1
|
Laatri S, El Khayari S, Qriouet Z. Exploring the molecular aspect and updating evolutionary approaches to the DNA polymerase enzymes for biotechnological needs: A comprehensive review. Int J Biol Macromol 2024; 276:133924. [PMID: 39033894 DOI: 10.1016/j.ijbiomac.2024.133924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
DNA polymerases are essential enzymes that play a key role in living organisms, as they participate in the synthesis and maintenance of the DNA molecule. The intrinsic properties of these enzymes have been widely observed and studied to understand their functions, activities, and behavior, which has allowed their natural power in DNA synthesis to be exploited in modern biotechnology, to the point of making them true pillars of the field. In this context, the laboratory evolution of these enzymes, either by directed evolution or rational design, has led to the generation of a wide range of new DNA polymerases with novel properties, suitable for a variety of biotechnological needs. In this review, we examine DNA polymerases at the molecular level, their biotechnological use, and their evolutionary methods in relation to the novel properties sought, providing a chronological selection of evolved DNA polymerases cited in the literature that we consider to be of great interest. To our knowledge, this work is the first to bring together the molecular, functional and evolutionary aspects of the DNA polymerase enzyme. We believe it will be of great interest to researchers whose aim is to produce new lines of evolved DNA polymerases.
Collapse
Affiliation(s)
- Said Laatri
- Microbiology and Molecular Biology Laboratory, Faculty of Sciences, Mohammed V-Souissi University, Rabat 10100, Morocco.
| | | | - Zidane Qriouet
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V-Souissi University, Rabat 10100, Morocco
| |
Collapse
|
2
|
Kinetics of DNA strand transfer between polymerase and proofreading exonuclease active sites regulates error correction during high-fidelity replication. J Biol Chem 2022; 299:102744. [PMID: 36436560 PMCID: PMC9800556 DOI: 10.1016/j.jbc.2022.102744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
We show that T7 DNA polymerase (pol) and exonuclease (exo) domains contribute to selective error correction during DNA replication by regulating bidirectional strand transfer between the two active sites. To explore the kinetic basis for selective removal of mismatches, we used a fluorescent cytosine analog (1,3-diaza-2-oxophenoxazine) to monitor the kinetics of DNA transfer between the exo and pol sites. We globally fit stopped-flow fluorescence and base excision kinetic data and compared results obtained with ssDNA versus duplex DNA to resolve how DNA transfer governs exo specificity. We performed parallel studies using hydrolysis-resistant phosphorothioate oligonucleotides to monitor DNA transfer to the exo site without hydrolysis. ssDNA binds to the exo site at the diffusion limit (109 M-1 s-1, Kd = 40 nM) followed by fast hydrolysis of the 3'-terminal nucleotide (>5000 s-1). Analysis using duplex DNA with a 3'-terminal mismatch or a buried mismatch exposed a unique intermediate state between pol and exo active sites and revealed that transfer via the intermediate to the exo site is stimulated by free nucleoside triphosphates. Transfer from the exo site back to the pol site after cleavage is fast and efficient. We propose a model to explain why buried mismatches are removed faster than single 3'-terminal mismatches and thereby provide an additional opportunity for error correction. Our data provide the first comprehensive model to explain how DNA transfer from pol to exo active sites and back again after base excision allow efficient selective mismatch removal during DNA replication to improve fidelity by more than 1000-fold.
Collapse
|
3
|
Trade-off between somatic and germline repair in a vertebrate supports the expensive germ line hypothesis. Proc Natl Acad Sci U S A 2020; 117:8973-8979. [PMID: 32245815 PMCID: PMC7183174 DOI: 10.1073/pnas.1918205117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
“How can we stop aging?” is still a largely unanswered question. Understanding the possible mechanisms that lead to the gradual deterioration of the organism over time is key to answer this question and finding possible antidotes. A central tenet of the evolutionary theory of aging is the possible trade-off between the maintenance of the immortal germ line and the disposable soma. Male vertebrates continue somatic and germline proliferation throughout life, offering an ideal opportunity to study this hypothesis. We show that in male zebrafish exposed to stressful conditions, the experimental removal of the germ line improves somatic recovery. Our results provide direct evidence for the cost of the germ line in a vertebrate. The disposable soma theory is a central tenet of the biology of aging where germline immortality comes at the cost of an aging soma [T. B. L. Kirkwood, Nature 270, 301–304 (1977); T. B. L. Kirkwood, Proc. R. Soc. Lond. B Biol. Sci. 205, 531–546 (1979); T. B. L. Kirkwood, S. N. Austad, Nature 408, 233–238 (2000)]. Limited resources and a possible trade-off between the repair and maintenance of the germ cells and growth and maintenance of the soma may explain the deterioration of the soma over time. Here we show that germline removal allows accelerated somatic healing under stress. We tested “the expensive germ line” hypothesis by generating germline-free zebrafish Danio rerio and testing the effect of the presence and absence of the germ line on somatic repair under benign and stressful conditions. We exposed male fish to sublethal low-dose ionizing radiation, a genotoxic stress affecting the soma and the germ line, and tested how fast the soma recovered following partial fin ablation. We found that somatic recovery from ablation occurred substantially faster in irradiated germline-free fish than in the control germline-carrying fish where somatic recovery was stunned. The germ line did show signs of postirradiation recovery in germline-carrying fish in several traits related to offspring number and fitness. These results support the theoretical conjecture that germline maintenance is costly and directly trades off with somatic maintenance.
Collapse
|
4
|
Brovarets’ OO, Hovorun DM. Key microstructural mechanisms of the 2-aminopurine mutagenicity: Results of extensive quantum-chemical research. J Biomol Struct Dyn 2019; 37:2716-2732. [DOI: 10.1080/07391102.2018.1495577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, 2-h Akademika Hlushkova Ave, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, 2-h Akademika Hlushkova Ave, Kyiv, Ukraine
| |
Collapse
|
5
|
Brovarets' OO, Voiteshenko IS, Hovorun DM. Physico-chemical profiles of the wobble ↔ Watson-Crick G*·2AP(w) ↔ G·2AP(WC) and A·2AP(w) ↔ A*·2AP(WC) tautomerisations: a QM/QTAIM comprehensive survey. Phys Chem Chem Phys 2018; 20:623-636. [PMID: 29227488 DOI: 10.1039/c7cp05139e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This study is intended to clarify in detail the tautomeric transformations of the wobble (w) G*·2AP(w) and A·2AP(w) nucleobase mispairs involving 2-aminopurine (2AP) into the Watson-Crick (WC) G·2AP(WC) and A*·2AP(WC) base mispairs (asterisks denote mutagenic tautomers of the DNA bases), respectively, by quantum-mechanical methods and Bader's Quantum Theory of Atoms in Molecules. Our previously reported methodology has been used, which allows the evolution of the physico-chemical parameters to be tracked along the entire internal reaction coordinate (IRC), not exclusively in the stationary states of these reactions. These biologically important G*·2AP(w) ↔ G·2AP(WC) and A·2AP(w) ↔ A*·2AP(WC) w ↔ WC tautomerisations, which are involved in mutagenic tautomerically-conformational pathways, determine the origin of the transitions and transversions induced by 2AP. In addition, it is established that they proceed through planar, highly stable, zwitterionic transition states and they exhibit similar physico-chemical profiles and stages of sequential intrapair proton transfer, followed by spatial rearrangement of the nucleobases relative to each other within the base pairs. These w ↔ WC tautomerisations occur non-dissociatively and are accompanied by a significant alteration in geometry (from wobble to Watson-Crick and vice versa) and redistribution of the specific intermolecular interactions, which can be divided into 10 patterns including AHB H-bonds and loosened A-H-B covalent bridges along the IRC of tautomerisation. Based on the redistribution of the geometrical and electron-topological parameters of the intrapair hydrogen bonds, exactly 9 key points have been allocated to characterize the evolution of these reactions.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str., 03680 Kyiv, Ukraine.
| | | | | |
Collapse
|
6
|
Lynch M, Ackerman MS, Gout JF, Long H, Sung W, Thomas WK, Foster PL. Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet 2017; 17:704-714. [PMID: 27739533 DOI: 10.1038/nrg.2016.104] [Citation(s) in RCA: 452] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As one of the few cellular traits that can be quantified across the tree of life, DNA-replication fidelity provides an excellent platform for understanding fundamental evolutionary processes. Furthermore, because mutation is the ultimate source of all genetic variation, clarifying why mutation rates vary is crucial for understanding all areas of biology. A potentially revealing hypothesis for mutation-rate evolution is that natural selection primarily operates to improve replication fidelity, with the ultimate limits to what can be achieved set by the power of random genetic drift. This drift-barrier hypothesis is consistent with comparative measures of mutation rates, provides a simple explanation for the existence of error-prone polymerases and yields a formal counter-argument to the view that selection fine-tunes gene-specific mutation rates.
Collapse
Affiliation(s)
- Michael Lynch
- Department of Biology, Indiana University, Bloomington, Indiana 47401, USA
| | - Matthew S Ackerman
- Department of Biology, Indiana University, Bloomington, Indiana 47401, USA
| | - Jean-Francois Gout
- Department of Biology, Indiana University, Bloomington, Indiana 47401, USA
| | - Hongan Long
- Department of Biology, Indiana University, Bloomington, Indiana 47401, USA
| | - Way Sung
- Department of Biology, Indiana University, Bloomington, Indiana 47401, USA
| | - W Kelley Thomas
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Patricia L Foster
- Department of Biology, Indiana University, Bloomington, Indiana 47401, USA
| |
Collapse
|
7
|
|
8
|
Brovarets' OO, Pérez-Sánchez H. Whether the amino–imino tautomerism of 2-aminopurine is involved into its mutagenicity? Results of a thorough QM investigation. RSC Adv 2016. [DOI: 10.1039/c6ra24277d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
2AP* mutagenic tautomer is able to induce only one incorporation error – transversion – by pairing through the H-bonds into the G·2AP* mispair.
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Horacio Pérez-Sánchez
- Computer Science Department
- Bioinformatics and High Performance Computing (BIO-HPC) Research Group
- Universidad Católica San Antonio de Murcia (UCAM)
- Murcia
- Spain
| |
Collapse
|
9
|
Brovarets' OO, Pérez-Sánchez H, Hovorun DM. Structural grounds for the 2-aminopurine mutagenicity: a novel insight into the old problem of the replication errors. RSC Adv 2016. [DOI: 10.1039/c6ra17787e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutagenic pressure of the 2AP molecule on DNA during its replication is realized via the more intensive generation of the T* mutagenic tautomers through the reaction 2AP·T(WC) → 2AP·T*(w).
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Horacio Pérez-Sánchez
- Computer Science Department
- Bioinformatics and High Performance Computing (BIO-HPC) Research Group
- Universidad Católica San Antonio de Murcia (UCAM)
- Murcia
- Spain
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| |
Collapse
|
10
|
Control of Caenorhabditis elegans germ-line stem-cell cycling speed meets requirements of design to minimize mutation accumulation. BMC Biol 2015; 13:51. [PMID: 26187634 PMCID: PMC4538916 DOI: 10.1186/s12915-015-0148-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 06/02/2015] [Indexed: 12/28/2022] Open
Abstract
Background Stem cells are thought to play a critical role in minimizing the accumulation of mutations, but it is not clear which strategies they follow to fulfill that performance objective. Slow cycling of stem cells provides a simple strategy that can minimize cell pedigree depth and thereby minimize the accumulation of replication-dependent mutations. Although the power of this strategy was recognized early on, a quantitative assessment of whether and how it is employed by biological systems is missing. Results Here we address this problem using a simple self-renewing organ – the C. elegans gonad – whose overall organization is shared with many self-renewing organs. Computational simulations of mutation accumulation characterize a tradeoff between fast development and low mutation accumulation, and show that slow-cycling stem cells allow for an advantageous compromise to be reached. This compromise is such that worm germ-line stem cells should cycle more slowly than their differentiating counterparts, but only by a modest amount. Experimental measurements of cell cycle lengths derived using a new, quantitative technique are consistent with these predictions. Conclusions Our findings shed light both on design principles that underlie the role of stem cells in delaying aging and on evolutionary forces that shape stem-cell gene regulatory networks. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0148-y) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Lu Y, Wang W, Kirschner MW. Specificity of the anaphase-promoting complex: a single-molecule study. Science 2015; 348:1248737. [PMID: 25859049 DOI: 10.1126/science.1248737] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/21/2015] [Indexed: 11/02/2022]
Abstract
Biological processes require specific enzymatic reactions, paradoxically involving short recognition sequences. As an example, cell-cycle timing depends on a sequence of ubiquitylation events mediated by the anaphase-promoting complex (APC) based on short redundant motifs. To understand the origin of specificity, we designed single-molecule fluorescence assays that capture transient ubiquitylation reactions. We find that the APC-mediated ubiquitylation involves a highly processive initial reaction on the substrate, followed by multiple encounters and reactions at a slower rate. The initial ubiquitylation greatly enhances the substrate's binding affinity in subsequent reactions, by both increasing the on-rate and decreasing the off-rate. We postulate that these cycles of positive feedback enable high specificity for substrates with short recognition motifs in a complex cellular environment.
Collapse
Affiliation(s)
- Ying Lu
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Weiping Wang
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Ségurel L, Wyman MJ, Przeworski M. Determinants of Mutation Rate Variation in the Human Germline. Annu Rev Genomics Hum Genet 2014; 15:47-70. [DOI: 10.1146/annurev-genom-031714-125740] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laure Ségurel
- Laboratoire Éco-Anthropologie et Ethnobiologie, UMR 7206, Muséum National d'Histoire Naturelle–Centre National de la Recherche Scientifique–Université Paris 7 Diderot, Paris 75231, France;
| | - Minyoung J. Wyman
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| | - Molly Przeworski
- Department of Human Genetics and Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
13
|
Dapp MJ, Heineman RH, Mansky LM. Interrelationship between HIV-1 fitness and mutation rate. J Mol Biol 2012; 425:41-53. [PMID: 23084856 DOI: 10.1016/j.jmb.2012.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 11/16/2022]
Abstract
Differences in replication fidelity, as well as mutator and antimutator strains, suggest that virus mutation rates are heritable and prone to natural selection. Human immunodeficiency virus type 1 (HIV-1) has many distinct advantages for the study of mutation rate optimization given the wealth of structural and biochemical data on HIV-1 reverse transcriptase (RT) and mutants. In this study, we conducted parallel analyses of mutation rate and viral fitness. In particular, a panel of 10 RT mutants-most having drug resistance phenotypes-was analyzed for their effects on viral fidelity and fitness. Fidelity differences were measured using single-cycle vector assays, while fitness differences were identified using ex vivo head-to-head competition assays. As anticipated, virus mutants possessing either higher or lower fidelity had a corresponding loss in fitness. While the virus panel was not chosen randomly, it is interesting that it included more viruses possessing a mutator phenotype rather than viruses possessing an antimutator phenotype. These observations provide the first description of an interrelationship between HIV-1 fitness and mutation rate and support the conclusion that mutator and antimutator phenotypes correlate with reduced viral fitness. In addition, the findings here help support a model in which fidelity comes at a cost of replication kinetics and may help explain why retroviruses like HIV-1 and RNA viruses maintain replication fidelity near the extinction threshold.
Collapse
Affiliation(s)
- Michael J Dapp
- Institute for Molecular Virology, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
14
|
Abstract
In nature, individuals vary tremendously in condition and this may be an important source of variation in mutation rate. Condition is likely to affect cell state and thereby impact the amount of DNA damage sustained and/or the way it is repaired. Here, we focus on DNA repair. If low-condition individuals are less capable of devoting the same level of resources to accurate repair, they may suffer higher mutation rates. However, repair decisions are also governed by various aspects of cell physiology, which may render the prediction that "higher-condition individuals use better repair mechanisms" too simplistic. We use a larval diet manipulation in Drosophila melanogaster to create high- and low-condition individuals and then contrast their relative usage of three repair pathways [homologous recombination (HR), single-strand annealing (SSA), and nonhomologous end joining (NHEJ)] that differ in their mechanistic requirements and their mutational consequences. We find that low-condition flies are more likely than high-condition flies to use the most conservative of these three repair pathways, suggesting that physiological constraints on repair pathway usage may be more important than energetic costs. We also show that the repair differences between high- and low-condition flies resemble those between young and old flies, suggesting the underlying mechanisms may be similar. Finally, we observe that the effect of larval diet on adult repair increases as flies age, indicating that developmental differences early in life can have long-lasting consequences.
Collapse
|
15
|
Reha-Krantz LJ, Hariharan C, Subuddhi U, Xia S, Zhao C, Beckman J, Christian T, Konigsberg W. Structure of the 2-aminopurine-cytosine base pair formed in the polymerase active site of the RB69 Y567A-DNA polymerase. Biochemistry 2011; 50:10136-49. [PMID: 22023103 PMCID: PMC3228362 DOI: 10.1021/bi2014618] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The adenine base analogue 2-aminopurine (2AP) is a potent base substitution mutagen in prokaryotes because of its enhanceed ability to form a mutagenic base pair with an incoming dCTP. Despite more than 50 years of research, the structure of the 2AP-C base pair remains unclear. We report the structure of the 2AP-dCTP base pair formed within the polymerase active site of the RB69 Y567A-DNA polymerase. A modified wobble 2AP-C base pair was detected with one H-bond between N1 of 2AP and a proton from the C4 amino group of cytosine and an apparent bifurcated H-bond between a proton on the 2-amino group of 2-aminopurine and the ring N3 and O2 atoms of cytosine. Interestingly, a primer-terminal region rich in AT base pairs, compared to GC base pairs, facilitated dCTP binding opposite template 2AP. We propose that the increased flexibility of the nucleotide binding pocket formed in the Y567A-DNA polymerase and increased "breathing" at the primer-terminal junction of A+T-rich DNA facilitate dCTP binding opposite template 2AP. Thus, interactions between DNA polymerase residues with a dynamic primer-terminal junction play a role in determining base selectivity within the polymerase active site of RB69 DNA polymerase.
Collapse
Affiliation(s)
- Linda J. Reha-Krantz
- To whom correspondence should be addressed. L.J.R-K.: Telephone: (780) 492-5383. Fax: (780) 494-9234. . W.H.K.
| | | | | | | | | | | | | | - William Konigsberg
- To whom correspondence should be addressed. L.J.R-K.: Telephone: (780) 492-5383. Fax: (780) 494-9234. . W.H.K.
| |
Collapse
|
16
|
Abstract
Despite substantial attention from theoreticians, the evolutionary mechanisms that drive intra- and interspecific variation in the mutation rate remain unclear. It has often been argued that mutation rates associated with the major replicative polymerases have been driven down to their physiological limits, defined as the point at which further enhancement in replication fidelity incurs a cost in terms of reproductive output, but no evidence in support of this argument has emerged for cellular organisms. Here, it is suggested that the lower barrier to mutation rate evolution may ultimately be defined not by molecular limitations but by the power of random genetic drift. As the mutation rate is reduced to a very low level, a point will eventually be reached at which the small advantage of any further reduction is overwhelmed by the power of drift. This hypothesis is consistent with a number of observations, including the inverse relationship between the per-site mutation rate and genome size in microbes, the negative scaling between the per-site mutation rate and effective population size in eukaryotes, and the elevated error rates associated with less frequently deployed polymerases and repair pathways.
Collapse
|
17
|
Bhat RK, Schneider FW. Hysteresis of Stationary States and Error Control in the Enzymatic Synthesis of DNA (poly-dAT) in the Stirred Flow Reactor. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19760801114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
The Stirred Flow Reactor: Base Analog Incorporation in DNA Replication and Transcription. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19770811216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Bertram JG, Oertell K, Petruska J, Goodman MF. DNA polymerase fidelity: comparing direct competition of right and wrong dNTP substrates with steady state and pre-steady state kinetics. Biochemistry 2010; 49:20-8. [PMID: 20000359 DOI: 10.1021/bi901653g] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
DNA polymerase fidelity is defined as the ratio of right (R) to wrong (W) nucleotide incorporations when dRTP and dWTP substrates compete at equal concentrations for primer extension at the same site in the polymerase-primer-template DNA complex. Typically, R incorporation is favored over W by 10(3)-10(5)-fold, even in the absence of 3'-exonuclease proofreading. Straightforward in principle, a direct competition fidelity measurement is difficult to perform in practice because detection of a small amount of W is masked by a large amount of R. As an alternative, enzyme kinetics measurements to evaluate k(cat)/K(m) for R and W in separate reactions are widely used to measure polymerase fidelity indirectly, based on a steady state derivation by Fersht. A systematic comparison between direct competition and kinetics has not been made until now. By separating R and W products using electrophoresis, we have successfully taken accurate fidelity measurements for directly competing R and W dNTP substrates for 9 of the 12 natural base mispairs. We compare our direct competition results with steady state and pre-steady state kinetic measurements of fidelity at the same template site, using the proofreading-deficient mutant of Klenow fragment (KF(-)) DNA polymerase. All the data are in quantitative agreement.
Collapse
Affiliation(s)
- Jeffrey G Bertram
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
20
|
Ekstrøm PO, Khrapko K, Li-Sucholeiki XC, Hunter IW, Thilly WG. Analysis of mutational spectra by denaturing capillary electrophoresis. Nat Protoc 2008; 3:1153-66. [PMID: 18600220 PMCID: PMC2742298 DOI: 10.1038/nprot.2008.79] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The point mutational spectrum over nearly any 75- to 250-bp DNA sequence isolated from cells, tissues or large populations may be discovered using denaturing capillary electrophoresis (DCE). A modification of the standard DCE method that uses cycling temperature (e.g., +/-5 degrees C), CyDCE, permits optimal resolution of mutant sequences using computer-defined target sequences without preliminary optimization experiments. The protocol consists of three steps: computer design of target sequence including polymerase chain reaction (PCR) primers, high-fidelity DNA amplification by PCR and mutant sequence separation by CyDCE and takes about 6 h. DCE and CyDCE have been used to define quantitative point mutational spectra relating to errors of DNA polymerases, human cells in development and carcinogenesis, common gene-disease associations and microbial populations. Detection limits are about 5 x 10(-3) (mutants copies/total copies) but can be as low as 10(-6) (mutants copies/total copies) when DCE is used in combination with fraction collection for mutant enrichment. No other technological approach for unknown mutant detection and enumeration offers the sensitivity, generality and efficiency of the approach described herein.
Collapse
Affiliation(s)
- Per O Ekstrøm
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA. or
| | | | | | | | | |
Collapse
|
21
|
Sowers LC, Mhaskar DN, Khwaja TA, Goodman MF. Preparation of Imino and Amino N-15 Enriched 2-Aminopurine Deoxynucleoside. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328318908054155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Wang Z, Lazarov E, O'Donnell M, Goodman MF. Resolving a fidelity paradox: why Escherichia coli DNA polymerase II makes more base substitution errors in AT- compared with GC-rich DNA. J Biol Chem 2002; 277:4446-54. [PMID: 11733526 DOI: 10.1074/jbc.m110006200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of DNA polymerase-associated proofreading 3'-exonucleases is generally enhanced in less stable DNA regions leading to a reduction in base substitution error frequencies in AT- versus GC-rich sequences. Unexpectedly, however, the opposite result was found for Escherichia coli DNA polymerase II (pol II). Nucleotide misincorporation frequencies for pol II were found to be 3-5-fold higher in AT- compared with GC-rich DNA, both in the presence and absence of polymerase processivity subunits, beta dimer and gamma complex. In contrast, E. coli pol III holoenzyme, behaving "as expected," exhibited 3-5-fold lower misincorporation frequencies in AT-rich DNA. A reduction in fidelity in AT-rich regions occurred for pol II despite having an associated 3'-exonuclease proofreading activity that preferentially degrades AT-rich compared with GC-rich DNA primer-template in the absence of DNA synthesis. Concomitant with a reduction in fidelity, pol II polymerization efficiencies were 2-6-fold higher in AT-rich DNA, depending on sequence context. Pol II paradoxical fidelity behavior can be accounted for by the enzyme's preference for forward polymerization in AT-rich sequences. The more efficient polymerization suppresses proofreading thereby causing a significant increase in base substitution error rates in AT-rich regions.
Collapse
Affiliation(s)
- Zhijie Wang
- Department of Biological Sciences, Hedco Molecular Biology Laboratories, University of Southern California, Los Angeles, California 90089-1340, USA
| | | | | | | |
Collapse
|
23
|
Rice KP, Eggler AL, Sung P, Cox MM. DNA pairing and strand exchange by the Escherichia coli RecA and yeast Rad51 proteins without ATP hydrolysis: on the importance of not getting stuck. J Biol Chem 2001; 276:38570-81. [PMID: 11504729 DOI: 10.1074/jbc.m105678200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial RecA protein and the homologous Rad51 protein in eukaryotes both bind to single-stranded DNA (ssDNA), align it with a homologous duplex, and promote an extensive strand exchange between them. Both reactions have properties, including a tolerance of base analog substitutions that tend to eliminate major groove hydrogen bonding potential, that suggest a common molecular process underlies the DNA strand exchange promoted by RecA and Rad51. However, optimal conditions for the DNA pairing and DNA strand exchange reactions promoted by the RecA and Rad51 proteins in vitro are substantially different. When conditions are optimized independently for both proteins, RecA promotes DNA pairing reactions with short oligonucleotides at a faster rate than Rad51. For both proteins, conditions that improve DNA pairing can inhibit extensive DNA strand exchange reactions in the absence of ATP hydrolysis. Extensive strand exchange requires a spooling of duplex DNA into a recombinase-ssDNA complex, a process that can be halted by any interaction elsewhere on the same duplex that restricts free rotation of the duplex and/or complex, I.e. the reaction can get stuck. Optimization of an extensive DNA strand exchange without ATP hydrolysis requires conditions that decrease nonproductive interactions of recombinase-ssDNA complexes with the duplex DNA substrate.
Collapse
Affiliation(s)
- K P Rice
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Natural selection can adjust the rate of mutation in a population by acting on allelic variation affecting processes of DNA replication and repair. Because mutation is the ultimate source of the genetic variation required for adaptation, it can be appealing to suppose that the genomic mutation rate is adjusted to a level that best promotes adaptation. Most mutations with phenotypic effects are harmful, however, and thus there is relentless selection within populations for lower genomic mutation rates. Selection on beneficial mutations can counter this effect by favoring alleles that raise the mutation rate, but the effect of beneficial mutations on the genomic mutation rate is extremely sensitive to recombination and is unlikely to be important in sexual populations. In contrast, high genomic mutation rates can evolve in asexual populations under the influence of beneficial mutations, but this phenomenon is probably of limited adaptive significance and represents, at best, a temporary reprieve from the continual selection pressure to reduce mutation. The physiological cost of reducing mutation below the low level observed in most populations may be the most important factor in setting the genomic mutation rate in sexual and asexual systems, regardless of the benefits of mutation in producing new adaptive variation. Maintenance of mutation rates higher than the minimum set by this "cost of fidelity" is likely only under special circumstances.
Collapse
Affiliation(s)
- P D Sniegowski
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
25
|
|
26
|
Sowers LC, Boulard Y, Fazakerley GV. Multiple structures for the 2-aminopurine-cytosine mispair. Biochemistry 2000; 39:7613-20. [PMID: 10858312 DOI: 10.1021/bi992388k] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The base pair formed between 2-aminopurine (2AP) and cytosine (C) is an intermediate in transition mutations generated by 2AP. To date, several structures have been proposed for the 2AP-C mispair, including those involving a rare tautomer, a protonated base pair, and a neutral wobble structure. In this paper, we describe a series of UV, fluorescence, and NMR studies which demonstrate that an equilibrium exists between the neutral wobble and the protonated Watson-Crick structures. The apparent pK value for the transition between the structures is 5.9-6.0. Formation of a Watson-Crick base pair is accomplished predominantly by protonation of the 2AP residue as indicated by UV spectral changes, fluorescence quenching, and changes in proton chemical shifts. Rapid transfer of the shared proton between the 2AP and cytosine residues is indicated by the rapid exchange of the cytosine amino protons of the protonated Watson-Crick configuration. The relative contribution of the neutral wobble and protonated Watson-Crick configurations to 2AP-induced transition mutations is discussed.
Collapse
Affiliation(s)
- L C Sowers
- Division of Molecular Medicine and Pediatrics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | |
Collapse
|
27
|
Abstract
There is growing evidence that recombination is mu;tagenic and that some forms of DNA repair synthesis are error prone. DNA synthesis in mismatch repair might also be error prone. DNA-repair systems detect structural defects in DNA with high efficiency but they occasionally also strike at normal sections of DNA. Considering the diversity of local DNA structure, some DNA sections with complementary sequences are bound to act as preferential false targets for a repair system (i.e. as "illusory defects"). However, if the repair system never changes the sequence upon repair, it will be solicited again and again by the illusory defect, a potentially harmful situation. It is therefore advantageous for a repair system to be, to some extent, error prone. Strong illusory defects may arise at the decanucleotide level and could be the cause of local increases in mutation levels. They might be used to initiate somatic hypermutation pathways.
Collapse
Affiliation(s)
- J Ninio
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France.
| |
Collapse
|
28
|
Johnson T. Beneficial mutations, hitchhiking and the evolution of mutation rates in sexual populations. Genetics 1999; 151:1621-31. [PMID: 10101182 PMCID: PMC1460574 DOI: 10.1093/genetics/151.4.1621] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Natural selection acts in three ways on heritable variation for mutation rates. A modifier allele that increases the mutation rate is (i) disfavored due to association with deleterious mutations, but is also favored due to (ii) association with beneficial mutations and (iii) the reduced costs of lower fidelity replication. When a unique beneficial mutation arises and sweeps to fixation, genetic hitchhiking may cause a substantial change in the frequency of a modifier of mutation rate. In previous studies of the evolution of mutation rates in sexual populations, this effect has been underestimated. This article models the long-term effect of a series of such hitchhiking events and determines the resulting strength of indirect selection on the modifier. This is compared to the indirect selection due to deleterious mutations, when both types of mutations are randomly scattered over a given genetic map. Relative to an asexual population, increased levels of recombination reduce the effects of beneficial mutations more rapidly than those of deleterious mutations. However, the role of beneficial mutations in determining the evolutionarily stable mutation rate may still be significant if the function describing the cost of high-fidelity replication has a shallow gradient.
Collapse
Affiliation(s)
- T Johnson
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, Scotland.
| |
Collapse
|
29
|
Abstract
This review summarizes mutagenesis studies, emphasizing the use of bacteriophage T4 mutator and antimutator strains. Early genetic studies on T4 identified mutator and antimutator variants of DNA polymerase that, in turn, stimulated the development of model systems for the study of DNA polymerase fidelity in vitro. Later enzymatic studies using purified T4 mutator and antimutator polymerases were essential in elucidating mechanisms of base selection and exonuclease proofreading. In both cases, the base analogue 2-aminopurine (2AP) proved tremendously useful-first as a mutagen in vivo and then as a probe of DNA polymerase fidelity in vitro. Investigations into mechanisms of DNA polymerase fidelity inspired theoretical models that, in turn, called for kinetic and thermodynamic analyses. Thus, the field of DNA synthesis fidelity has grown from many directions: genetics, enzymology, kinetics, physical biochemistry, and thermodynamics, and today the interplay continues. The relative contributions of hydrogen bonding and base stacking to the accuracy of DNA synthesis are beginning to be deciphered. For the future, the main challenges lie in understanding the origins of mutational hot and cold spots.
Collapse
Affiliation(s)
- M F Goodman
- Department of Biological Sciences, Hedco Molecular Biology Laboratories, University of Southern California, Los Angeles 90089-1340, USA.
| | | |
Collapse
|
30
|
Bloom LB, Chen X, Fygenson DK, Turner J, O'Donnell M, Goodman MF. Fidelity of Escherichia coli DNA polymerase III holoenzyme. The effects of beta, gamma complex processivity proteins and epsilon proofreading exonuclease on nucleotide misincorporation efficiencies. J Biol Chem 1997; 272:27919-30. [PMID: 9346941 DOI: 10.1074/jbc.272.44.27919] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The fidelity of Escherichia coli DNA polymerase III (pol III) is measured and the effects of beta, gamma processivity and epsilon proofreading subunits are evaluated using a gel kinetic assay. Pol III holoenzyme synthesizes DNA with extremely high fidelity, misincorporating dTMP, dAMP, and dGMP opposite a template G target with efficiencies finc = 5.6 x 10(-6), 4.2 x 10(-7), and 7 x 10(-7), respectively. Elevated dGMP.G and dTMP.G misincorporation efficiencies of 3.2 x 10(-5) and 5.8 x 10(-4), attributed to a "dNTP-stabilized" DNA misalignment mechanism, occur when C and A, respectively, are located one base downstream from the template target G. At least 92% of misinserted nucleotides are excised by pol III holoenzyme in the absence of a next correct "rescue" nucleotide. As rescue dNTP concentrations are increased, pol III holoenzyme suffers a maximum 8-fold reduction in fidelity as proofreading of mispaired primer termini are reduced in competition with incorporation of a next correct nucleotide. Compared with pol III holoenzyme, the alpha holoenzyme, which cannot proofread, has 47-, 32-, and 13-fold higher misincorporation rates for dGMP.G, dTMP.G, and dAMP.G mispairs. Both the beta, gamma complex and the downstream nucleotide have little effect on the fidelity of catalytic alpha subunit. An analysis of the gel kinetic fidelity assay when multiple polymerase-DNA encounters occur is presented in the "Appendix" (see Fygenson, D. K., and Goodman, M. F. (1997) J. Biol. Chem. 272, 27931-27935 (accompanying paper)).
Collapse
Affiliation(s)
- L B Bloom
- Department of Biological Sciences, Hedco Molecular Biology Laboratories, University of Southern California, Los Angeles, California 90089-1340, USA
| | | | | | | | | | | |
Collapse
|
31
|
Goodman MF. Hydrogen bonding revisited: geometric selection as a principal determinant of DNA replication fidelity. Proc Natl Acad Sci U S A 1997; 94:10493-5. [PMID: 9380666 PMCID: PMC33771 DOI: 10.1073/pnas.94.20.10493] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- M F Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-1340, USA
| |
Collapse
|
32
|
Rangarajan S, Gudmundsson G, Qiu Z, Foster PL, Goodman MF. Escherichia coli DNA polymerase II catalyzes chromosomal and episomal DNA synthesis in vivo. Proc Natl Acad Sci U S A 1997; 94:946-51. [PMID: 9023362 PMCID: PMC19619 DOI: 10.1073/pnas.94.3.946] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have investigated a role for Escherichia coli DNA polymerase II (Pol II) in copying chromosomal and episomal DNA in dividing cells in vivo. Forward mutation frequencies and rates were measured at two chromosomal loci, rpoB and gyrA, and base substitution and frameshift mutation frequencies were measured on an F'(lacZ) episome. To amplify any differences in polymerase error rates, methyl-directed mismatch repair was inactivated. When wild-type Pol II (polB+) was replaced on the chromosome by a proofreading-defective Pol II exo- (polBex1), there was a significant increase in mutation frequencies to rifampicin resistance (RifR) (rpoB) and nalidixic acid resistance (NalR) (gyrA). This increased mutagenesis occurred in the presence of an antimutator allele of E. coli DNA polymerase III (Pol III) (dnaE915), but not in the presence of wild-type Pol III (dnaE+), suggesting that Pol II can compete effectively with DnaE915 but not with DnaE+. Sequencing the RifR mutants revealed a G --> A hot spot highly specific to Pol II exo-. Pol II exo- caused a significant increase in the frequency of base substitution and frameshift mutations on F' episomes, even in dnaE+ cells, suggesting that Pol II is able to compete with Pol III for DNA synthesis on F episomes.
Collapse
Affiliation(s)
- S Rangarajan
- Department of Biological Sciences, University of Southern California, Los Angeles 90089-1340, USA
| | | | | | | | | |
Collapse
|
33
|
Müller M, Hutchinson LK, Guengerich FP. Addition of deoxyribose to guanine and modified DNA based by Lactobacillus helveticus trans-N-deoxyribosylase. Chem Res Toxicol 1996; 9:1140-4. [PMID: 8902269 DOI: 10.1021/tx9600661] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The use of bacterial trans-N-deoxyribosylase was evaluated as an alternative method for deoxyribosylation in the synthesis of deoxyribonucleosides containing potentially mutagenic adducts. A crude enzyme preparation was isolated from Lactobacillus helveticus and compared to Escherichia coli purine nucleoside phosphorylase. trans-N-deoxyribosylase was more regioselective than purine nucleoside phosphorylase in the deoxyribosylation of Gua at the N9 atom, as compared to N7, as demonstrated by NMR analysis of the product. 5,6,7,9-Tetrahydro-7-acetoxy-9-oxoimidazo[1,2-a]purine was efficiently deoxyribosylated by trans-N-deoxyribosylase but not at all by purine nucleoside phosphorylase. Other substrates for trans-N-deoxyribosylase were N2-(2-oxoethyl)Gua, pyrimido[1,2-a]purin-10(3H)-one, 1,N2-epsilon-Gua, N2,3-epsilon-Gua, 3,N4-epsilon-Cyt, 1,N6-epsilon-Ade, C8-methylGua, and C8-aminoGua, most of which gave the desired isomer (bond at the nitrogen corresponding to N9 in Gua) in good yield. Neither N7-alkylpurines nor C8-(arylamino)-substituted guanines were substrates. The approach offers a relatively convenient method of enzymatic preparation of many carcinogen-DNA adducts at the nucleoside level, for either use as standards or incorporation into oligonucleotides. trans-N-deoxyribosylase can also be used to remove deoxyribose from modified deoxyribonucleosides in the presence of excess Cyt.
Collapse
Affiliation(s)
- M Müller
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
34
|
Law SM, Eritja R, Goodman MF, Breslauer KJ. Spectroscopic and calorimetric characterizations of DNA duplexes containing 2-aminopurine. Biochemistry 1996; 35:12329-37. [PMID: 8823167 DOI: 10.1021/bi9614545] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The base analog 2-aminopurine (AP) strongly promotes A.T to G.C and G.C to A.T transitions in bacteria and bacteriophage. During DNA replication, the primary mutagenic event involves formation of a heteroduplex with an AP.C site at a much higher frequency than formation of the corresponding heteroduplex with an A.C site. It is not known if AP-induced mutagenesis correlates with differences in the thermodynamic properties of an AP.C versus an A.C site, or whether interactions involving DNA polymerases are controlling. To address this specific question, and more generally to characterize AP-containing duplexes, we have used a combination of spectroscopic and calorimetric techniques to determine the thermodynamic properties of six 11-mer duplexes. The sequences of these duplexes are identical except for the identity of the variable central base pair which can be either A.T, A.C, AP.T, AP.C, AP.A, or AP.G, and which we use to designate each duplex. Analyses and interpretation of the optically and calorimetrically derived thermal and thermodynamic data on these six duplexes reveal the relative stabilizing influence of the central base pairs to be A.T > AP.T > AP.C > AP.A > AP.G > A.C, with the AP.C-containing duplex being significantly more stable than the A.C-containing duplex. In the aggregate, our results suggest that during incorporation, base pair discrimination by DNA polymerases is influenced, in part, by differences in the thermodynamic stabilities of the newly formed base pairs.
Collapse
Affiliation(s)
- S M Law
- Department of Chemistry, Rutgers-The State University of New Jersey, Piscataway 08855, USA
| | | | | | | |
Collapse
|
35
|
Fagan PA, Fàbrega C, Eritja R, Goodman MF, Wemmer DE. NMR study of the conformation of the 2-aminopurine:cytosine mismatch in DNA. Biochemistry 1996; 35:4026-33. [PMID: 8672436 DOI: 10.1021/bi952657g] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
DNA polymerase makes errors by misincorporating natural DNA bases and base analogs. Because of the wide variety of possible mismatches and the varying efficiency with which they are repaired, structural studies are necessary to understand in detail how these mispairs differ and can be distinguished from standard Watson-Crick base pairs. 2-Aminopurine (AP) is a highly mutagenic base analog. The objective of this study was to determine the geometry of the AP x C mispair in DNA at neutral pH. Although several studies have focused on the AP x C mispair in DNA, there is not as of yet consensus on its structure. At least four models have been proposed for this mispair. Through the use of NMR spectroscopy with selective 15N-labeling of exocyclic amino nitrogens on bases of interest, we are able to resolve ambiguities in previous studies. We find here that, in two different DNA sequences, the AP x C mispair at neutral and high pH is in a wobble geometry. The structure and stability of this base mispair is dependent upon the local base sequence.
Collapse
Affiliation(s)
- P A Fagan
- Department of Chemistry, University of California at Berkeley, 94720, USA
| | | | | | | | | |
Collapse
|
36
|
Fujimoto J, Nuesca Z, Mazurek M, Sowers LC. Synthesis and hydrolysis of oligodeoxyribonucleotides containing 2-aminopurine. Nucleic Acids Res 1996; 24:754-9. [PMID: 8604320 PMCID: PMC145674 DOI: 10.1093/nar/24.4.754] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A new method is reported for the synthesis of oligodeoxyribonucleotides containing 2-aminopurine residues at selected sites. This method involves protection of the 2-aminopurine ribonucleoside, reduction to the deoxyribonucleoside and standard preparation of the 5'-0- (4,4'-dimethoxytrityl)-3'-O-(2-cyanoethyl)-N,N- diisopropylphosphoramidite. The 2-aminopurine phosphoramidite prepared by this method couples with high efficiency and is stable under standard automated synthesis conditions. The presence and location of the 2-aminopurine residue is easily verified by treatment of the oligodeoxyribonucleotide with hot piperidine. The mechanism for selective hydrolysis of the 2-aminopurine residue in alkaline solution is predominantly direct cleave of the glycosidic bond.
Collapse
Affiliation(s)
- J Fujimoto
- Division of Pediatrics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
37
|
Cai H, Yu H, McEntee K, Kunkel TA, Goodman MF. Purification and properties of wild-type and exonuclease-deficient DNA polymerase II from Escherichia coli. J Biol Chem 1995; 270:15327-35. [PMID: 7797520 DOI: 10.1074/jbc.270.25.15327] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Wild-type DNA polymerase II (pol II) and an exonuclease-deficient pol II mutant (D155A/E157A) have been overexpressed and purified in high yield from Escherichia coli. Wild-type pol II exhibits a high proofreading 3'-exonuclease to polymerase ratio, similar in magnitude to that observed for bacteriophage T4 DNA polymerase. While copying a 250-nucleotide region of the lacZ alpha gene, the fidelity of wild-type pol II is high, with error rates for single-base substitution and frameshift errors being < or = 10(-6). In contrast, the pol II exonuclease-deficient mutant generated a variety of base substitution and single base frameshift errors, as well as deletions between both perfect and imperfect directly repeated sequences separated by a few to hundreds of nucleotides. Error rates for the pol II exonuclease-deficient mutant were from > or = 13- to > or = 240-fold higher than for wild-type pol II, depending on the type of error considered. These data suggest that from 90 to > 99% of base substitutions, frameshifts, and large deletions are efficiently proofread by the enzyme. The results of these experiments together with recent in vivo studies suggest an important role for pol II in the fidelity of DNA synthesis in cells.
Collapse
Affiliation(s)
- H Cai
- Department of Biological Science, Hedco Molecular Biology Laboratories, University of Southern California, Los Angeles 90089-1340, USA
| | | | | | | | | |
Collapse
|
38
|
Kaiser VL, Ripley LS. DNA nick processing by exonuclease and polymerase activities of bacteriophage T4 DNA polymerase accounts for acridine-induced mutation specificities in T4. Proc Natl Acad Sci U S A 1995; 92:2234-8. [PMID: 7892253 PMCID: PMC42458 DOI: 10.1073/pnas.92.6.2234] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Acridine-induced frameshift mutagenesis in bacteriophage T4 has been shown to be dependent on T4 topoisomerase. In the absence of a functional T4 topoisomerase, in vivo acridine-induced mutagenesis is reduced to background levels. Further, the in vivo sites of acridine-induced deletions and duplications correlate precisely with in vitro sites of acridine-induced T4 topoisomerase cleavage. These correlations suggest that acridine-induced discontinuities introduced by topoisomerase could be processed into frameshift mutations. The induced mutations at these sites have a specific arrangement about the cleavage site. Deletions occur adjacent to the 3' end and duplications occur adjacent to the 5' end of the cleaved bond. It was proposed that at the nick, deletions could be produced by the 3'-->5' removal of bases by DNA polymerase-associated exonuclease and duplications could be produced by the 5'-->3' templated addition of bases. We have tested in vivo for T4 DNA polymerase involvement in nick processing, using T4 phage having DNA polymerases with altered ratios of exonuclease to polymerase activities. We predicted that the ratios of the deletion to duplication mutations induced by acridines in these polymerase mutant strains would reflect the altered exonuclease/polymerase ratios of the mutant T4 DNA polymerases. The results support this prediction, confirming that the two activities of the T4 DNA polymerase contribute to mutagenesis. The experiments show that the influence of T4 DNA polymerase in acridine-induced mutation specificities is due to its processing of acridine-induced 3'-hydroxyl ends to generate deletions and duplications by a mechanism that does not involve DNA slippage.
Collapse
Affiliation(s)
- V L Kaiser
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark 07103
| | | |
Collapse
|
39
|
Creighton S, Goodman MF. Gel kinetic analysis of DNA polymerase fidelity in the presence of proofreading using bacteriophage T4 DNA polymerase. J Biol Chem 1995; 270:4759-74. [PMID: 7876249 DOI: 10.1074/jbc.270.9.4759] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A gel fidelity assay, previously used in the analysis of DNA polymerases having no associated 3' to 5' exonuclease activity, has been generalized for use with polymerases that contain exonucleolytic proofreading. The main purpose of this study was the development of a general analysis, using a standard Markov model, to convert experimentally observed DNA primer gel bands arising from insertion and proofreading of right and wrong deoxyribonucleotides, into nucleotide incorporation velocities and, most importantly, fidelities. The model has been applied primarily to an analysis of polymerase kinetics and fidelity in the presence of a next correct rescue dNTP, but the model can be conveniently modified to investigate other experimental designs. In the presence of rescue dNTP, direct competition occurs between excision or extension of a mismatch. At concentrations of rescue dNTP sufficient to suppress the gel band intensity at the mismatch target site, nucleotide incorporation and misincorporation rates can be obtained from the ratios of gel band intensities 3' (downstream) and 5' (upstream) to the target site, measured as a function dNTP concentration for "wrong" and "right" dNTP substrates. The polymerase misincorporation efficiency, in the presence of proofreading, is given by the ratio of wrong to right incorporation efficiencies, Vmax/Km, obtained from the gel band ratios. The bacteriophage T4 polymerase with a highly active 3'-exonuclease activity was used to illustrate the assay. Nucleotide misincorporation efficiencies measured at several template sites were dCMP.A approximately equal to 10(-6), dGMP.A approximately equal to 10(-5), dTMP.T approximately equal to 2 x 10(-4), and dAMP.A < 10(-7). Proofreading of the dGMP.A mispair was suppressed by about 3-fold in the presence of high concentrations of next correct "rescue" dNTP causing a concomitant reduction in the fidelity of dGMP.A to about 3 x 10(-5).
Collapse
Affiliation(s)
- S Creighton
- Department of Biological Sciences, University of Southern California, Los Angeles 90089-1340
| | | |
Collapse
|
40
|
Hochstrasser RA, Carver TE, Sowers LC, Millar DP. Melting of a DNA helix terminus within the active site of a DNA polymerase. Biochemistry 1994; 33:11971-9. [PMID: 7918416 DOI: 10.1021/bi00205a036] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Accurate synthesis of DNA by polymerase is due in part to the selective removal of misincorporated nucleotides by a 3'-5' exonuclease activity (proofreading). Proofreading by an exonuclease domain containing a single-stranded DNA binding site may involve local melting of a duplex DNA substrate. Here we use time-resolved fluorescence spectroscopy to analyze the local melting of a DNA duplex terminus induced by the Klenow fragment of DNA polymerase I. Four oligodeoxynucleotide primer/templates were prepared, each containing the fluorescent adenine analog 2-aminopurine (A*) at the primer 3' terminus, and one of the common DNA bases opposite the A* residue. Fluorescence decays of the duplex DNAs and the single primer oligonucleotide were jointly analyzed using global analysis procedures. Four lifetime components were resolved in the duplex DNAs, representing distinct conformational states of the terminal A* residue: paired A* bases, partially stacked A* bases, and extended A* bases. The variation of the apparent fraction of paired A* bases with temperature was in accord with optical melting data, and the extent of base pairing observed in each duplex was consistent with the base-pairing preferences of A* established in other studies. These results establish that the fluorescence decay characteristics of A* can be used to examine base-pairing interactions at a DNA duplex terminus. Since the fluorescence of A* can be observed without interference from protein amino acid residues, unlike existing methods for monitoring DNA melting transitions, this method was used to examine the extent to which Klenow fragment could induce fraying at each duplex terminus.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R A Hochstrasser
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037
| | | | | | | |
Collapse
|
41
|
Bloom LB, Otto MR, Eritja R, Reha-Krantz LJ, Goodman MF, Beechem JM. Pre-steady-state kinetic analysis of sequence-dependent nucleotide excision by the 3'-exonuclease activity of bacteriophage T4 DNA polymerase. Biochemistry 1994; 33:7576-86. [PMID: 8011623 DOI: 10.1021/bi00190a010] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of local DNA sequence on the proofreading efficiency of wild-type T4 DNA polymerase were examined by measuring the kinetics of removal of the fluorescent nucleotide analog 2-aminopurine deoxynucleoside monophosphate (dAPMP) from primer/templates of defined sequences. The effects of (1) interactions with the 5'-neighboring bases, (2) base pair stability, and (3) G.C content of the surrounding sequences on the pre-steady-state kinetics of dAPMP excision were measured. Rates of excision dAPMP from a primer 3'-terminus located opposite a template T (AP.T base pair) increased, over a 3-fold range, with the 5'-neighbor to AP in the order C < G < T < A. Rates of removal of dAPMP from AP.X base pairs located in the same surrounding sequence increased as AP.T < AP.A < AP.C < AP.G, which correlates with the decrease in the stabilities of these base pairs predicted by Tm measurements. A key finding was that AP was excised at a slower rate when mispaired opposite C located next to four G.C base pairs than when correctly paired opposite T next to four A.T base pairs, suggesting that exonuclease mismatch removal specificities may be enhanced to a much greater extent by instabilities of local primer termini than by specific recognition of incorrect base pairs. In polymerase-initiated reactions, biphasic reaction kinetics were observed for the excision of AP within most but not all sequence contexts. Rates of the rapid phases (30-40 s-1) were relatively insensitive to sequence context. Rapid-phase rates reflect the rate constants for exonucleolytic excision of dAPMP from melted primer termini for both correct and incorrect base pairs and were roughly comparable to rates of removal of dAPMP from single-stranded DNA (65-80 s-1). Rates of the slow phases (3-13 s-1) were dependent on sequence context; the slow phase may reflect the rate of switching from the polymerase to the exonuclease active site, or perhaps the conversion of a primer/template terminus from an annealed to a melted state in the exonuclease active site. These data, using wild-type T4 DNA polymerase and two exonuclease-deficient T4 polymerases, support a model in which exonuclease excision occurs on melted primer 3'-termini for both mismatched and correctly matched primer termini, and where specificity favoring removal of terminally mismatched base pairs is determined by the much larger fraction of melted-out primer 3'-termini for mispairs compared to that for correct pairs.
Collapse
Affiliation(s)
- L B Bloom
- Department of Biological Sciences, University of Southern California, Los Angeles 90089-1340
| | | | | | | | | | | |
Collapse
|
42
|
Pavlov YI, Minnick DT, Izuta S, Kunkel TA. DNA replication fidelity with 8-oxodeoxyguanosine triphosphate. Biochemistry 1994; 33:4695-701. [PMID: 8161527 DOI: 10.1021/bi00181a029] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Oxidative metabolism is known to generate mutagenic compounds within cells, among which is 8-oxodeoxyguanosine. Here the mutagenic potential of the triphosphate form of this base analog (8-O-dGTP) is investigated during replication in vitro of the lacZ alpha-complementation sequence in M13mp2 DNA. Adding 8-O-dGTP at equimolar concentration with the normal dNTPs to polymerization reactions decreases the fidelity of DNA synthesis by exonuclease-deficient Klenow, T4, and Thermus thermophilus DNA polymerases. Sequence analysis of mutants suggests that 8-O-dGMP is misincorporated opposite template adenines, yielding A-->C transversions. The degree of polymerase selectivity against this error is enzyme-dependent, with rates varying by > 25-fold. To determine if the A.8-O-dGMP mispair is proofread, a direct comparison of the fidelity of proofreading-proficient and proofreading-deficient Klenow and T4 DNA polymerases was made. Although the exonuclease activity of Klenow polymerase did not substantially reduce overall misincorporation of 8-O-dGMP, misincorporation was lower for the proofreading-proficient T4 enzyme as compared to its proofreading-deficient derivative. These data suggest that the A.8-O-dGMP mispair can be proofread. The mutagenic potential of 8-O-dGTP with eukaryotic systems was also examined. Misincorporation of 8-O-dGTP opposite adenine was observed during SV40 origin-dependent replication of double-stranded DNA in HeLa cell extracts. When present during replication at a concentration equal to the four normal dNTPs, 8-O-dGTP was at least 13-fold more mutagenic for A.T-->C.G transversions than was a 100-fold excess of normal dGTP.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Y I Pavlov
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | | | | | | |
Collapse
|
43
|
Motif A of bacteriophage T4 DNA polymerase: role in primer extension and DNA replication fidelity. Isolation of new antimutator and mutator DNA polymerases. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37508-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
44
|
Bloom LB, Otto MR, Beechem JM, Goodman MF. Influence of 5'-nearest neighbors on the insertion kinetics of the fluorescent nucleotide analog 2-aminopurine by Klenow fragment. Biochemistry 1993; 32:11247-58. [PMID: 8218190 DOI: 10.1021/bi00092a039] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effects of nearest neighbor interactions between a nucleotide base at the primer 3'-terminus and an incoming deoxyribonucleoside triphosphate on DNA polymerase catalyzed insertion were examined. Kinetics of inserting the fluorescent nucleotide analog 2-aminopurine deoxyribonucleotide (dAPMP) and dAMP opposite a template T by 3'-->5' exonuclease-deficient mutants of Klenow fragment (KF-) were measured on primer/templates of identical sequence except for the base pair at the 3'-primer terminus. In addition to its fluorescence properties, 2-aminopurine (AP) is an attractive probe because it is misinserted opposite T by polymerases at much higher frequencies than natural nucleotides. Misinsertion frequencies for AP are on the same order of magnitude as variations in misinsertion frequencies due to changes in local DNA sequence, which makes the statistical significance of these variations easier to document. We have established that changes in the fluorescence of AP can be used to follow the insertion of dAPMP on both steady-state and pre-steady-state time scales. Rates of insertion of dAPMP measured by fluorescence and by a polyacrylamide gel assay were similar and are sensitive to the identity of the base at the 3'-primer twice as fast as insertion following a primer terminus T. The difference in rates arises primarily from differences in kcat values, which were fastest next to G and slowest next to T, while apparent Km values were similar next to each of the 4 different nearest neighbors. The gel assay was used to measure AP misinsertion efficiencies by two methods: (1) by having dAPTP and dATP directly compete for insertion opposite T in the same reaction and (2) by measuring Vmax/Km values for each substrate in separate reactions. The results from the direct competition and separate kinetics measurements are similar. The misinsertion efficiency of dAPMP relative to dAMP opposite a template T was significantly higher next to a 3'-primer terminus G (f(ins) = 0.31 +/- 0.06) than next to T (f(ins) = 0.15 +/- 0.03) for the KF- single mutant (D42A). The corresponding misinsertion efficiencies next to a 3'-primer terminus G and T were 0.20 +/- 0.02 and 0.16, respectively, for the KF- double mutant (D355A, E357A). Relative rates of insertion of dAPMP and dAMP correlate with melting temperatures calculated for nearest neighbor doublets which reflect the relative base-stacking energies. In addition to changes in insertion kinetics, polymerase-DNA dissociation rates varied with the identity of the 3'-primer terminus, differing by as much as 7-20-fold depending on the polymerase and the primer/template.
Collapse
Affiliation(s)
- L B Bloom
- Department of Biological Sciences, University of Southern California, Los Angeles 90089-1340
| | | | | | | |
Collapse
|
45
|
Abstract
The mechanisms by which DNA polymerases achieve their remarkable fidelity, including base selection and proofreading, are briefly reviewed. Nine proofreading models from the current literature are evaluated in the light of steady-state and transient kinetic studies of E. coli DNA polymerase I, the best-studied DNA polymerase. One model is demonstrated to predict quantitatively the response of DNA polymerase I to three mutagenic probes of proofreading: exogenous pyrophosphate, deoxynucleoside monophosphates, and the next correct deoxynucleoside triphosphate substrate, as well as the response to combinations of these probes. The theoretical analysis allows elimination of many possible proofreading mechanisms based on the kinetic data. A structural hypothesis links the kinetic analysis with crystallographic, NMR and genetic studies. It would appear that DNA polymerase I proofreads each potential error twice, at the same time undergoing two conformational changes within a catalytic cycle. Multi-stage proofreading is more efficient, and may be utilized in other biological systems as well. In fact, recent evidence suggests that fidelity of transfer RNA charging may be ensured by a similar mechanism.
Collapse
Affiliation(s)
- R A Beckman
- Fox Chase Cancer Center, Philadelphia, PA 19111
| | | |
Collapse
|
46
|
Goodman MF, Creighton S, Bloom LB, Petruska J. Biochemical basis of DNA replication fidelity. Crit Rev Biochem Mol Biol 1993; 28:83-126. [PMID: 8485987 DOI: 10.3109/10409239309086792] [Citation(s) in RCA: 391] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
DNA polymerase is the critical enzyme maintaining genetic integrity during DNA replication. Individual steps in the replication process that contribute to DNA synthesis fidelity include nucleotide insertion, exonucleolytic proofreading, and binding to and elongation of matched and mismatched primer termini. Each process has been investigated using polyacrylamide gel electrophoresis (PAGE) to resolve 32P-labeled primer molecules extended by polymerase. We describe how integrated gel band intensities can be used to obtain site-specific velocities for addition of correct and incorrect nucleotides, extending mismatched compared to correctly matched primer termini and measuring polymerase dissociation rates and equilibrium DNA binding constants. The analysis is based on steady-state "single completed hit conditions", where polymerases encounter many DNA molecules but where each DNA encounters an enzyme at most once. Specific topics addressed include nucleotide misinsertion, mismatch extension, exonucleolytic proofreading, single nucleotide discrimination using PCR, promiscuous mismatch extension by HIV-1 and AMV reverse transcriptases, sequence context effects on fidelity and polymerase dissociation, structural and kinetic properties of mispairs relating to fidelity, error avoidance mechanisms, kinetics of copying template lesions, the "A-rule" for insertion at abasic template lesions, an interesting exception to the "A-rule", thermodynamic and kinetic determinants of base pair discrimination by polymerases.
Collapse
Affiliation(s)
- M F Goodman
- University of Southern California, Department of Biological Sciences, Los Angeles 90089-1340
| | | | | | | |
Collapse
|
47
|
Brush G, Bessman M. Chemical modification of bacteriophage T4 deoxynucleotide kinase. Evidence of a single catalytic region. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53896-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
48
|
Abstract
The structural dynamics of mismatched base pairs in duplex DNA have been studied by time-resolved fluorescence anisotropy decay measurements on a series of duplex oligodeoxynucleotides of the general type d[CGG(AP)GGC].d[GCCXCCG], where AP is the fluorescent adenine analogue 2-aminopurine and X = T, A, G, or C. The anisotropy decay is caused by internal rotations of AP within the duplex, which occur on the picosecond time scale, and by overall rotational diffusion of the duplex. The correlation time and angular range of internal rotation of AP vary among the series of AP.X mismatches, showing that the native DNA bases differ in their ability to influence the motion of AP. These differences are correlated with the strength of base-pairing interactions in the various AP.X mismatches. The interactions are strongest with X = T or C. The ability to discern differences in the strength of base-pairing interactions at a specific site in DNA by observing their effect on the dynamics of base motion is a novel aspect of the present study. The extent of AP stacking within the duplex is also determined in this study since it influences the excited-state quenching of AP. AP is thus shown to be extrahelical in the AP.G mismatch. The association state of the AP-containing oligodeoxynucleotide strand is determined from the temperature-dependent tumbling correlation time. An oligodeoxynucleotide triplex is formed with a particular base sequence in a pH-dependent manner.
Collapse
Affiliation(s)
- C R Guest
- Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, California 92037
| | | | | | | |
Collapse
|
49
|
Abstract
Inhibitory and substrate properties of analogs of deoxyribonucleoside triphosphates toward DNA polymerases are reviewed. A general introduction is followed by a description of DNA polymerases and the reaction that they catalyze, and sites at which substrate analogs may inhibit them. Effects of modifications in the major family of compounds, nucleotide derivatives, at the base, sugar and triphosphate portions of the molecule, are summarized with respect to retention of substrate properties and generation of inhibitory properties. Structure-activity relationships and the basis of selectivity in the second family of compounds, deoxyribonucleotide mimics, are also presented. Conclusions are drawn regarding the structural basis of inhibitor selectivity and mechanism, relationship between in vitro and in vivo effects of inhibitors, and the promise of inhibitors as probes for study of active sites of DNA polymerases.
Collapse
Affiliation(s)
- G E Wright
- Department of Pharmacology, University of Massachusetts Medical School, Worcester 01655
| | | |
Collapse
|
50
|
Abstract
Denaturing gradient gel electrophoresis (DGGE) was used to separate and isolate the products of DNA amplification by polymerase chain reaction (PCR). The strategy permitted direct enumeration and identification of point mutations created by T4, modified T7, Klenow fragment of polymerase I, and Thermus aquaticus (Taq) DNA polymerases. Incorrectly synthesized sequences were separated from the wild type by DGGE as mutant/wild-type heteroduplexes and the heteroduplex fraction was used to calculate the average error rate (mutations per base duplication). The error rate induced in the 104-base-pair low-temperature melting domain of exon 3 of the human hypoxanthine/guanine phosphoribosyltransferase (HPRT) gene was approximately 3.4 x 10(-5) for modified T7, 1.3 x 10(-4) for Klenow fragment, and 2.1 x 10(-4) for Taq polymerases after a 10(6)-fold amplification. The error rate for T4 DNA polymerase was not more than 3 x 10(-6) error per base duplication. The predominant mutations were sequenced and found to be transitions of G.C to A.T for T4 and modified T7 DNA polymerases, and A.T to G.C for Taq polymerase. Klenow fragment induced both possible transitions and deletions of 2 and 4 base pairs.
Collapse
Affiliation(s)
- P Keohavong
- Center for Environmental Health Sciences, Whitaker College of Health Sciences and Technology, Cambridge, MA
| | | |
Collapse
|