubbles typically opened in the nontranscribed spacers of rDNA repeats in both cell types. The mean position of the center of these bubbles corresponds closely to a position where an autonomously replicating sequence previously has been mapped in an rDNA repeat. Clusters of replication bubbles containing up to four bubbles spaced one to three genes apart were seen opening in early S phase.
Collapse
|
7
|
Tsutsui T, Suzuki N, Elmore E, Maizumi H. Temporal order of replication of genes responsible for hypoxanthine phosphoribosyl transferase and Na+/K+ ATPase in chemically transformed human fibroblasts. J Cell Physiol 1986; 127:457-62. [PMID: 3011816 DOI: 10.1002/jcp.1041270316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The cytotoxic and mutagenic effects of a direct perturbation of DNA during various portions of the DNA synthetic period (S phase) of a chemically induced, transformed line (Hut-11A cells) derived from diploid human skin fibroblasts were examined. The cells were synchronized by a period of growth in low serum with a subsequent blockage of the cells at the G1/S boundary by hydroxyurea. This method resulted in over 90% synchrony, although approximately 20% of the cells were noncycling. Synchronized cells were treated for each of four 2-h periods during the S phase with 5-bromodeoxyuridine (BrdU) followed by irradiation with near-ultraviolet (UV). The BrdU-plus-irradiation treatment was cytotoxic and mutagenic, while treatment with BrdU alone or irradiation alone was neither cytotoxic nor mutagenic. The cytotoxicity was dependent upon the periods of S phase during which treatment was administered. The highest lethality was observed for treatment in early to middle S phase, particularly in the first 2 h of S phase, whereas scare lethality was observed in late S phase. The BrdU-plus-irradiation treatment induced ouabain- and 6-thioguanine-resistant mutants, while BrdU alone or irradiation alone was not mutagenic. Ouabain-resistant mutants were induced during early S phase by the BrdU-plus-irradiation treatment. 6-Thioguanine-resistant mutants, however, were induced during middle to late S phase. These results suggest that a certain region or regions in the DNA of Hut-11A cells, as designated by their specific temporal relationship in the S phase, may be more sensitive to the DNA perturbation by BrdU treatment plus near-UV irradiation for cell survival and that gene(s) responsible for Na+/K+ ATPase is replicated during early S phase and gene(s) for hypoxanthine phosphoribosyl transferase is replicated during middle to late S phase.
Collapse
|
8
|
Saffer LD, Miller OL. Electron microscopic study of Saccharomyces cerevisiae rDNA chromatin replication. Mol Cell Biol 1986; 6:1148-57. [PMID: 3537698 PMCID: PMC367626 DOI: 10.1128/mcb.6.4.1148-1157.1986] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An electron microscopic study was made of the replication of rDNA chromatin of Saccharomyces cerevisiae. Two different methods were used to synchronize cells. cdc7-1 cells were raised to a restrictive temperature, whereas A364a cells were blocked with mating factor. Replication bubbles typically opened in the nontranscribed spacers of rDNA repeats in both cell types. The mean position of the center of these bubbles corresponds closely to a position where an autonomously replicating sequence previously has been mapped in an rDNA repeat. Clusters of replication bubbles containing up to four bubbles spaced one to three genes apart were seen opening in early S phase.
Collapse
|
9
|
Tsutsui T, Ohmori M, Suzuki N, Maizumi H. Dependence of lethality induced by a direct DNA perturbation of synchronized human diploid fibroblasts on different periods of the DNA synthetic period (S phase). J Cell Physiol 1984; 120:219-24. [PMID: 6746748 DOI: 10.1002/jcp.1041200216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The cytotoxic effect of a direct perturbation of DNA during various portions of the DNA synthetic period (S phase) of cultured human diploid fibroblasts was examined. The cells were synchronized by a period of growth in low serum with a subsequent blockage of the cells at the G1/S boundary by hydroxyurea. This method resulted in over 90% synchrony, although approximately 20% of the cells were noncycling. Synchronized cells were treated for each of four 2-hour periods during the S phase with 5-bromodeoxyuridine (0.1-10 microM), followed by irradiation with near-UV (5-10 min). The 5-bromodeoxyuridine-plus-irradiation treatment was cytotoxic, while treatment with 5-bromodeoxyuridine alone or irradiation alone was not cytotoxic. The cytotoxicity was dependent upon the periods of S phase during which treatment was administered. The highest lethality was observed for treatment in early to middle S phase, particularly in the first 2 hours of S phase, whereas scarce lethality was observed in late S phase. The extent of substitution of 5-bromodeoxyuridine for thymidine in newly synthesized DNA was similar in every period of the S phase. Furthermore, no specific period during S phase was significantly more sensitive to treatment with respect to DNA damage, as determined by an induction of unscheduled DNA synthesis. These results suggest that a certain region or regions in the DNA of human diploid fibroblasts, as designated by their specific temporal relationship in the S phase, may be more sensitive to the DNA perturbation by 5-bromodeoxyuridine treatment plus near-UV irradiation for cell survival.
Collapse
|
10
|
Rode A, de Taisne C, Hartmann C. Incorporation of 5-bromodeoxyuridine in the total and ribosomal DNA of synchronously dividing chick embryo fibroblasts. EXPERIENTIA 1983; 39:1134-6. [PMID: 6617814 DOI: 10.1007/bf01943146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The pattern of 5-bromodeoxyuridine incorporation into ribosomal DNA is quantitatively different from that for total DNA. It is concluded that 5-bromodeoxyuridine incorporation along the DNA chain is not a random process.
Collapse
|
11
|
D'Andrea AD, Tantravahi U, Lalande M, Perle MA, Latt SA. High resolution analysis of the timing of replication of specific DNA sequences during S phase of mammalian cells. Nucleic Acids Res 1983; 11:4753-74. [PMID: 6192392 PMCID: PMC326084 DOI: 10.1093/nar/11.14.4753] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A new method, utilizing selective photodegradation of 5-bromo-deoxyuridine (BUdR)-substituted DNA and flow cytometry, has been developed for analyzing the timing of replication of specific DNA sequences. Chemically synchronized Chinese hamster ovary cells were given a pulse of the deoxythymidine analogue, BUdR, at different times during S phase, and flow sorted according to DNA content, before DNA isolation. Newly-replicated, unifilarly BUdR-substituted DNA was selectively degraded by treatment with 33258 Hoechst plus near UV light followed by S1 nuclease digestion; the resistant DNA was analyzed for its content of 18s and 28s rDNA or dihydrofolate reductase (DHFR) sequences via Southern blot analysis. Both the rDNA and DHFR sequences were found to replicate almost entirely during the first quarter of S phase. The approach described should have general utility for analyzing replication kinetics of specific DNA sequences in mammalian cells.
Collapse
|
12
|
Marchionni MA, Roufa DJ. Replication of viral DNA sequences integrated within the chromatin of SV40-transformed Chinese hamster lung cells. Cell 1981; 26:245-58. [PMID: 6277496 DOI: 10.1016/0092-8674(81)90307-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To determine when during S phase integrated viral DNA sequences in several tsA SV40-transformed Chinese hamster cell clones replicate, we pulse-labeled cultures with BrdUrd and subsequently collected mitotic cells during sequential time intervals. Restriction endonuclease mapping indicated that each of the three SV40-transformed Chinese hamster lung cell clones contained a single viral DNA sequence at a different, but in each case unique, chromosomal site. DNA was extracted from each population of mitotic cells and then was resolved into dense, BrdUrd-containing and light, unsubstituted DNA fractions by cesium chloride gradient centrifugation. In each pair of samples obtained, we measured viral DNA sequences by solution hybridization using single-stranded SV40 32P-labeled DNA probes. Our results support the conclusions that specific genes within a mammalian DNA are programmed to replicate at particular times during S phase, and that the SV40 A gene product, large T antigen, programs integrated viral DNA sequences to replicate very early in S phase. The fractions of viral DNA replicated early in S phase appeared to correlate with each clone's content of functional large T antigen at permissive and nonpermissive culture temperatures.
Collapse
|
13
|
Tsutsui T, Crawford BD, Ts'o PO, Barrett JC. Comparison between mutagenesis in normal and transformed Syrian hamster fibroblasts: difference in the temporal order of HPRT gene replication. Mutat Res 1981; 80:357-71. [PMID: 6259520 DOI: 10.1016/0027-5107(81)90108-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A highly tumorigenic subdiploid cell line, BP6T, derived in our laboratory from Syrian hamster embryo (SHE) cells, is amenable to studies of somatic mutation in vitro. Cellular and biochemical characterization of clonally derived BP6T cells resistant to 6-thioguanine (TGr) or ouabain (Quar) demonstrated these mutants to be similar qualitatively to mutants of SHE cells characterized previously (Barrett et al., 1978). BP6T TGr mutants resistant to 6-thioguanine are cross-resistant to 8-azaguanine, lack HPRT activity, exhibit a low frequency of reversion and arise spontaneously at a rate of approximately 5 X 10(-7) mutants per cell per generation. BP6T Ouar mutants were shown to be highly resistant to ouabain-mediated inhibition of 86Rb influx, indicating an alteration in the Na+/K+ ATPase. These studies on the BP6T cell line provide the experimental basis for a comparative study of the mutagenic responses of normal, diploid SHE cells versus those of related, but transformed aneuploid cells. Highly synchronized cultures of these 2 cells were mutagenized by pulse treatment with BrdU during different periods of S phase, followed immediately by near-UV irradiation. The induced mutation frequencies so obtained provided information about the temporal order of replication of genes encoding HPRT and Na+/K+ ATPase in both SHE and BP6T cells. The temporal pattern of replication of Na+/K+ ATPase gene loci is similar in both cell types, but the temporal order of replication of the HPRT gene is significantly different between SHE and BP6T cells (mid-late S phase, versus early S phase, resp.). This observed difference emphasizes the caution required in the study of mutagenesis and DNA replication using transformed, aneuploid cells under the assumption that the underlying mechanisms are the same for normal, diploid cells.
Collapse
|
14
|
Nakamura N, Okada S. Cell-cycle dependency of BUdR-induced mutation for six genetic markers in cultured mammalian cells. Mutat Res 1979; 60:83-9. [PMID: 431555 DOI: 10.1016/0027-5107(79)90212-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Synchronized mouse L5178Y cells were treated with BUdR during each one of four sequential periods of the cell cycle (M-G1, early S, middle S and late S-G2). Among the 6 markers examined, asparagine independence (Asn+), 6-thioguanine resistance (TGr) and excess thymidine resistance (TdRr) showed maximal induction of mutation rates in the early S period, methotrexate resistance (MTXr) gave maximal induction during the middle S period, and two other markers [arabinosylcytosine resistance (Ara-Cr) and ouabain resistance (Ouar)] showed little mutation induction in any period under the experimental conditions. These results suggest that (i) genes responsible for Asn+, TGr and TdRr activity may be replicated in the early S period and the gene for MTXr activity replicated in the middle S period, and (ii) the mechanisms of mutation induction for the Ouar and Ara-Cr markers may be essentially different from those for the Asn+, TGr, TdRr and MTXr markers.
Collapse
|
15
|
Tsutsui T, Barrett JC, Ts'o PO. Induction of 6-thioguanine- and ouabain-resistant mutations in synchronized Syrian hamster cell cultures during different periods of the S phase. Mutat Res 1978; 52:255-64. [PMID: 740010 DOI: 10.1016/0027-5107(78)90146-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cells of a transformed Syrian hamster line, BP6T, were synchronized by a period of growth in low serum with a subsequent blockage of the cells at the G1/S boundary by hydroxyurea. This method provided cells with nearly 100% synchrony, although approximately 20% of the cells were non-cycling. The cells were then treated with 10(-5) M 5-bromodeoxyuridine for 1 of 5 1-h periods during the S phase and subsequently irradiated with near-ultraviolet light for 5 min. The BrdU plus irradiation treatment induced 6-thioguanine- and ouabain-resistant mutants while BrdU alone or irradiation alone was not mutagenic. 6-Thioguanine-resistant mutants were induced only during early S phase by BrdU plus irradiation treatment. Ouabain-resistant mutants, however, were induced in a biphasic pattern, during early S phase and also during late S phase. The induction of ouabain-resistant mutants at two distinct periods of S phase suggests the presence of two loci for the gene(s) of Na+/K+ ATPase.
Collapse
|
16
|
Kasupski GJ, Mukherjee BB. Effects of controlled exposure of L cells to bromodeoxyuridine (BUdR). I. Evidence for ordered gene replication during S phase. Exp Cell Res 1977; 106:327-38. [PMID: 140804 DOI: 10.1016/0014-4827(77)90178-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Balazs I, Schildkraut CL. DNA replication in synchronized cultured mammalian cells. VI. The temporal replication of ribosomal cistrons in synchronized cell lines. Exp Cell Res 1976; 101:307-14. [PMID: 964312 DOI: 10.1016/0014-4827(76)90382-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Gaubatz J, Prashad N, Cutler RG. Ribosomal RNA gene dosage as a function of tissue and age for mouse and human. BIOCHIMICA ET BIOPHYSICA ACTA 1976; 418:358-75. [PMID: 1247550 DOI: 10.1016/0005-2787(76)90297-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The average number of rRNA genes per haploid genome (rRNA gene dosage) of the cells present in liver and brain was determined throughout the lifespan of the inbred C57BL/6J mouse strain and of human. Ribosomal RNA gene dosage was determined using the RNA-excess DNA - RNA hybridization technique. DNA was extracted and purified using a CsCl/chloroform method with a high percent yield (over 90%) to minimize any possible effects of tissue and age-dependent selective loss or gain of rRNA genes. Radioactive rRNA was from the liver of the youngest age group for either mouse or human in all hybridization experiments, with DNA from the different tissues and age groups being the only variable. In the young mouse (35-49 days), the rRNA gene dosage was 36% higher in brain (114 genes), as compared to liver (84 genes). The rRNA gene dosage remained essentially constant as a function of age for mouse brain; but between the age of about 220 to 440 days, it increased in liver, attaining approximately an equal value to that of brain. No significant difference was found in the rRNA gene dosage of brain or liver between different mice of the same age. In contrast to this result, a significant difference was found between human tissues of similar age. The rRNA gene dosage ranged about 2-fold (148-289) between 2 months to 75 years of age. An age-dependent trend, similar to that for mouse liver, was found when the averages of four different age groups totaling 20 individuals were compared. However, this was not statistically significant. No difference in the rRNA gene dosage as a function of sex or tissue was apparent. Several models are discussed to account for these results.
Collapse
|
19
|
|
20
|
|
21
|
Mauck JC, Green H. Regulation of RNA synthesis in fibroblasts during transition from resting to growing state. Proc Natl Acad Sci U S A 1973; 70:2819-22. [PMID: 4517934 PMCID: PMC427116 DOI: 10.1073/pnas.70.10.2819] [Citation(s) in RCA: 101] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Addition of serum, containing fibroblast growth factors, to a culture of resting 3T6 cells stimulates a transition to the growing state. Studies of ghost monolayers prepared with the aid of detergent at intervals after stimulation showed an increase in the rate of ribosomal RNA synthesis within 10 min. The rate continued to increase for many hours and reached a level 2.5- to 3.5-fold higher by the time DNA synthesis began. The increasing rate of ribosomal RNA synthesis appeared independent of an increase in the number of ribosomal genes, since it was not affected by prevention of DNA synthesis with cytosine arabinoside. In contrast to ribosomal RNA, the overall rate of transscription of heterogeneous nuclear RNA was not directly affected by serum growth factors and does not appear to be regulated during the transition from resting to growing state. It seems, instead, to be fixed in relation to the amount of template, for it increases proportionally to DNA content.
Collapse
|