1
|
Zhang JT, Kankala RK, Zhou YH, Dong JC, Chen AZ, Wang Q. Dual Functional Modification of Alkaline Amino Acids Induces the Self-Assembly of Cylinder-Like Tobacco Mosaic Virus Coat Proteins into Gear-Like Architectures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805543. [PMID: 30706634 DOI: 10.1002/smll.201805543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Herein, the assembly of 3D uniform gear-like architectures is demonstrated with a tobacco mosaic virus (TMV) disk as a building block. In this context, the intrinsic behavior of the TMV disk that promotes its assembly into nanotubes is altered by a synergistic effect of dual functional modifications at the 53rd arginine mutation and the introduction of lysine groups in the periphery at 1st and 158th positions of the TMV disk, which results in the formation of 3D gear-like superstructures. Therein, the 53rd arginine moiety significantly strengthens the linkage between TMV disks in the alkaline environment through hydrogen bond interactions. The charge of lysine-modified lateral surfaces is partially neutralized in the alkaline solution, which induces the TMV disk to form a gear-like architecture to maintain its structural stability by exploiting the electrostatic repulsion between neighboring TMV disks. This study not only provides explicit evidence regarding the molecular-level understanding of how the modification of site-specific amino acid affects the assembly of resultant superstructures but also encourages the fabrication of functional protein-based nanoarchitectures.
Collapse
Affiliation(s)
- Jian-Ting Zhang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, P. R. China
| | - Yi-Hao Zhou
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Jin-Chen Dong
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, P. R. China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
New Strategies and Methods to Study Interactions between Tobacco Mosaic Virus Coat Protein and Its Inhibitors. Int J Mol Sci 2016; 17:252. [PMID: 26927077 PMCID: PMC4813129 DOI: 10.3390/ijms17030252] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/15/2022] Open
Abstract
Studies of the targets of anti-viral compounds are hot topics in the field of pesticide research. Various efficient anti-TMV (Tobacco Mosaic Virus) compounds, such as Ningnanmycin (NNM), Antofine (ATF), Dufulin (DFL) and Bingqingxiao (BQX) are available. However, the mechanisms of the action of these compounds on targets remain unclear. To further study the mechanism of the action of the anti-TMV inhibitors, the TMV coat protein (TMV CP) was expressed and self-assembled into four-layer aggregate disks in vitro, which could be reassembled into infectious virus particles with TMV RNA. The interactions between the anti-TMV compounds and the TMV CP disk were analyzed by size exclusion chromatography, isothermal titration calorimetry and native-polyacrylamide gel electrophoresis methods. The results revealed that assembly of the four-layer aggregate disk was inhibited by NNM; it changed the four-layer aggregate disk into trimers, and affected the regular assembly of TMV CP and TMV RNA. The four-layer aggregate disk of TMV CP was little inhibited by ATF, DFL and BQX. Our results provide original data, as well as new strategies and methods, for research on the mechanism of action of anti-viral drugs.
Collapse
|
3
|
Li X, Song B, Hu D, Wang Z, Zeng M, Yu D, Chen Z, Jin L, Yang S. The development and application of new crystallization method for tobacco mosaic virus coat protein. Virol J 2012; 9:279. [PMID: 23171808 PMCID: PMC3560112 DOI: 10.1186/1743-422x-9-279] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 10/03/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although tobacco mosaic virus (TMV) coat protein (CP) has been isolated from virus particles and its crystals have grown in ammonium sulfate buffers for many years, to date, no one has reported on the crystallization of recombinant TMV-CP connecting peptides expressed in E. coli. METHODS In the present papers genetically engineered TMV-CP was expressed, into which hexahistidine (His) tags or glutathione-S-transferase (GST) tags were incorporated. Considering that GST-tags are long peptides and His-tags are short peptides, an attempt was made to grow crystals of TMV-CP cleaved GST-tags (WT-TMV-CP32) and TMV-CP incorporated His-tags (WT-His-TMV-CP12) simultaneously in ammonium sulfate buffers and commercial crystallization reagents. It was found that the 20S disk form of WT-TMV-CP32 and WT-His-TMV-CP12 did not form high resolution crystals by using various crystallization buffers and commercial crystallization reagents. Subsequently, a new experimental method was adopted in which a range of truncated TMV-CP was constructed by removing several amino acids from the N- or the C-terminal, and high resolution crystals were grown in ammonium sulfate buffers and commercial crystallization reagents. RESULTS The new crystallization method was developed and 3.0 Å resolution macromolecular crystal was thereby obtained by removing four amino acids at the C-terminal of His-TMV-CP and connecting six His-tags at the N-terminal of His-TMV-CP (TR-His-TMV-CP19). The Four-layer aggregate disk structure of TR-His-TMV-CP19 was solved. This phenomenon showed that peptides at the C-terminus hindered the growth of high resolution crystals and the peptides interactions at the N-terminus were attributed to the quality of TMV-CP crystals. CONCLUSION A 3.0 Å resolution macromolecular crystal of TR-His-TMV-CP19 was obtained and the corresponding structure was solved by removing four amino acids at the C-terminus of TMV-CP and connecting His-tags at the N-terminus of TMV-CP. It indicated that short peptides influenced the resolution of TMV-CP crystals.
Collapse
Affiliation(s)
- Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural bioengineering of Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, P. R China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural bioengineering of Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, P. R China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural bioengineering of Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, P. R China
| | - Zhenchao Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural bioengineering of Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, P. R China
| | - Mengjiao Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural bioengineering of Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, P. R China
| | - Dandan Yu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural bioengineering of Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, P. R China
| | - Zhuo Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural bioengineering of Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, P. R China
| | - Linhong Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural bioengineering of Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, P. R China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural bioengineering of Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, P. R China
| |
Collapse
|
4
|
Abstract
We have previously presented a tutorial on direct boundary fitting of sedimentation velocity data for kinetically mediated monomer-dimer systems [Correia and Stafford, 2009]. We emphasized the ability of Sedanal to fit for the k(off) values and measure their uncertainty at the 95% confidence interval. We concluded for a monomer-dimer system the range of well-determined k(off) values is limited to 0.005-10(-5) s(-1) corresponding to relaxation times of approximately 70 to approximately 33,000 s. More complicated reaction schemes introduce the potential complexity of low concentrations of an intermediate that may also influence the kinetic behavior during sedimentation. This can be seen in a cooperative ABCD system (A+B --> C; B+C --> D) where C, the 1:1 complex, is sparsely populated (K(1)=10(4) M(-1), K(2)=10(8) M(-1)). Under these conditions a k(1,off)<0.01 s(-1) produces slow kinetic features. The low concentration of species C contributes to this effect while still allowing the accurate estimation of k(1,off) (although k(2,off) can readily compensate and contribute to the kinetics). More complex reactions involving concerted assembly or cooperative ring formation with low concentrations of intermediate species also display kinetic effects due to a slow flux of material through the sparsely populated intermediate states. This produces a kinetically limited reaction boundary that produces partial resolution of individual species during sedimentation. Cooperativity of ring formation drives the reaction and thus separation of these two effects, kinetics and energetics, can be challenging. This situation is experimentally exhibited by systems that form large oligomers or rings and may especially contribute to formation of micelles and various protein aggregation diseases including formation of beta-amyloid and tau aggregates. Simulations, quantitative parameter estimation by direct boundary fitting and diagnostic features for these systems are presented with an emphasis on the features available in Sedanal to simulate and analyze kinetically mediated systems.
Collapse
|
5
|
Zhao D, Moore JS. Nucleation-elongation: a mechanism for cooperative supramolecular polymerization. Org Biomol Chem 2004; 1:3471-91. [PMID: 14599006 DOI: 10.1039/b308788c] [Citation(s) in RCA: 357] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetic and thermodynamic characteristics of polymerizations following a cooperative, nucleation-elongation mechanism are discussed in comparison to those of non-cooperative, isodesmic polymerizations. Nucleation-elongation polymerization is a relatively unexplored avenue of synthetic polymer chemistry and offers some unique and interesting thermodynamic and kinetic attributes not found in the more classical mechanisms of polymer chemistry.
Collapse
Affiliation(s)
- Dahui Zhao
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
6
|
Abstract
Human islet amyloid polypeptide (hIAPP) is the major component of amyloid plaques found in the pancreatic islets of persons with type 2 diabetes mellitus. HIAPP belongs to the group of amyloidogenic proteins, characterized by their aggregation and deposition as fibrillar amyloid in various body tissues. The aggregation of amyloidogenic proteins is thought to occur via a common pathway, but currently no unifying kinetic model exists. In previous work, we presented a model of amyloid fibril formation formulated from our observations of the aggregation of an amyloidogenic fragment of hIAPP, amino acids 20-29. Our model is based on nucleation-dependent aggregation, modified by the formation of off-pathway hIAPP micelles. In the present study we confirm the presence of peptide micelles, and experimentally determine the critical micelle concentration in solutions of hIAPP fragments using three different techniques: conductivity, pH, and fluorescence. All three techniques yield a critical micelle concentration of 3-3.5 micro M peptide. Furthermore, based on changes in the fluorescence intensity of a labeled peptide fragment as well as a decrease in solution pH as a result of deprotonation of the amino terminus, we conclude that the amino terminus of the fragment undergoes a significant change of environment upon micellization.
Collapse
Affiliation(s)
- Elizabeth Rhoades
- Biophysics Research Division, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
7
|
Hilhorst H, Postma U, Hemminga M. An EPR study of the kinetics of encapsidation of spin-labeled polyadenylic acid by TMV protein. FEBS Lett 2001. [DOI: 10.1016/0014-5793(82)80157-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Rhoades E, Agarwal J, Gafni A. Aggregation of an amyloidogenic fragment of human islet amyloid polypeptide. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1476:230-8. [PMID: 10669788 DOI: 10.1016/s0167-4838(99)00248-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Native human islet amyloid polypeptide (hIAPP) has been identified as the major component of amyloid plaques found in the pancreatic islets of Langerhans of persons affected by type 2 diabetes mellitus. Early studies of hIAPP determined that a segment of the molecule, amino acids 20-29, is responsible for its aggregation into amyloid fibrils. The present study demonstrates that the aggregation of hIAPP 20-29-Trp is a nucleation-dependent process, displaying a distinct lag time before the onset of rapid aggregation. Moreover, the lag time can be eliminated by seeding the sample of unaggregated peptide with preformed fibrils. In contrast to the expectation from the conventional model of nucleation-dependent aggregation, however, the lag time of hIAPP aggregation does not depend on peptide concentration. To explain this observation, a modified version of the standard model of nucleation-dependent aggregation is presented in which the monomeric peptide concentration is buffered by an off-aggregation-pathway formation of peptide micelles.
Collapse
Affiliation(s)
- E Rhoades
- Institute of Gerontology, University of Michigan, 300 North Ingalls, Box 2007, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
9
|
Bhyravbhatla B, Watowich SJ, Caspar DL. Refined atomic model of the four-layer aggregate of the tobacco mosaic virus coat protein at 2.4-A resolution. Biophys J 1998; 74:604-15. [PMID: 9449361 PMCID: PMC1299413 DOI: 10.1016/s0006-3495(98)77819-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous x-ray studies (2.8-A resolution) on crystals of tobacco mosaic virus coat protein grown from solutions containing high salt have characterized the structure of the protein aggregate as a dimer of a bilayered cylindrical disk formed by 34 chemically identical subunits. We have determined the crystal structure of the disk aggregate at 2.4-A resolution using x-ray diffraction from crystals maintained at cryogenic temperatures. Two regions of interest have been extensively refined. First, residues of the low-radius loop region, which were not modeled previously, have been traced completely in our electron density maps. Similar to the structure observed in the virus, the right radial helix in each protomer ends around residue 87, after which the protein chain forms an extended chain that extends to the left radial helix. The left radial helix appears as a long alpha-helix with high temperature factors for the main-chain atoms in the inner portion. The side-chain atoms in this region (residues 90-110) are not visible in the electron density maps and are assumed to be disordered. Second, interactions between subunits in the symmetry-related central A pair have been determined. No direct protein-protein interactions are observed in the major overlap region between these subunits; all interactions are mediated by two layers of ordered solvent molecules. The current structure emphasizes the importance of water in biological macromolecular assemblies.
Collapse
Affiliation(s)
- B Bhyravbhatla
- Institute of Molecular Biophysics, Florida State University, Tallahassee 32306-3015, USA.
| | | | | |
Collapse
|
10
|
Hiragi Y, Inoue H, Sano Y, Kajiwara K, Ueki T, Nakatani H. Dynamic mechanism of the self-assembly process of tobacco mosaic virus protein studied by rapid temperature-jump small-angle X-ray scattering using synchrotron radiation. J Mol Biol 1990; 213:495-502. [PMID: 2352278 DOI: 10.1016/s0022-2836(05)80210-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The self-assembly process of tobacco mosaic virus protein (TMVP) was observed by rapid temperature-jump time-resolved solution X-ray small-angle scattering using synchrotron radiation. The temperature-jump device used for the X-ray measurements is rapid enough to cope with even the fastest-assembling process of TMVP, and accumulates data of reasonable signal-to-noise ratios with a minimum total counting time of 7.5 seconds. The measurements suggested that the 20 S disk of TMVP polymerized to stacked disks (short rods). The time to complete stacking varied from approximately 25 seconds to approximately 1200 seconds, depending on the solution condition and magnitude of the temperature gap. Higher protein concentration, ionic strength and temperature favoured faster association. The results were analysed in terms of a set of kinetic equations that describe the two-stage aggregation of TMVP with an equilibrium constant K1, and two rate constants k+2 and k-2 for association and dissociation of disks, respectively. The consistency of the analysis suggests that the TMVP assembly proceeds in two steps of: (1) the aggregation of A-proteins into double-layered disks; and (2) the stacking of double-layered disks. The kinetic analysis indicated that the stacking belongs to the lowest range of protein-protein interaction system.
Collapse
Affiliation(s)
- Y Hiragi
- Institute for Chemical Research, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Shire SJ, McKay P, Leung DW, Cachianes GJ, Jackson E, Wood WI, Raghavendra K, Khairallah L, Schuster TM. Preparation and properties of recombinant DNA derived tobacco mosaic virus coat protein. Biochemistry 1990; 29:5119-26. [PMID: 2198939 DOI: 10.1021/bi00473a017] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recombinant DNA derived tobacco mosaic virus (vulgare strain) coat protein (r-TMVP) was obtained by cloning and expression in Escherichia coli and was purified by column chromatography, self-assembly polymerization, and precipitation. SDS-PAGE, amino terminal sequencing, and immunoblotting with polyclonal antibodies raised against TMVP confirmed the identify and purity of the recombinant protein. Isoelectric focusing in 8 M urea and fast atom bombardment mass spectrometry demonstrated that the r-TMVP is not acetylated at the amino terminus, unlike the wild-type protein isolated from the tobacco plant derived virus. The characterization of r-TMVP with regard to its self-assembly properties revealed reversible endothermic polymerization as studied by analytical ultracentrifugation, circular dichroism, and electron microscopy. However, the details of the assembly process differed from those of the wild-type protein. At neutral pH, low ionic strength, and 20 degrees C, TMVP forms a 20S two-turn helical rod that acts as a nucleus for further assembly with RNA and additional TMVP to form TMV. Under more acidic conditions, this 20S structure also acts as a nucleus for protein self-assembly to form viruslike RNA-free rods. The r-TMVP that is not acetylated carries an extra positive charge at the amino terminus and does not appear to form the 20S nucleus. Instead, it forms a 28S four-layer structure, which resembles in size and structure the dimer of the bilayer disk formed by the wild-type protein at pH 8.0, high ionic strength, and 20 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S J Shire
- Department of Pharmaceutical Research and Development, Genetech, Inc., South San Francisco, California 94080
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Potschka M, Schuster TM. Determination of reaction volumes and polymer distribution characteristics of tobacco mosaic virus coat protein. Anal Biochem 1987; 161:70-9. [PMID: 3578789 DOI: 10.1016/0003-2697(87)90653-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A method that allows the quantitative determination of reaction volumes from sedimentation velocity experiments in an analytical ultracentrifuge is presented. Combined with a second method for detecting pressure-induced depolymerization, general characteristics of polymer distributions may be probed. We show that it is possible to determine if a sample is in an equilibrium or metastable state of subunit association. Our approach to probe macromolecular aggregation systems by small pressure perturbations is not restricted to the use of centrifuges. This method has been applied to characterize certain aspects of the polymerization of tobacco mosaic virus coat protein (TMVP). There are at least two helical polymer conformations in RNA-free coat protein rods. The smaller, helix I, polymers are limited to sizes below about 70 subunits (four to five helical turns) and undergo some kind of cooperative conformational change before further subunits may be added indefinitely. In contrast to helix I, the larger helix II polymers occur as broader and skewed size distributions. Under moderately strong polymerization conditions, the equilibrium state can contain both types of helical rods. The reaction volume for the addition of trimers is -220 ml/mol for both types of helical polymers. These results are compared with the results of previous thermodynamic analyses of TMVP polymerization.
Collapse
|
13
|
Jaenicke R. Folding and association of proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1987; 49:117-237. [PMID: 3327098 DOI: 10.1016/0079-6107(87)90011-3] [Citation(s) in RCA: 494] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Raghavendra K, Salunke DM, Caspar DL, Schuster TM. Disk aggregates of tobacco mosaic virus protein in solution: electron microscopy observations. Biochemistry 1986; 25:6276-9. [PMID: 3790522 DOI: 10.1021/bi00368a066] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Previous studies of the coat protein of tobacco mosaic virus (TMVP) have shown that TMVP presumably exists as linear stacks of two-ring cylindrical disks in the 0.7 M ionic strength buffer used for crystallizing the disks for X-ray diffraction studies [Raghavendra, K., Adams, M.L., & Schuster, T.M. (1985) Biochemistry 24, 3298-3304]. The spectroscopic and sedimentation studies of solutions of TMVP under these crystallizing conditions have demonstrated a long-term metastability of these disk aggregates when they are placed in 0.1 M ionic strength buffers, as are used for reconstituting tobacco mosaic virus from TMVP and viral RNA. The present work describes an electron microscopic study of TMVP disk aggregates under the same solution conditions employed in the previous spectroscopic and sedimentation studies. The results show that in the pH 8.0 0.7 M ionic strength crystallization buffer TMVP exists as stacks of disks which range in size from about 6 to 24 layers, corresponding to 3-12 2-layer disk aggregates having 17 subunits per layer. These TMVP aggregates persist in a metastable form in 0.1 M ionic strength virus reconstitution buffer with no apparent changes in structure of the stacked disks. The results are consistent with the conclusions of the solution physical-chemical studies which suggest that the disk structure may not be related to the 20S TMVP aggregate that is the nucleation species in virus
Collapse
|
15
|
Abstract
Tubulin purified from eggs of the sea urchin Strongylocentrotus purpuratus assembles efficiently in vitro to form microtubules at physiological (18 degrees C) and nonphysiological (37 degrees C) temperatures. MAPs, ring oligomers, and high concentrations of nonphysiological solvents are not required for the assembly reaction. At concentrations above 1.2 mg/ml at 18 degrees C and 0.5 mg/ml at 37 degrees C a concentration-dependent overshoot in turbidity and in light scattering at small angles was observed: turbidity and scattering increased rapidly to a peak, then decreased asymptotically toward a steady-state value. Electron microscopic analysis demonstrated that tubulin sheets were prevalent during the initial stages of overshoot assembly, whereas complete microtubules were present at steady state. Qualitative observations of solution birefringence suggested that the polymer became progressively more aligned during assembly. The overshoot cannot be explained by proteolysis or denaturation of tubulin, by depletion of GTP, by a decrease in assembled mass, or by redistribution of polymer lengths. Taken together, the results suggest that changes in the form and/or in the organization of the assembling polymer are responsible for the overshoots in turbidity and in light scattering at small angles. Our results are consistent with models of microtubule assembly that postulate nucleation by tubulin sheets and subsequent folding of the sheets to form mature microtubules.
Collapse
|
16
|
Andreu JM, Timasheff SN. The measurement of cooperative protein self-assembly by turbidity and other techniques. Methods Enzymol 1986; 130:47-59. [PMID: 3773745 DOI: 10.1016/0076-6879(86)30007-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Detrich HW, Jordan MA, Wilson L, Williams RC. Mechanism of microtubule assembly. Changes in polymer structure and organization during assembly of sea urchin egg tubulin. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39390-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Ferrone FA, Hofrichter J, Eaton WA. Kinetics of sickle hemoglobin polymerization. I. Studies using temperature-jump and laser photolysis techniques. J Mol Biol 1985; 183:591-610. [PMID: 4020872 DOI: 10.1016/0022-2836(85)90174-3] [Citation(s) in RCA: 181] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Using a combination of laser photolysis and temperature-jump techniques, the kinetics of hemoglobin S polymerization have been studied over a wide range of delay times (10(-3) to 10(5)s), concentrations (0.2 to 0.4 g/cm3) and temperatures (5 to 50 degrees C). A slow temperature-jump technique was used to induce polymerization in samples with delay times between 10(2) seconds and 10(5) seconds by heating a solution of completely deoxygenated hemoglobin S. For samples with shorter delay times, polymerization was induced by photodissociating the carbon monoxide complex in small volumes (10(-9) cm3) using a microspectrophotometer equipped with a cw argon ion laser. The photolysis technique is described in some detail because of its importance in studying hemoglobin S polymerization at physiological concentrations and temperatures. In order, to establish conditions for complete photodissociation with minimal laser heating, a series of control experiments on normal human hemoglobin was performed and theoretically modeled. The concentration dependence of the tenth time is found to decrease with increasing hemoglobin S concentration. In the range 0.2 to 0.3 g/cm3, the tenth time varies as the 36th power of the hemoglobin S concentration, while in the range 0.3 to 0.4 g/cm3 it decreases to 16th power. As the tenth times become shorter, the progress curves broaden, with the onset of polymerization becoming less abrupt. For tenth times greater than about 30 seconds, measurements with the laser photolysis technique on small volumes yield highly irreproducible tenth times, but superimposable progress curves, indicating stochastic behavior. The initial part of the progress curves from both temperature-jump and laser photolysis experiments is well fit with an equation for the concentration of polymerized monomer, delta (t) = A[cosh (Bt) -1], which results from integration of the linearized rate equations for the double nucleation mechanism described in the accompanying paper (Ferrone et al., 1985). The dependence of the parameters A and B on temperature and concentration is obtained from fitting over 300 progress curves. The rate B has a large concentration dependence, varying at 25 degrees C from about 10(-4) S-1 at 0.2 g/cm3 to about 100 s-1 at 0.4 g/cm3.
Collapse
|
19
|
Raghavendra K, Adams ML, Schuster TM. Tobacco mosaic virus protein aggregates in solution: structural comparison of 20S aggregates with those near conditions for disk crystallization. Biochemistry 1985; 24:3298-304. [PMID: 4027242 DOI: 10.1021/bi00334a034] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previous X-ray studies (2.8-A resolution) on the crystals of tobacco mosaic virus protein (TMVP) grown from solutions containing high salt have characterized the structure of the protein aggregate as a bilayered cylindrical disk formed by 34 identical subunits [Bloomer, A.C., Champness, J.N., Bricogne, G., Staden, R., & Klug, A. (1978) Nature (London) 276, 362-368]. Under low-salt conditions, 20S aggregates are in equilibrium with 4S species and involved in the efficient nucleation of TMV assembly in vitro [Butler, P.J.G. (1984) J. Gen. Virol. 65, 253-279]. We have investigated by sedimentation velocity and near-UV circular dichroism (CD) measurements the structure of 20S aggregates in low salt (I = 0.1 potassium phosphate at pH 7.0 and 20 degrees C) and the aggregates in high salt [0.2 M (NH4)2SO4 in I = 0.1 tris(hydroxymethyl)aminomethane hydrochloride at pH 8.0 and 20 degrees C, close to the conditions under which TMVP crystallizes as disk aggregates]. At high salt, we observe structures (presumably stacks of disks) having s20,w values around 40, 45, and 50 S, but not the 20S species present in low-salt buffers. The near-UV CD spectrum of 20S aggregates has been obtained for the first time, using computer techniques, from the spectra of the 4S-20S equilibrium mixture and the 4S species. This spectrum of 20S aggregates differs dramatically from that of the stacks of disks examined at both high and low salt (into which the stacks can be returned by dialysis), indicating that the difference is not a solvent effect.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
20
|
|
21
|
|
22
|
Silver FH, Birk DE. Kinetic analysis of collagen fibrillogenesis: I. Use of turbidity--time data. COLLAGEN AND RELATED RESEARCH 1983; 3:393-405. [PMID: 6641124 DOI: 10.1016/s0174-173x(83)80020-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A method is presented for analyzing turbidity-time curves characterizing biological assembly and disassembly processes. The method allows for the determination of apparent rate constants for the turbidity lag and growth phases of collagen fibrillogenesis. Plots of concentration/lag time versus concentration for type I collagen and concentration/(time to complete growth phase) versus concentration are shown to be straight lines. The slopes of these plots are defined as the apparent rate constants for the lag and growth phases. Activation energies are obtained from the temperature dependence of these slopes. The slopes of the growth portion of turbidity-time curves as well as the final turbidity are directly proportional to the collagen concentration. These observations are consistent with the hypothesis that the rate limiting steps for both lag and growth phases are apparent first order with respect to collagen concentration. Sample calculations based on light scattering theory suggest that the turbidimetric growth phase begins when the number of collagen molecules per unit length is greater than 100 and that the extent of fibril formation is proportional to the turbidity per unit concentration. These studies indicate that the turbidimetric lag phase involves both linear and lateral growth of collagen linear aggregates.
Collapse
|
23
|
|
24
|
Bordas J, Mandelkow EM, Mandelkow E. Stages of tubulin assembly and disassembly studied by time-resolved synchrotron X-ray scattering. J Mol Biol 1983; 164:89-135. [PMID: 6842593 DOI: 10.1016/0022-2836(83)90089-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Shalaby RA, Stevens CL, Lauffer MA. Ultracentrifugation studies on early stage polymerization of tobacco mosaic virus protein. Arch Biochem Biophys 1982; 218:384-401. [PMID: 7159093 DOI: 10.1016/0003-9861(82)90360-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
Steckert JJ, Schuster TM. Sequence specificity of trinucleoside diphosphate binding to polymerized tobacco mosaic virus protein. Nature 1982; 299:32-6. [PMID: 7110324 DOI: 10.1038/299032a0] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The binding of trinucleoside diphosphates to long helical rods of tobacco mosaic virus (TMV) protein is shown to depend on base sequence, 5' AAG 3' binding being the strongest of the 25 trinucleoside diphosphate sequences measured. As TMV has a stoichiometry of three nucleotides per protein subunit, the sequence of TMV RNA suggested to be the nucleation site for self-assembly of the virus has three possible binding frames. From our binding constant data the most likely frame is predicted and shown to have two contiguous AAG sequences in a hairpin loop region.
Collapse
|
27
|
Vogel D. Neutral salt effects on the polymorphism of tobacco mosaic virus protein. A contribution to the understanding of its mechanism of aggregation and virus reassembly. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 706:65-79. [PMID: 7126594 DOI: 10.1016/0167-4838(82)90375-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
28
|
Sturtevant JM, Velicelebi G, Jaenicke R, Lauffer MA. Scanning calorimetric investigation of the polymerization of the coat protein of tobacco mosaic virus. Biochemistry 1981; 20:3792-800. [PMID: 7272276 DOI: 10.1021/bi00516a019] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The endothermic polymerization of the coat protein of tobacco mosaic virus has been studied by high-sensitivity differential scanning calorimetry, with control experiments involving turbidimetry and sedimentation velocity measurements. The variation of the apparent extent of polymerization under conditions close to equilibrium as the temperature is raised follows a course which is difficult to duplicate on the basis of simple models for the process. The enthalpy of polymerization at low protein concentration varies from 12.5 kcal (mol of monomer)-1 (17500 daltons) under conditions where the product is largely a mixture of short helical rods to 6.0 kcal ol-1 for the formation of double disks containing 34 monomer units. In the former case, the polymerization is accompanied by a decrease in apparent heat capacity of 350 cal K-1 mol-1 while in the latter there is an increase of 150 cal K-1 mol-1. These results constitute evidence that these two types of polymerization involve intersubunit bonds of quite different chemical character.
Collapse
|
29
|
Jaenicke R, L�demann HD, Schade BC. High pressure effects on the endothermic association of tobacco mosaic virus protein. ACTA ACUST UNITED AC 1981. [DOI: 10.1007/bf00539179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Hirth L, Richards KE. Tobacco mosaic virus: model for structure and function of a simple virus. Adv Virus Res 1981; 26:145-99. [PMID: 7223542 DOI: 10.1016/s0065-3527(08)60423-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Schuster TM, Scheele RB, Adams ML, Shire SJ, Steckert JJ, Potschka M. Studies on the mechanism of assembly of tobacco mosaic virus. Biophys J 1980; 32:313-29. [PMID: 7248451 PMCID: PMC1327310 DOI: 10.1016/s0006-3495(80)84959-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sedimentation and proton binding studies on the endothermic self-association of tobacco mosaic virus (TMV) protein indicate that the so-called "20S" sedimenting protein is an interaction system involving at least the 34-subunit two-turn yield cylindrical disk aggregate and the 49-subunit three-turn helical rod. The pH dependence of this overall equilibrium suggests that disk formation is proton-linked through the binding of protons to the two-turn helix which is not present as significant concentrations near pH 7. There is a temperature-induced intramolecular conformation change in the protein leading to a difference spectrum which is complete in 5 x 10(-6) s at pH 7 and 20 degrees C and is dominated at 300 nm by tryptophan residues. Kinetics measurements of protein polymerization, from 10(-6) to 10(3) s, reveal three relaxation processes at pH 7.0, 20 degrees C, 0.10 M ionic strength K (H) PO4. The fastest relaxation time is a few milliseconds and represents reactions within the 4S protein distribution. The second fastest relaxation is 50-100 x 10(-3) s and represents elementary polymerization steps involved in the formation of the approximately 20 S protein. Analysis of the slowest relaxation, approximately 5 x 10(4) s, suggests that this very slow formation of approximately 20 S protein may be dominated by some first order process in the overall dissociation of approximately 20S protein. Sedimentation measurements of the rate of TMV reconstitution, under the same conditions, show by direct measurements of 4S and approximately 20S incorporation at various 4S to approximately 20S weight ratios that the relative rate of approximately 20S incorporation decreases almost linearly, from 0 to 50% 4S. There appears to be one or more regions of TMV-RNA, approximately 1-1.5 kilobases long, which incorporates approximately 20S protein exclusively. Solutions of approximately 95-100% approximately 20S protein have been prepared for the first time and used for reconstitution with RNA. Such protein solutions yield full size TMV, but at a slower rate than if 4S protein is added. Thus the elongation reaction in TMV assembly, following nucleation with approximately 20S protein, is not exclusively dependent upon the presence of either 4S or approximately 20S protein aggregates. The initial, maximum, rate of reconstitution increases about threefold when the protein composition is changed from 5% to 30% 4S protein, at constant total protein concentration at pH 7.0, 20 degrees C in 0.10 M ionic strength K (H)PO4. The probable binding frame at the internal assembly nucleation site of TMV-RNA has been determined by measuring the association constants for the binding of various trinucleoside diphosphates to helical TMV protein rods. The -CAG-AAG-AAG-sequence at the nucleation site is capable of providing at least 10-14 kcal/mol of sites of binding free energy for the nucleation event in TMV self-assembly.
Collapse
|
32
|
Hendry DA, Durham AC. Titration behaviour of three strains of tobacco mosaic virus. Virology 1980; 100:65-75. [PMID: 18631628 DOI: 10.1016/0042-6822(80)90552-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/1979] [Indexed: 11/26/2022]
Abstract
Hydrogen ion titration curves of the virions and proteins of three strains of tobacco mosaic virus (Y-TAMV, U2, and cowpea) were measured in the absence and the presence of Ca2+, Mg2+, or Mn2+ ions, and compared with the analogous curves for the type strain (vulgare). Extinction coefficients were also measured for all four strains' virions and proteins. Y-TAMV is very like vulgare in its cation affinities: the virion has probably three groups per protein subunit that titrate near neutral pH and significantly bind metal ions; the RNA-free protein has very little affinity for Ca2+, although moderate Ca2+ concentrations favour the existence of larger polymers. U2 and cowpea strain virions bind cations significantly more strongly than do Y-TAMV or vulgare virions: their polymerized proteins, too, have significant affinities for Ca2+ ions, which make their titration and sedimentation behaviours relatively sensitive to added calcium. These cation-binding differences correspond well with the differences between the strains' protein sequences. The features common to all four strains are that the virions are apparently structurally invariant and have at least one site per subunit with Ca2+ affinity in the region of 10(-5)M, while the RNA-free proteins lack the high-affinity sites but have weaker Ca2+ affinities in the region of 10(-3)M. Some of the cation-binding sites probably lie near the central holes of the virions.
Collapse
Affiliation(s)
- D A Hendry
- Department of Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | | |
Collapse
|
33
|
Shire SJ, Steckert JJ, Schuster TM. Mechanism of self-assembly of tobacco mosaic virus protein. II. Characterization of the metastable polymerization nucleus and the initial stages of helix formation. J Mol Biol 1979; 127:487-506. [PMID: 34730 DOI: 10.1016/0022-2836(79)90233-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|