1
|
Shao L, Dong Y, Chen S, Sheng J, Cai L, Xu X, Wang H. Revealing extracellular protein profile and excavating spoilage-related proteases of Aeromonas salmonicida based on multi-omics investigation. Int J Biol Macromol 2024; 265:130916. [PMID: 38492699 DOI: 10.1016/j.ijbiomac.2024.130916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Aeromonas is a ubiquitous aquatic bacteria, and it is a significant factor contributing to meat spoilage during processing and consumption. The abilities of Aeromonas salmonicida 29 and 57, which exhibit spoilage heterogeneity, to secrete protease, lipase, hemolysin, gelatinase, amylase, and lecithinase were confirmed by plate method. A total of 3948 proteins were identified by ITRAQ in extracellular secretions of A. salmonicida, and 16 proteases were found to be potentially related to spoilage ability. The complete genome sequence of A. salmonicida 57 consists of one circular chromosome and three plasmids, while A. salmonicida 29 consists of one circular chromosome, without a plasmid. Transcriptomic analysis revealed a significant number of DEGs were up-regulated in A. salmonicida 29, which were mainly enriched in metabolic pathways (e.g., amino acid metabolism, carbohydrate metabolism), indicating that A. salmonicida 29 had better potential to decompose and utilize nutrients in meat. Six protease genes (2 pepB, hap, pepA, ftsI, and pepD) were excavated by combined ITRAQ with transcriptome analysis, which potentially contribute to bacterial spoilage ability and exhibit universality among other dominant spoilage bacteria. This investigation provides new insights and evidence for elucidating metabolic and spoilage phenotypic differences and provides candidate genes and strategies for future prevention and control technology development.
Collapse
Affiliation(s)
- Liangting Shao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Dong
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shanshan Chen
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Junsheng Sheng
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Linlin Cai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huhu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
2
|
Liao J, Shen D, Lin L, Chen H, Jin Y, Chou SH, Yu XQ, Li T, Qian G. Bacterial quorum sensing quenching activity of Lysobacter leucyl aminopeptidase acts by interacting with autoinducer synthase. Comput Struct Biotechnol J 2021; 19:6179-6190. [PMID: 34900131 PMCID: PMC8632722 DOI: 10.1016/j.csbj.2021.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 01/02/2023] Open
Abstract
Acyl-homoserine lactone (AHL) is the most studied autoinducer in gram-negative bacteria controlling infections of various pathogens. Quenching of AHL signaling by inhibiting AHL synthesis or AHL-receptor binding via small molecular chemicals or enzymatically degrading AHL is commonly used to block bacterial infections. Here, we describe a new quorum-quenching strategy that directly “acquires” bacterial genes/proteins through a defined platform. We artificially expressed a typical AHL synthase gene pcoI from the biocontrol Pseudomonas fluorescens 2P24 in the antifungal bacterium Lysobacter enzymogenes OH11 lacking AHL production. This step led to the discovery of multiple PcoI interacting protein candidates from L. enzymogenes. The individual expression of these candidate genes in 2P24 led to the identification of Le0959, which encodes leucyl aminopeptidase, an effective protein that inhibits AHL synthesis in 2P24. Therefore, we define Le0959 as LqqP (Lysobacterquorum-quenching protein). The expression of pcoI in E. coli could produce AHL, and the introduction of lqqP into E. coli expressing pcoI could prevent the production of AHL. LqqP directly binds to PcoI, and this protein–protein binding reduced the abundance of free PcoI (capable of AHL synthesis) in vivo, thereby blocking PcoI-dependent AHL production. Overall, this study highlights the discovery of LqqP in quenching AHL quorum sensing by binding to AHL synthase via developing a previously-uncharacterized screening technique for bacterial quorum quenching.
Collapse
Affiliation(s)
- Jinxing Liao
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Danyu Shen
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Long Lin
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yajie Jin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Xiao-Quan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Guoliang Qian
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
3
|
Bhat SY, Qureshi IA. Mutations of key substrate binding residues of leishmanial peptidase T alter its functional and structural dynamics. Biochim Biophys Acta Gen Subj 2020; 1864:129465. [DOI: 10.1016/j.bbagen.2019.129465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/15/2019] [Accepted: 10/24/2019] [Indexed: 11/27/2022]
|
4
|
Liew SM, Tay ST, Puthucheary SD. Enzymatic and molecular characterisation of leucine aminopeptidase of Burkholderia pseudomallei. BMC Microbiol 2013; 13:110. [PMID: 23682954 PMCID: PMC3680066 DOI: 10.1186/1471-2180-13-110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 05/17/2013] [Indexed: 12/03/2022] Open
Abstract
Background Leucine aminopeptidase (LAP) has been known to be a housekeeping protease, DNA-binding protein and repressor or activator in the operon regulation of virulence-associated genes in several bacterial species. LAP activity was consistently detected in overnight cultures of Burkholderia pseudomallei, the causative agent of melioidosis and this enzyme was partially purified and characterised in this study. The intra- and inter-species nucleotide and deduced amino acid sequence variation of LAP encoding gene (pepA) was determined. A pepA/PCR-RFLP assay was designed to facilitate the identification of major LAP sequence types amongst clinical and environmental isolates of B. pseudomallei. Results LAP activity was detected in B. pseudomallei culture supernantants by zymographic analysis. Optimum activity was at pH 9 and stable at 50°C. Enhanced enzymatic activity was observed in the presence of metallic ions Mg2+, Ca2+, Na+ and K+. LAP activity was inhibited by EDTA, 1,10-phenanthroline, amastatin, Mn2+ and Zn2+. Sequence analysis of the complete nucleotide and deduced amino acid sequences of LAP-encoding (pepA) gene showed close genetic relatedness to B. mallei (similarity 99.7%/99.6%), but not with B. thailandensis (96.4%/96.4%). Eight pepA sequence types were identified by comparison with a 596 bp DNA fragment encompassing central regions of the pepA gene. A pepA/PCR-RFLP was designed to differentiate pepA sequence types. Based on restriction analysis with StuI and HincII enzymes of the amplified pepA gene, clinical and environmental isolates showed different predominant RFLP types. Type I was the most predominant type amongst 73.6% (67/91) of the clinical isolates, while Type II was predominant in 55.6% (5/9) of the environmental isolates. Conclusions This study showed that LAP is a secretory product of B. pseudomallei with features similar to LAP of other organisms. Identification of major LAP sequence types of B. pseudomallei was made possible based on RFLP analysis of the pepA gene. The high LAP activity detected in both B. pseudomallei and B. thailandensis, suggests that LAP is probably a housekeeping enzyme rather than a virulence determinant.
Collapse
|
5
|
Bhosale M, Kumar A, Das M, Bhaskarla C, Agarwal V, Nandi D. Catalytic activity of Peptidase N is required for adaptation of Escherichia coli to nutritional downshift and high temperature stress. Microbiol Res 2013; 168:56-64. [PMID: 22766257 DOI: 10.1016/j.micres.2012.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/23/2012] [Accepted: 06/05/2012] [Indexed: 11/25/2022]
Abstract
Peptidase N (PepN), the sole M1 family member in Escherichia coli, displays broad substrate specificity and modulates stress responses: it lowers resistance to sodium salicylate (NaSal)-induced stress but is required during nutritional downshift and high temperature (NDHT) stress. The expression of PepN does not significantly change during different growth phases in LB or NaSal-induced stress; however, PepN amounts are lower during NDHT stress. To gain mechanistic insights on the roles of catalytic activity of PepN in modulating these two stress responses, alanine mutants of PepN replacing E264 (GAMEN motif) and E298 (HEXXH motif) were generated. There are no major structural changes between purified wild type (WT) and mutant proteins, which are catalytically inactive. Importantly, growth profiles of ΔpepN upon expression of WT or mutant proteins demonstrated the importance of catalytic activity during NDHT but not NaSal-induced stress. Further fluorescamine reactivity studies demonstrated that the catalytic activity of PepN is required to generate higher intracellular amounts of free N-terminal amino acids; consequently, the lower growth of ΔpepN during NDHT stress increases with high amounts of casamino acids. Together, this study sheds insights on the expression and functional roles of the catalytic activity of PepN during adaptation to NDHT stress.
Collapse
Affiliation(s)
- Manoj Bhosale
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | | |
Collapse
|
6
|
Amy PS, Morita RY. Protein Patterns of Growing and Starved Cells of a Marine Vibrio sp. Appl Environ Microbiol 2010; 45:1748-52. [PMID: 16346308 PMCID: PMC242533 DOI: 10.1128/aem.45.6.1748-1752.1983] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fingerprint protein patterns were produced by two-dimensional polyacrylamide electrophoresis on lysed cells of a Vibrio sp., Ant-300, which were prepared from growing and starved cultures. The cells were labeled with [S]methionine during growth and subsequently starved for up to 30 days. Samples were taken at selected time points representing stages in the starvation-survival process. Unlabeled starved cells were allowed to recover in the presence of [S]methionine to determine protein changes associated with the recovery from starvation. All growth conditions produced similar protein fingerprints; however, some protein spots disappeared, whereas others were seen only during starvation.
Collapse
Affiliation(s)
- P S Amy
- Department of Microbiology and School of Oceanography, Oregon State University, Corvallis, Oregon 97331
| | | |
Collapse
|
7
|
Thomas S, Besset C, Courtin P, Rul F. The role of aminopeptidase PepS in the growth of Streptococcus thermophilus is not restricted to nitrogen nutrition. J Appl Microbiol 2010; 108:148-57. [PMID: 19583797 DOI: 10.1111/j.1365-2672.2009.04400.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To investigate the effect of an absence of aminopeptidase PepS on the growth of Streptococcus thermophilus on different media and at different temperatures. METHODS AND RESULTS Using gene interruption, a negative mutant of the Strep. thermophilus CNRZ385 strain was constructed for the aminopeptidase PepS (strain DeltapepS). Checks were first of all made using biochemical assays that the DeltapepS strain lacks the peptide hydrolase activity of aminopeptidase PepS. It was demonstrated that the absence of the aminopeptidase PepS exerted a negative effect on growth whatever the culture medium (M17, chemically defined medium, milk). The role of aminopeptidase PepS in growth was enhanced at a high temperature (45 degrees C vs 37 degrees C). The DeltapepS strain was more resistant to lysozyme than the wild-type strain. CONCLUSIONS We were able to demonstrate that aminopeptidase PepS probably plays a pleiotropic role through its involvement in growth via nitrogen nutrition, as well as via other cellular functions/metabolisms (such as peptidoglycane metabolism). SIGNIFICANCE AND IMPACT OF THE STUDY This study constitutes the first report on the role of a member of the M29 MEROPS family of metallopeptidases (http://merops.sanger.ac.uk/).
Collapse
Affiliation(s)
- S Thomas
- Unité de Biochimie Bactérienne, INRA, UR477, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
8
|
Abdallah J, Caldas T, Kthiri F, Kern R, Richarme G. YhbO protects cells against multiple stresses. J Bacteriol 2007; 189:9140-4. [PMID: 17933887 PMCID: PMC2168597 DOI: 10.1128/jb.01208-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 10/02/2007] [Indexed: 11/20/2022] Open
Abstract
YhbO is a member of the DJ-1/ThiJ/Pfp1 superfamily, which includes chaperones, peptidases, and the Parkinson's disease protein DJ-1. A yhbO-disrupted mutant of Escherichia coli is highly sensitive to oxidative, thermal, UV, and pH stresses, and the putative nucleophilic cysteine C104 of YhbO is required for stress resistance. These results suggest that YhbO affects a central process in stress management.
Collapse
Affiliation(s)
- Jad Abdallah
- Stress Molecules, Institut Jacques Monod, Université Paris 7, 2 Place Jussieu, 75005 Paris, France
| | | | | | | | | |
Collapse
|
9
|
Patil V, Kumar A, Kuruppath S, Nandi D. Peptidase N encoded by Salmonella enterica serovar Typhimurium modulates systemic infection in mice. ACTA ACUST UNITED AC 2007; 51:431-42. [PMID: 17877733 DOI: 10.1111/j.1574-695x.2007.00323.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cytosolic protein degradation pathway, involving ATP-dependent proteases and ATP-independent peptidases, is important for modulating several cellular responses. The involvement of pathogen-encoded ATP-dependent proteases is well established during infection. However, the roles of ATP-independent peptidases in this process are not well studied. The functional role of Peptidase N (PepN), an ATP-independent enzyme belonging to the M1 family, during systemic infection of mice by Salmonella enterica serovar Typhimurium (Salmonella typhimurium) was investigated. In a systemic model of infection, the number of CFU of S. typhimurium containing a targeted deletion in peptidase N (DeltapepN), compared with wild type, was significantly higher in the lymph node and spleen. In addition, S. typhimurium replicated in the thymus and greatly reduced the number of immature CD4(+)CD8(+) thymocytes in a dose- and time-dependent manner. Strains lacking or overexpressing pepN were used to show that the reduction in the number of thymocytes, but not lymph node cells, depends on a critical number of CFU. These findings establish a role for PepN in reducing the in vivo CFU of S. typhimurium during systemic infection. The implications of these results, in the context of the roles of proteases and peptidases, during host-pathogen interactions are discussed.
Collapse
Affiliation(s)
- Veerupaxagouda Patil
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | | | | | | |
Collapse
|
10
|
Tabata K, Hashimoto SI. Fermentative production of L-alanyl-L-glutamine by a metabolically engineered Escherichia coli strain expressing L-amino acid alpha-ligase. Appl Environ Microbiol 2007; 73:6378-85. [PMID: 17720844 PMCID: PMC2075057 DOI: 10.1128/aem.01249-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In spite of its clinical and nutritional importance, l-alanyl-l-glutamine (Ala-Gln) has not been widely used due to the absence of an efficient manufacturing method. Here, we present a novel method for the fermentative production of Ala-Gln using an Escherichia coli strain expressing l-amino acid alpha-ligase (Lal), which catalyzes the formation of dipeptides by combining two amino acids in an ATP-dependent manner. Two metabolic manipulations were necessary for the production of Ala-Gln: reduction of dipeptide-degrading activity by combinatorial disruption of the dpp and pep genes and enhancement of the supply of substrate amino acids by deregulation of glutamine biosynthesis and overexpression of heterologous l-alanine dehydrogenase (Ald). Since expression of Lal was found to hamper cell growth, it was controlled using a stationary-phase-specific promoter. The final strain constructed was designated JKYPQ3 (pepA pepB pepD pepN dpp glnE glnB putA) containing pPE167 (lal and ald expressed under the control of the uspA promoter) or pPE177 (lal and ald expressed under the control of the rpoH promoter). Either strain produced more than 100 mM Ala-Gln extracellularly, in fed-batch cultivation on glucose-ammonium salt medium, without added alanine and glutamine. Because of the characteristics of Lal, no longer peptides (such as tripeptides) or dipeptides containing d-amino acids were formed.
Collapse
Affiliation(s)
- Kazuhiko Tabata
- Technical Research Laboratories, Kyowa Hakko Kogyo Co. Ltd., 1-1 Kyowa-cho, Hofu-shi, 747-8522 Yamaguchi, Japan
| | | |
Collapse
|
11
|
Kumar A, Nandi D. Characterization and role of Peptidase N from Salmonella enterica serovar Typhimurium. Biochem Biophys Res Commun 2006; 353:706-12. [PMID: 17196937 DOI: 10.1016/j.bbrc.2006.12.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 12/12/2006] [Indexed: 11/24/2022]
Abstract
ATP-independent peptidases are important during the distal steps of cytosolic protein degradation. The contribution of a member of this group, Peptidase N (PepN) was studied in Salmonella enterica serovar Typhimurium (Salmonella typhimurium). The DeltapepN strain displays greatly reduced cleavage of 9 out of a total of 13 exopeptidase substrates, demonstrating a significant contribution of PepN to cytosolic aminopeptidase activity. The cleavage profile of purified S. typhimurium PepN is Arg>Ala>Thr, demonstrating broad specificity. Comparative biochemical studies with purified PepN from Escherichia coli and S. typhimurium revealed the latter to be distinct: S. typhimurium PepN cleaves Thr-AMC more efficiently and is less sensitive to inhibition by N-ethylmaleimide. Studies with DeltapepN and PepN overexpression demonstrated its importance for growth during nutritional downshift in combination with high temperature stress. In summary, S. typhimurium PepN contributes significantly to cytosolic aminopeptidase activity and its role is manifested under selected stress conditions.
Collapse
Affiliation(s)
- Anujith Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
12
|
Addlagatta A, Gay L, Matthews BW. Structure of aminopeptidase N from Escherichia coli suggests a compartmentalized, gated active site. Proc Natl Acad Sci U S A 2006; 103:13339-44. [PMID: 16938892 PMCID: PMC1569165 DOI: 10.1073/pnas.0606167103] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aminopeptidase N from Escherichia coli is a major metalloprotease that participates in the controlled hydrolysis of peptides in the proteolytic pathway. Determination of the 870-aa structure reveals that it has four domains similar to the tricorn-interacting factor F3. The thermolysin-like active site is enclosed within a large cavity with a volume of 2,200 A(3), which is inaccessible to substrates except for a small opening of approximately 8-10 A. The substrate-based inhibitor bestatin binds to the protein with minimal changes, suggesting that this is the active form of the enzyme. The previously described structure of F3 had three distinct conformations that were described as "closed," "intermediate," and "open." The structure of aminopeptidase N from E. coli, however, is substantially more closed than any of these. Taken together, the results suggest that these proteases, which are involved in intracellular peptide degradation, prevent inadvertent hydrolysis of inappropriate substrates by enclosing the active site within a large cavity. There is also some evidence that the open form of the enzyme, which admits substrates, remains inactive until it adopts the closed form.
Collapse
Affiliation(s)
- Anthony Addlagatta
- Howard Hughes Medical Institute and Institute of Molecular Biology and Department of Physics, University of Oregon, Eugene, OR 97403-1229
| | - Leslie Gay
- Howard Hughes Medical Institute and Institute of Molecular Biology and Department of Physics, University of Oregon, Eugene, OR 97403-1229
| | - Brian W. Matthews
- Howard Hughes Medical Institute and Institute of Molecular Biology and Department of Physics, University of Oregon, Eugene, OR 97403-1229
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Goyal N, Duncan R, Selvapandiyan A, Debrabant A, Baig MS, Nakhasi HL. Cloning and characterization of angiotensin converting enzyme related dipeptidylcarboxypeptidase from Leishmania donovani. Mol Biochem Parasitol 2005; 145:147-57. [PMID: 16257064 DOI: 10.1016/j.molbiopara.2005.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 09/20/2005] [Accepted: 09/23/2005] [Indexed: 11/30/2022]
Abstract
We report the first identification, gene cloning, recombinant expression and biochemical characterization of an angiotensin converting enzyme (ACE) related dipeptidylcarboxypeptidase (DCP) in a protozoan parasite. The mammalian counterpart of this enzyme, peptidyl dipeptidase A (a carboxyl dipeptidase) also known as ACE leads to the cleavage of angiotensin I to produce a potent vasopressor. The catalytic enzyme activity of its Escherichia coli DCP counter part can be inhibited by the antihypertensive drug captopril, suggesting that this class of enzymes constitutes a novel target for drugs and vaccines. By utilizing a DNA microarray expression profiling approach, we identified a gene encoding a DCP enzyme for the kinetoplast protozoan Leishmania donovani (LdDCP) that was differentially expressed in promastigote and amastigote stages of the parasite life cycle. Both RNA and protein levels of LdDCP are higher in axenic amastigotes compared to promastigotes. Immuno-fluorescence analysis revealed the cytosolic expression of the protein. Primary structure analysis of LdDCP revealed the presence of an active Zn binding site. When expressed in E. coli, the recombinant enzyme showed carboxy-dipeptidase activity with synthetic substrates. Replacement of two histidine and one glutamic acid at positions 466, 470 and 467, respectively, with alanine residues in its active site resulted in loss of enzyme activity. Captopril, an ACE specific inhibitor was able both to reduce significantly LdDCP enzyme activity and to inhibit promastigote growth. Both its cytosolic location and close homology to DCPs from bacterial species suggests a role in parasite nutrition. Further, identification of LdDCP now provides an opportunity to investigate Leishmania peptidases for their potential as drug and vaccine targets.
Collapse
Affiliation(s)
- Neena Goyal
- Division of Biochemistry, Central Drug Research Institute, Lucknow 226001, Uttar Pradesh, India.
| | | | | | | | | | | |
Collapse
|
14
|
Malki A, Caldas T, Abdallah J, Kern R, Eckey V, Kim SJ, Cha SS, Mori H, Richarme G. Peptidase activity of the Escherichia coli Hsp31 chaperone. J Biol Chem 2004; 280:14420-6. [PMID: 15550391 DOI: 10.1074/jbc.m408296200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp31, the Escherichia coli hcha gene product, is a molecular chaperone whose activity is inhibited by ATP at high temperature. Its crystal structure reveals a putative Cys(184), His(185), and Asp(213) catalytic triad similar to that of the Pyrococcus horikoshii protease PH1704, suggesting that it should display a proteolytic activity. A preliminary report has shown that Hsp31 has an exceedingly weak proteolytic activity toward bovine serum albumin and a peptidase activity toward two peptide substrates with small amino acids at their N terminus (alanine or glycine), but the physiological significance of this observation remains unclear. In this study, we report that Hsp31 does not diplay any significant proteolytic activity but has peptidolytic activity. The aminopeptidase cleavage preference of Hsp31 is Ala > Lys > Arg > His, suggesting that Hsp31 is an aminopeptidase of broad specificity. Its aminopeptidase activity is inhibited by the thiol reagent iodoacetamide and is completely abolished in a C185A mutant, which is consistent with Hsp31 being a cysteine peptidase. The aminopeptidase activity of Hsp31 is also inhibited by EDTA and 1,10-phenanthroline, in concordance with the importance of the putative His(85), His(122), and Glu(90) metal-binding site revealed by crystallographic studies. An Hsp31-deficient mutant accumulates more 8-12-mer peptides than its parental strain, and purified Hsp31 can transform these peptides into smaller peptides, suggesting that Hsp31 has an important peptidase function both in vivo and in vitro. Proteins interacting with Hsp31 have been identified by reverse purification of a crude E. coli extract on an Hsp31-affinity column, followed by SDS-polyacrylamide electrophoresis and mass spectrometry. The ClpA component of the ClpAP protease, the chaperone GroEL, elongation factor EF-Tu, and tryptophanase were all found to interact with Hsp31, thus substantiating the role of Hsp31 as both chaperone and peptidase.
Collapse
Affiliation(s)
- Abderrahim Malki
- Stress Molecules, Institut Jacques Monod, Université Paris 7, 2 place Jussieu, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ma X, Zhou X, Yoshimoto T. Purification and properties of a novel glycine amino peptidase from Actinomucor elegans and its potential application. J Appl Microbiol 2004; 97:985-91. [PMID: 15479413 DOI: 10.1111/j.1365-2672.2004.02373.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To study the properties and show the potential application of a glycine aminopeptidase from Actinomucor elegans. METHODS AND RESULTS The enzyme was estimated to have molecular mass of 320 kDa by gel filtration and the subunit size of 56.5 kDa by SDS-PAGE. It hydrolysed glycine from substrate more efficiently than other amino acids. The optimal temperature for this enzyme was 40 degrees C and at pH 8.0 it showed its highest activity. The Km and Kcat of the enzyme for glycine-beta-naphthylamine was 0.24 mm and 100.8 s(-1), respectively. Zinc, copper, cadmium and o-phenanthrolin suppressed almost all enzyme activities at the concentration of 1.0 mm. In the process of hydrolysing proteins, it could improve the protease activity considerably. CONCLUSIONS It was a hexamer metalloenzyme which was specific for the substrates with glycinse residue at the N-terminal and some metal cations were needed to maintain its activity. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates the properties of a novel aminopeptidase and shows its potential application in the process of the food industry.
Collapse
Affiliation(s)
- X Ma
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China.
| | | | | |
Collapse
|
16
|
Chandu D, Nandi D. PepN is the major aminopeptidase in Escherichia coli: insights on substrate specificity and role during sodium-salicylate-induced stress. MICROBIOLOGY-SGM 2004; 149:3437-3447. [PMID: 14663077 DOI: 10.1099/mic.0.26518-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PepN and its homologues are involved in the ATP-independent steps (downstream processing) during cytosolic protein degradation. To obtain insights into the contribution of PepN to the peptidase activity in Escherichia coli, the hydrolysis of a selection of endopeptidase and exopeptidase substrates was studied in extracts of wild-type strains and two pepN mutants, 9218 and DH5alphaDeltapepN. Hydrolysis of three of the seven endopeptidase substrates tested was reduced in both pepN mutants. Similar studies revealed that hydrolysis of 10 of 14 exopeptidase substrates studied was greatly reduced in both pepN mutants. This decreased ability to cleave these substrates is pepN-specific as there is no reduction in the ability to hydrolyse exopeptidase substrates in E. coli mutants lacking other peptidases, pepA, pepB or pepE. PepN overexpression complemented the hydrolysis of the affected exopeptidase substrates. These results suggest that PepN is responsible for the majority of aminopeptidase activity in E. coli. Further in vitro studies with purified PepN revealed a preference to cleave basic and small amino acids as aminopeptidase substrates. Kinetic characterization revealed the aminopeptidase cleavage preference of E. coli PepN to be Arg>Ala>Lys>Gly. Finally, it was shown that PepN is a negative regulator of the sodium-salicylate-induced stress in E. coli, demonstrating a physiological role for this aminoendopeptidase under some stress conditions.
Collapse
Affiliation(s)
- Dilip Chandu
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
17
|
Flanagan JM, Bewley MC. Protein quality control in bacterial cells: integrated networks of chaperones and ATP-dependent proteases. GENETIC ENGINEERING 2003; 24:17-47. [PMID: 12416299 DOI: 10.1007/978-1-4615-0721-5_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- John M Flanagan
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | |
Collapse
|
18
|
Chandu D, Kumar A, Nandi D. PepN, the major Suc-LLVY-AMC-hydrolyzing enzyme in Escherichia coli, displays functional similarity with downstream processing enzymes in Archaea and eukarya. Implications in cytosolic protein degradation. J Biol Chem 2003; 278:5548-56. [PMID: 12482750 DOI: 10.1074/jbc.m207926200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Succinyl-Leu-Leu-Val-Tyr-7-amido-4-methylcoumarin (Suc-LLVY-AMC), a fluorogenic endopeptidase substrate, is used to detect 20 S proteasomal activity from Archaea to mammals. An o-phenanthroline-sensitive Suc-LLVY-AMC hydrolyzing activity was detected in Escherichia coli although it lacks 20 S proteasomes. We identified PepN, previously characterized as the sole alanine aminopeptidase in E. coli, to be responsible for the hydrolysis of Suc-LLVY-AMC. PepN is an aminoendopeptidase. First, extracts from an ethyl methanesulfonate-derived PepN mutant, 9218, did not cleave Suc-LLVY-AMC and L-Ala-para-nitroanilide (pNA). Second, biochemically purified PepN cleaves a wide variety of both aminopeptidase and endopeptidase substrates, and L-Ala-pNA is cleaved more efficiently than other substrates. Studies with bestatin, an aminopeptidase-specific inhibitor, suggest differences in the mechanisms of cleavage of aminopeptidase and endopeptidase substrates. Third, PepN hydrolyzes whole proteins, casein and albumin. Finally, an E. coli strain with a targeted deletion in PepN also lacks the ability to cleave Suc-LLVY-AMC and L-Ala-pNA, and expression of wild type PepN in this mutant rescues both activities. In addition, we identified a low molecular weight Suc-LLVY-AMC-cleaving peptidase in Mycobacterium smegmatis, a eubacteria harboring 20 S proteasomes, to be an aminopeptidase homologous to E. coli PepN, by mass spectrometry analysis. "Sequence-based homologues" of PepN include well characterized aminopeptidases, e.g. Tricorn interacting factors F2 and F3 in Archaea and puromycin-sensitive aminopeptidase in mammals. However, our results suggest that eubacterial PepN and its homologues displaying aminoendopeptidase activities may be "functionally similar" to enzymes important in downstream processing of proteins in the cytosol: Tricorn-F1-F2-F3 complex in Archaea and TPPII/Multicorn in eukaryotes.
Collapse
Affiliation(s)
- Dilip Chandu
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
19
|
García-Carreño FL, Navarrete del Toro MA, Serviere-Zaragoza E. Digestive enzymes in juvenile green abalone, Haliotis fulgens, fed natural food. Comp Biochem Physiol B Biochem Mol Biol 2003; 134:143-50. [PMID: 12524042 DOI: 10.1016/s1096-4959(02)00221-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Enzymes responsible for the digestion of food protein by juvenile green abalone (Haliotis fulgens) were studied when fed algae or a sea grass (Phyllospadix torreyi) naturally occurring in the habitat. The effect of food on the composition and activity of the enzymes was also evaluated. Acid, serine proteinases and aminopeptidases, as confirmed by pH profile of activity, specific inhibition and synthetic substrate hydrolysis were found in the digestive organs of juvenile green abalone. Algae and sea grass differentially affected the digestive system in abalone.
Collapse
Affiliation(s)
- F L García-Carreño
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), P.O. Box 128, La Paz, BCS 23000, Mexico.
| | | | | |
Collapse
|
20
|
Håkansson K, Miller CG. Structure of peptidase T from Salmonella typhimurium. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:443-50. [PMID: 11856302 DOI: 10.1046/j.0014-2956.2001.02665.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The structure of peptidase T, or tripeptidase, was determined by multiple wavelength anomalous dispersion (MAD) methodology and refined to 2.4 A resolution. Peptidase T comprises two domains; a catalytic domain with an active site containing two metal ions, and a smaller domain formed through a long insertion into the catalytic domain. The two metal ions, presumably zinc, are separated by 3.3 A, and are coordinated by five carboxylate and histidine ligands. The molecular surface of the active site is negatively charged. Peptidase T has the same basic fold as carboxypeptidase G2. When the structures of the two enzymes are superimposed, a number of homologous residues, not evident from the sequence alone, could be identified. Comparison of the active sites of peptidase T, carboxypeptidase G2, Aeromonas proteolytica aminopeptidase, carboxypeptidase A and leucine aminopeptidase reveals a common structural framework with interesting similarities and differences in the active sites and in the zinc coordination. A putative binding site for the C-terminal end of the tripeptide substrate was found at a peptidase T specific fingerprint sequence motif.
Collapse
Affiliation(s)
- Kjell Håkansson
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
21
|
Mathew Z, Knox TM, Miller CG. Salmonella enterica serovar typhimurium peptidase B is a leucyl aminopeptidase with specificity for acidic amino acids. J Bacteriol 2000; 182:3383-93. [PMID: 10852868 PMCID: PMC101900 DOI: 10.1128/jb.182.12.3383-3393.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptidase B (PepB) of Salmonella enterica serovar Typhimurium is one of three broad-specificity aminopeptidases found in this organism. We have sequenced the pepB gene and found that it encodes a 427-amino-acid (46.36-kDa) protein, which can be unambiguously assigned to the leucyl aminopeptidase (LAP) structural family. PepB has been overexpressed and purified. The active enzyme shows many similarities to other members of the LAP family: it is a heat-stable (70 degrees C; 20 min) hexameric ( approximately 270-kDa) metallopeptidase with a pH optimum of 8.5 to 9.5. A detailed study of the substrate specificity of the purified protein shows that it differs from other members of the family in its ability to hydrolyze peptides with N-terminal acidic residues. The preferred substrates for PepB are peptides with N-terminal Asp or Glu residues. Comparison of the amino acid sequence of PepB with those of other LAPs leads to the conclusion that PepB is the prototype of a new LAP subfamily with representatives in several other eubacterial species and to the prediction that the members of this family share the ability to hydrolyze peptides with N-terminal acidic residues. Site-directed mutagenesis has been used to show that this specificity appears to be determined by a single Lys residue present in a sequence motif conserved in all members of the subfamily.
Collapse
Affiliation(s)
- Z Mathew
- Department of Microbiology, University of Illinois at Urbana-Champaign, 61801, USA
| | | | | |
Collapse
|
22
|
Jana TK, Srivastava AK, Csery K, Arora DK. Influence of growth and environmental conditions on cell surface hydrophobicity ofPseudomonas fluorescensin non-specific adhesion. Can J Microbiol 1999. [DOI: 10.1139/w99-104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The relative cell surface hydrophobicity (CSH) of 18 soil isolates of Pseudomonas fluorescens, determined by phase exclusion, hydrophobic interaction chromatography (HIC), electrostatic interaction chromatography (ESIC), and contact angle, revealed large degrees of variability. Variation in the adhesion efficiency to Macrophomina phaseolina of the hyphae/sclerotia of these isolates was also examined. Two such isolates with maximum (32.8%; isolate 12-94) and minimum (12%; isolate 30-94) CSH were selected for further study. Early- to mid-log exponential cells of these isolates were more hydrophobic than those in stationary phase, and the CSH of these isolates was also influenced by fluctuations in temperatures and pH. Isolate 12-94 exhibited high CSH (32.3%) at 30°C, compared to lower values (28-24%) in the higher temperature range (35-40°C). Increasing concentrations of either Zn2+, Fe3+, K+, and Mg2+in the growth medium were associated with the increased CSH. Trypsin, pepsin, and proteinase K (75 to 150 μg·mL-1) reduced the CSH of isolate 12-94 cells. CSH was reduced, following exposure to DTT, SDS, Triton X-100, or Tween 80. Prolonged exposure of cells to starvation (60 days) also caused a significant decline in CSH. Several protein bands (18, 21, 23, 26 kDa) of the outer cell membrane were absent in 60-day starved cells compared to unstarved cells. In conclusion, our findings demonstrate that CSH of P. fluorescens isolates may contribute to non-specific attachment/adhesion onto M. phaseolina hyphae/sclerotia, and the efficiency of adhesion is regulated by growth and other environmental conditions. Key words: adhesion, hydrophobicity, Pseudomonas fluorescens, Macrophomina phaseolina
Collapse
|
23
|
Kuroda A, Tanaka S, Ikeda T, Kato J, Takiguchi N, Ohtake H. Inorganic polyphosphate kinase is required to stimulate protein degradation and for adaptation to amino acid starvation in Escherichia coli. Proc Natl Acad Sci U S A 1999; 96:14264-9. [PMID: 10588694 PMCID: PMC24425 DOI: 10.1073/pnas.96.25.14264] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inorganic polyphosphate (polyP) kinase was studied for its roles in physiological responses to nutritional deprivation in Escherichia coli. A mutant lacking polyP kinase exhibited an extended lag phase of growth, when shifted from a rich to a minimal medium (nutritional downshift). Supplementation of amino acids to the minimal medium abolished the extended growth lag of the mutant. Levels of the stringent response factor, guanosine 5'-diphosphate 3'-diphosphate, increased in response to the nutritional downshift, but, unlike in the wild type, the levels were sustained in the mutant. These results suggested that the mutant was impaired in the induction of amino acid biosynthetic enzymes. The expression of an amino acid biosynthetic gene, hisG, was examined by using a transcriptional lacZ fusion. Although the mutant did not express the fusion in response to the nutritional downshift, Northern blot analysis revealed a significant increase of hisG-lacZ mRNA. Amino acids generated by intracellular protein degradation are very important for the synthesis of enzymes at the onset of starvation. In the wild type, the rate of protein degradation increased in response to the nutritional downshift whereas it did not in the mutant. Supplementation of amino acids at low concentrations to the minimal medium enabled the mutant to express the hisG-lacZ fusion. Thus, the impaired regulation of protein degradation results in the adaptation defect, suggesting that polyP kinase is required to stimulate protein degradation.
Collapse
Affiliation(s)
- A Kuroda
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Wickner S, Maurizi MR, Gottesman S. Posttranslational quality control: folding, refolding, and degrading proteins. Science 1999; 286:1888-93. [PMID: 10583944 DOI: 10.1126/science.286.5446.1888] [Citation(s) in RCA: 779] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Polypeptides emerging from the ribosome must fold into stable three-dimensional structures and maintain that structure throughout their functional lifetimes. Maintaining quality control over protein structure and function depends on molecular chaperones and proteases, both of which can recognize hydrophobic regions exposed on unfolded polypeptides. Molecular chaperones promote proper protein folding and prevent aggregation, and energy-dependent proteases eliminate irreversibly damaged proteins. The kinetics of partitioning between chaperones and proteases determines whether a protein will be destroyed before it folds properly. When both quality control options fail, damaged proteins accumulate as aggregates, a process associated with amyloid diseases.
Collapse
Affiliation(s)
- S Wickner
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | | | | |
Collapse
|
25
|
Tamura N, Lottspeich F, Baumeister W, Tamura T. The role of tricorn protease and its aminopeptidase-interacting factors in cellular protein degradation. Cell 1998; 95:637-48. [PMID: 9845366 DOI: 10.1016/s0092-8674(00)81634-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Tricorn protease was previously described as the core enzyme of a modular proteolytic system displaying multicatalytic activity. Here we elucidate the mode of cooperation between Tricorn and its interacting factors, and we identify two additional factors, F2 and F3, closely related aminopeptidases of 89 kDa. In conjunction with these three factors, Tricorn degrades oligopeptides in a sequential manner, yielding free amino acids. We have been able to reconstitute a proteolytic pathway comprising the proteasome, Tricorn, and its interacting factors, F1, F2, and F3, which converts proteins efficiently into amino acids. Therefore, it is quite likely that Tricorn also acts in vivo downstream of the proteasome and, in cooperation with its interacting factors, completes protein catabolic pathways.
Collapse
Affiliation(s)
- N Tamura
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | |
Collapse
|
26
|
Farewell A, Neidhardt FC. Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J Bacteriol 1998; 180:4704-10. [PMID: 9721314 PMCID: PMC107486 DOI: 10.1128/jb.180.17.4704-4710.1998] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report, we examine the effect of temperature on protein synthesis. The rate of protein accumulation is determined by three factors: the number of working ribosomes, the rate at which ribosomes are working, and the rate of protein degradation. Measurements of RNA/protein ratios and the levels of individual ribosomal proteins and rRNA show that the cellular amount of ribosomal machinery in Escherichia coli is constant between 25 and 37 degreesC. Within this range, in a given medium, temperature affects ribosomal function the same as it affects overall growth. Two independent methodologies show that the peptide chain elongation rate increases as a function of temperature identically to growth rate up to 37 degreesC. Unlike the growth rate, however, the elongation rate continues to increase up to 44 degreesC at the same rate as between 25 and 37 degreesC. Our results show that the peptide elongation rate is not rate limiting for growth at high temperature. Taking into consideration the number of ribosomes per unit of cell mass, there is an apparent excess of protein synthetic capacity in these cells, indicating a dramatic increase in protein degradation at high temperature. Temperature shift experiments show that peptide chain elongation rate increases immediately, which supports a mechanism of heat shock response induction in which an increase in unfolded, newly translated protein induces this response. In addition, we find that at low temperature (15 degreesC), cells contain a pool of nontranslating ribosomes which do not contribute to cell growth, supporting the idea that there is a defect in initiation at low temperature.
Collapse
Affiliation(s)
- A Farewell
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
27
|
Schrögel O, Krispin O, Allmansberger R. Expression of a pepT homologue from Bacillus subtilis. FEMS Microbiol Lett 1996; 145:341-8. [PMID: 8978088 DOI: 10.1111/j.1574-6968.1996.tb08598.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We isolated pepT from Bacillus subtilis, a gene with homology to various tripeptidases from different bacterial sources. pepT is preceded by genes encoding a two component regulatory system. Its expression is activated during stationary phase. In minimal medium this activation is boosted in the presence of phosphate. The response regulator is preceded by putative promoter consensus sequences recognized by the stationary phase specific sigma factors sigma H, sigma F, and sigma G. This is in accordance with the initiation of expression at the beginning of stationary phase. Inactivation of pepT causes no obvious phenotype.
Collapse
Affiliation(s)
- O Schrögel
- Lehrstuhl für Mikrobiologie, Universität Erlangen, Germany
| | | | | |
Collapse
|
28
|
Abstract
Aminopeptidases are exopeptidases that selectively release N-terminal amino acid residues from polypeptides and proteins. Bacteria display several aminopeptidasic activities which may be localised in the cytoplasm, on membranes, associated with the cell envelope or secreted into the extracellular media. Studies on the bacterial aminopeptide system have been carried out over the past three decades and are significant in fundamental and biotechnological domains. At present, about one hundred bacterial aminopeptidases have been purified and biochemically studied. About forty genes encoding aminopeptidases have also been cloned and characterised. Recently, the three-dimensional structure of two aminopeptidases, the methionine aminopeptidase from Escherichia coli and the leucine aminopeptidase from Aeromonas proteolytica, have been elucidated by crystallographic studies. Most of the quoted studies demonstrate that bacterial aminopeptidases generally show Michaelis-Menten kinetics and can be placed into either of two categories based on their substrate specificity: broad or narrow. These enzymes can also be classified by another criterium based on their catalytic mechanism: metallo-, cysteine- and serine-aminopeptidases, the former type being predominant in bacteria. Aminopeptidases play a role in several important physiological processes. It is noteworthy that some of them take part in the catabolism of exogenously supplied peptides and are necessary for the final steps of protein turnover. In addition, they are involved in some specific functions, such as the cleavage of N-terminal methionine from newly synthesised peptide chains (methionine aminopeptidases), the stabilisation of multicopy ColE1 based plasmids (aminopeptidase A) and the pyroglutamyl aminopeptidase (Pcp) present in many bacteria and responsible for the cleavage of the N-terminal pyroglutamate.
Collapse
Affiliation(s)
- T Gonzales
- Laboratoire de Génétique Moléculaire des Microorganismes et des Interactions Cellulaires, C.N.R.S. UMR 5577, Bâtiment, Villeurbanne, France
| | | |
Collapse
|
29
|
Mierau I, Kunji ER, Leenhouts KJ, Hellendoorn MA, Haandrikman AJ, Poolman B, Konings WN, Venema G, Kok J. Multiple-peptidase mutants of Lactococcus lactis are severely impaired in their ability to grow in milk. J Bacteriol 1996; 178:2794-803. [PMID: 8631666 PMCID: PMC178013 DOI: 10.1128/jb.178.10.2794-2803.1996] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To examine the contribution of peptidases to the growth of lactococcus lactis in milk, 16 single- and multiple-deletion mutants were constructed. In successive rounds of chromosomal gene replacement mutagenesis, up to all five of the following peptidase genes were inactivated (fivefold mutant): pepX, pepO, pepT, pepC, and pepN. Multiple mutations led to slower growth rates in milk, the general trend being that growth rates decreased when more peptidases were inactivated. The fivefold mutant grew more than 10 times more slowly in milk than the wild-type strain. In one of the fourfold mutants and in the fivefold mutant, the intracellular pools of amino acids were lower than those of the wild type, whereas peptides had accumulated inside the cell. No significant differences in the activities of the cell envelope-associated proteinase and of the oligopeptide transport system were observed. Also, the expression of the peptidases still present in the various mutants was not detectably affected. Thus, the lower growth rates can directly be attributed to the inability of the mutants to degrade casein-derived peptides. These results supply the first direct evidence for the functioning of lactococcal peptidases in the degradation of milk proteins. Furthermore, the study provides critical information about the relative importance of the peptidases for growth in milk, the order of events in the proteolytic pathway, and the regulation of its individual components.
Collapse
Affiliation(s)
- I Mierau
- Department of Genetics, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Conlin CA, Miller CG. Dipeptidyl carboxypeptidase and oligopeptidase A from Escherichia coli and Salmonella typhimurium. Methods Enzymol 1995; 248:567-79. [PMID: 7674945 DOI: 10.1016/0076-6879(95)48036-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- C A Conlin
- Department of Biological Sciences, Mankato State University, Minnesota 56002, USA
| | | |
Collapse
|
31
|
McCrea KW, Watson WJ, Gilsdorf JR, Marrs CF. Identification of hifD and hifE in the pilus gene cluster of Haemophilus influenzae type b strain Eagan. Infect Immun 1994; 62:4922-8. [PMID: 7927773 PMCID: PMC303208 DOI: 10.1128/iai.62.11.4922-4928.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Haemophilus influenzae produces surface structures called pili that promote adherence to human cells. Three genes encoding the major pilus structural component (pilin), chaperone, and usher proteins (designated hifA, -B, and -C, respectively) have been identified previously. In this study, transposon mutagenesis and DNA sequence analysis identified two open reading frames (ORFs) downstream of, and in the same orientation as, hifC. These genes have been designated hifD and hifE. Both genes have predicted C-terminal amino acid homology to HifA, and mutations in either gene resulted in the loss of morphologic and functional pili, indicating that hifD and hifE encode pilus structural components and are required for pilus expression. Another ORF, identified immediately downstream of hifE, has a predicted amino acid sequence that is 70% identical to an aminopeptidase of Escherichia coli called PepN, and a mutation within this ORF did not alter pilus expression. These data indicate that the pepN homolog is not required for pilus biogenesis and that one end of the pilus gene cluster has been defined.
Collapse
Affiliation(s)
- K W McCrea
- Department of Epidemiology, University of Michigan, Ann Arbor 48109
| | | | | | | |
Collapse
|
32
|
Collin-Osdoby P, Miller CG. Mutations affecting a regulated, membrane-associated esterase in Salmonella typhimurium LT2. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:674-80. [PMID: 8028584 DOI: 10.1007/bf00279577] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mutations at the apeA locus in Salmonella typhimurium lead to loss of a soluble enzyme ("protease I") that hydrolyzes the chromogenic endoprotease substrate N-acetyl phenylalanine beta-naphthyl ester. We have isolated pseudorevertants of S. typhimurium apeA mutations that have regained the ability to hydrolyze this compound. These pseudorevertants contain mutations (apeR) that lead to overproduction of a membrane-bound esterase different from protease I. The apeR locus is phage P1 cotransducible with ilvC (83 map units) and is unlinked to apeA. Mutations at still another locus, apeE, lead to loss of the membrane-associated esterase. The apeE locus is P1 cotransducible with purE (12 map units). In an apeE-lacZ operon fusion strain, an apeR mutation increases the level of beta-galactosidase approximately 60-fold. We propose that apeR encodes a repressor of apeE. The evidence available suggests that the ApeE protein is not a protease.
Collapse
Affiliation(s)
- P Collin-Osdoby
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | | |
Collapse
|
33
|
Conlin CA, Håkensson K, Liljas A, Miller CG. Cloning and nucleotide sequence of the cyclic AMP receptor protein-regulated Salmonella typhimurium pepE gene and crystallization of its product, an alpha-aspartyl dipeptidase. J Bacteriol 1994; 176:166-72. [PMID: 8282693 PMCID: PMC205028 DOI: 10.1128/jb.176.1.166-172.1994] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Salmonella typhimurium pepE gene, encoding an N-terminal-Asp-specific dipeptidase, has been cloned on pBR328 by complementation of the Asp-Pro growth defect conferred by a pepE mutation. Strains carrying the complementing plasmids greatly overproduce peptidase E. The enzyme has been purified from an extract of such a strain, its N-terminal amino acid sequence has been determined, and crystals suitable for X-ray diffraction have been grown. A new assay using L-aspartic acid p-nitroanilide as a substrate has been used to determine the pH optimum (approximately 7.5) and to test the effect of potential inhibitors. Insertions of transposon gamma delta (Tn1000) into one of the plasmids have been used to localize the gene and as sites for priming sequencing reactions. The nucleotide sequence of a 1,088-bp region of one of these plasmids has been determined. This sequence contains an open reading frame that predicts a 24.8-kDa protein with an N-terminal sequence that agrees with that determined for peptidase E. The predicted peptidase E amino acid sequence is not similar to that of any other known protein. The nucleotide sequence of the region upstream from pepE contains a promoter with a cyclic AMP receptor protein (CRP) site, and the effects of growth medium and of a crp mutation on expression of a pepE-lacZ fusion indicate that pepE is a member of the CRP regulon. The unique specificity of peptidase E and its lack of sequence similarity to any other peptidase suggest that this enzyme may be the prototype of a new class of peptidases. Its regulation by CPR and its specificity suggest that the enzyme may play a role in allowing the cell to use peptide aspartate to spare carbon otherwise required for the synthesis of the aspartate family of amino acids.
Collapse
Affiliation(s)
- C A Conlin
- Department of Microbiology, University of Illinois at Urbana--Champaign 61801
| | | | | | | |
Collapse
|
34
|
Butler MJ, Aphale JS, DiZonno MA, Krygsman P, Walczyk E, Malek LT. Intracellular aminopeptidases in Streptomyces lividans 66. JOURNAL OF INDUSTRIAL MICROBIOLOGY 1994; 13:24-9. [PMID: 7765336 DOI: 10.1007/bf01569658] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have investigated the aminopeptidase activities present in Streptomyces lividans strains. The majority of these activities proved to be intracellular with multiple active species. Two aminopeptidase P genes were identified to be responsible for the ability to hydrolyze amino terminal peptide bonds adjacent to proline residues. Two other broad spectrum aminopeptidases were found to display homology at both the DNA and protein levels. One showed significant homology to PepN proteins, particularly around the putative zinc-binding residues which are important for catalysis. The second broad spectrum activity was not analyzed in detail but showed a different spectrum of substrate specificity to that of PepN.
Collapse
Affiliation(s)
- M J Butler
- Cangene Corporation, Mississauga, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Suzuki H, Hashimoto W, Kumagai H. Escherichia coli K-12 can utilize an exogenous gamma-glutamyl peptide as an amino acid source, for which gamma-glutamyltranspeptidase is essential. J Bacteriol 1993; 175:6038-40. [PMID: 8104180 PMCID: PMC206686 DOI: 10.1128/jb.175.18.6038-6040.1993] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Escherichia coli K-12 can utilize a gamma-glutamyl peptide as an amino acid source, for which gamma-glutamyltranspeptidase (EC 2.3.2.2) is essential. We suggest that the gamma-glutamyl linkage of a gamma-glutamyl peptide is hydrolyzed by gamma-glutamyltranspeptidase located in the periplasmic space, and the released amino acid is taken up and utilized by E. coli.
Collapse
Affiliation(s)
- H Suzuki
- Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Japan
| | | | | |
Collapse
|
36
|
Abstract
A number of critical regulatory proteins in both prokaryotic and eukaryotic cells are subject to rapid, energy-dependent proteolysis. Rapid degradation combined with control over biosynthesis provides a mechanism by which the availability of a protein can be limited both temporally and spatially. Highly unstable regulatory proteins are involved in numerous biological functions, particularly at the commitment steps in developmental pathways and in emergency responses. The proteases involved in energy-dependent proteolysis are large proteins with the ability to use ATP to scan for appropriate targets and degrade complete proteins in a processive manner. These cytoplasmic proteases are also able to degrade many abnormal proteins in the cell.
Collapse
Affiliation(s)
- S Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892
| | | |
Collapse
|
37
|
Wright CP, Whitney GK, Daugulis AJ, White BN. Enhancement and regulation of extracellular protein production byBacillus brevis 47 through manipulation of cell culture conditions. Biotechnol Bioeng 1992; 40:46-52. [DOI: 10.1002/bit.260400108] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Henrich B, Backes H, Klein JR, Plapp R. The promoter region of the Escherichia coli pepD gene: deletion analysis and control by phosphate concentration. MOLECULAR & GENERAL GENETICS : MGG 1992; 232:117-25. [PMID: 1313142 DOI: 10.1007/bf00299144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A series of deletions removing progressively larger parts of the 5' flanking region of the Escherichia coli pepD gene was constructed. After fusing the resulting promoter fragments to the chromosomal malPQ operon, their activities were determined by assaying for amylomaltase, the product of the malQ gene. Transcription from the pepD promoter region in exponentially growing cells was estimated to be about 5 times less efficient than transcription from the induced lac promoter. Approximately 115 bp preceding the translation start site of the pepD gene are important for regular promoter functioning, whereas the more distal sequences could be deleted without any significant effects. In bacterial cultures containing limiting amounts of inorganic phosphate, the rate of de novo synthesis of peptidase D, simultaneously with the derepression of alkaline phosphatase, increased about fivefold as a consequence of phosphate starvation. This regulation was shown to occur at the transcriptional level by the use of chromosomal pepD promoter-malPQ fusions. The inducibility by phosphate limitation was conserved in all of the deletion clones in which the pepD promoter region was still functional. As demonstrated by the use of phoB, R, and M mutants, the modulation of pepD expression is independent of the genetic system controlling the pho regulon.
Collapse
Affiliation(s)
- B Henrich
- Universität Kaiserslautern, Fachbereich Biologie, FRG
| | | | | | | |
Collapse
|
39
|
Conlin CA, Miller CG. Cloning and nucleotide sequence of opdA, the gene encoding oligopeptidase A in Salmonella typhimurium. J Bacteriol 1992; 174:1631-40. [PMID: 1537805 PMCID: PMC206560 DOI: 10.1128/jb.174.5.1631-1640.1992] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The opdA gene (formerly called optA) of Salmonella typhimurium encodes a metallopeptidase, oligopeptidase A (OpdA), first recognized by its ability to cleave and allow utilization of N-acetyl-L-Ala4 (E. R. Vimr, L. Green, and C. G. Miller, J. Bacteriol. 153:1259-1265, 1983). Derivatives of pBR328 carrying the opdA gene were isolated and shown to express oligopeptidase activity at levels approximately 100-fold higher than that of the wild type. These plasmids complemented all of the phenotypes associated with opdA mutations (failure to use N-acetyl-L-Ala4, defective phage P22 development, and diminished endopeptidase activity). The opdA region of one of these plasmids (pCM127) was defined by insertions of Tn1000 (gamma delta), and these insertions were used as priming sites to determine the nucleotide sequence of a 2,843-bp segment of the insert DNA. This region contained an open reading frame coding for a 680-amino-acid protein, the N terminus of which agreed with that determined for purified OpdA. This open reading frame contained both a sequence motif typical of Zn2+ metalloproteases and a putative sigma 32 promoter. However, no induction was detected upon temperature shift by using a beta-galactosidase operon fusion. The predicted OpdA sequence showed similarity to dipeptidyl carboxypeptidase, the product of the S. typhimurium gene dcp, and to rat metallopeptidase EC 3.4.24.15., which is involved in peptide hormone processing.
Collapse
Affiliation(s)
- C A Conlin
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | |
Collapse
|
40
|
Abstract
In E. coli, protein degradation plays important roles in regulating the levels of specific proteins and in eliminating damaged or abnormal proteins. E. coli possess a very large number of proteolytic enzymes distributed in the cytoplasm, the inner membrane, and the periplasm, but, with few exceptions, the physiological functions of these proteases are not known. More than 90% of the protein degradation occurring in the cytoplasm is energy-dependent, but the activities of most E. coli proteases in vitro are not energy-dependent. Two ATP-dependent proteases, Lon and Clp, are responsible for 70-80% of the energy-dependent degradation of proteins in vivo. In vitro studies with Lon and Clp indicate that both proteases directly interact with substrates for degradation. ATP functions as an allosteric effector promoting an active conformation of the proteases, and ATP hydrolysis is required for rapid catalytic turnover of peptide bond cleavage in proteins. Lon and Clp show virtually no homology at the amino acid level, and thus it appears that at least two families of ATP-dependent proteases have evolved independently.
Collapse
Affiliation(s)
- M R Maurizi
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland 20892
| |
Collapse
|
41
|
Henrich B, Monnerjahn U, Plapp R. Peptidase D gene (pepD) of Escherichia coli K-12: nucleotide sequence, transcript mapping, and comparison with other peptidase genes. J Bacteriol 1990; 172:4641-51. [PMID: 1695895 PMCID: PMC213299 DOI: 10.1128/jb.172.8.4641-4651.1990] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The nucleotide sequence of a 2.3-kilobase-pair DNA fragment of Escherichia coli that contains the transcription signals and the coding region of the pepD gene specifying aminopeptidase D was determined. The location and extent of the open reading frame were verified by partial amino acid sequencing of the purified pepD product. By use of a promoter-screening vector, initiation signals for pepD transcription were located in the 5'-flanking region of the open reading frame. Analysis of pepD transcripts by S1 mapping, primer extension, and Northern (RNA) hybridization revealed two species of monocistronic mRNA with different 5' ends and a common 3' end. Calculation of the degree of codon usage bias in the coding region suggested that the efficiency of pepD translation is relatively low. As deduced from the predicted amino acid sequence, peptidase D is a slightly hydrophilic protein of 485 amino acid residues that contains no extended domains of marked hydrophobicity. Structural and functional features of the pepD gene are discussed and compared with other already sequenced peptidase genes of E. coli.
Collapse
Affiliation(s)
- B Henrich
- Abteilung Mikrobiologie, Universität Kaiserslautern, Federal Republic of Germany
| | | | | |
Collapse
|
42
|
|
43
|
Sugimura K, Nishihara T. Purification, characterization, and primary structure of Escherichia coli protease VII with specificity for paired basic residues: identity of protease VII and OmpT. J Bacteriol 1988; 170:5625-32. [PMID: 3056908 PMCID: PMC211661 DOI: 10.1128/jb.170.12.5625-5632.1988] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Escherichia coli cells were found to contain a novel outer membrane-associated protease, designated protease VII (K. Sugimura and N. Higashi, J. Bacteriol. 170:3650-3654, 1988). This enzyme was purified to homogeneity and exhibited an apparent molecular weight of 36,000 on sodium dodecyl sulfate gels and 180,000 on a TSK G-3000SW column in the presence of Triton X-100. It was capable of cleaving several peptides at the center of paired basic residues but not at single basic residues, implying that it is distinct from trypsinlike proteases. Protease VII was most active at pH 6.0 and was sensitive to a serine protease inhibitor, diisopropylfluorophosphate, and to the bivalent cations Zn2+, Cu2+, and Fe2+. The nucleotide sequence of a protease VII gene-carrying DNA fragment, which had been cloned by complementation analysis (K. Sugimura, Biochem. Biophys. Res. Commun. 153:753-759, 1988) was determined. It carried two putative promoter regions and a putative Shine-Dalgarno sequence in addition to the complete structural gene, which encoded pre-protease VII of 317 amino acid residues, with the N-terminal 20 residues being a signal peptide. By comparing their amino acid sequences, protease VII and OmpT, which specifically cleaves ferric enterobactin receptor protein, were found to be identical.
Collapse
Affiliation(s)
- K Sugimura
- Suntory Institute for Biomedical Research, Osaka, Japan
| | | |
Collapse
|
44
|
Abstract
The degradation of the prolipoprotein signal peptide in vitro by membranes, cytoplasmic fraction, and two purified major signal peptide peptidases from Escherichia coli was followed by reverse-phase liquid chromatography (RPLC). The cytoplasmic fraction hydrolyzed the signal peptide completely into amino acids. In contrast, many peptide fragments accumulated as final products during the cleavage by a membrane fraction. Most of the peptides were similar to the peptides formed during the cleavage of the signal peptide by the purified membrane-bound signal peptide peptidase, protease IV. Peptide fragments generated during the cleavage of the signal peptide by protease IV and a cytoplasmic enzyme, oligopeptidase A, were identified from their amino acid compositions, their retention times during RPLC, and knowledge of the amino acid sequence of the signal peptide. Both enzymes were endopeptidases, as neither dipeptides nor free amino acids were formed during the cleavage reactions. Protease IV cleaved the signal peptide predominantly in the hydrophobic segment (residues 7 to 14). Protease IV required substrates with hydrophobic amino acids at the primary and the adjacent substrate-binding sites, with a minimum of three amino acids on either side of the scissile bond. Oligopeptidase A cleaved peptides (minimally five residues) that had either alanine or glycine at the P'1 (primary binding site) or at the P1 (preceding P'1) site of the substrate. These results support the hypothesis that protease IV is the major signal peptide peptidase in membranes that initiates the degradation of the signal peptide by making endoproteolytic cuts; oligopeptidase A and other cytoplasmic enzymes further degrade the partially degraded portions of the signal peptide that may be diffused or transported back into the cytoplasm from the membranes.
Collapse
Affiliation(s)
- P Novak
- Department of Microbiology, Wellcome Research Laboratories, Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
45
|
Foglino M, Lazdunski A. Deletion analysis of the promoter region of the Escherichia coli pepN gene, a gene subject in vivo to multiple global controls. MOLECULAR & GENERAL GENETICS : MGG 1987; 210:523-7. [PMID: 2893244 DOI: 10.1007/bf00327207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The pepN gene codes for aminopeptidase N whose expression is regulated at the transcriptional level by anaerobiosis and phosphate starvation. To define and characterize the functional region of the pepN promoter (pepNp), various promoter fragments were fused to the malPQ operon of Escherichia coli and transferred to the chromosome. The expression of the single copy operon fusion was measured by assaying the amylomaltase activity. Sequences upstream from the canonical promoter elements, located 110 to 60 bp preceding the transcription start site, are important for promoter functioning. This region plays a role in the expression of the two divergent promoters pepNp and pncBp. The regulation of pepNp under phosphate starvation was conserved in the various constructs in which pepNp is functional. However, no particular sequence specific for phosphate regulation was detected. In addition, the regulation of pncBp by Pi starvation was demonstrated.
Collapse
Affiliation(s)
- M Foglino
- Laboratoire de Chimie Bacterienne, C.N.R.S., Marseille, France
| | | |
Collapse
|
46
|
Suárez Rendueles P, Wolf DH. Identification of the structural gene for dipeptidyl aminopeptidase yscV (DAP2) of Saccharomyces cerevisiae. J Bacteriol 1987; 169:4041-8. [PMID: 3305478 PMCID: PMC213706 DOI: 10.1128/jb.169.9.4041-4048.1987] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mutants of Saccharomyces cerevisiae lacking dipeptidyl aminopeptidase yscV were isolated from a strain already defective in dipeptidyl aminopeptidase yscIV, an enzyme with overlapping substrate specificity. The mutants were identified by a staining technique with the chromogenic substrate Ala-Pro-4-methoxy-beta-naphthylamide to screen colonies for the absence of the enzyme. One of the mutants had a thermolabile activity, indicating that it contained a structural gene mutation. The 53 mutants analyzed fell into one complementation group that corresponded to the yscV structural gene, DAP2. The defect segregated 2:2 in meiotic tetrads, indicating a single chromosomal gene mutation, which was shown to be recessive. Diploids heterozygous for DAP2 displayed gene dosage effects with respect to yscV enzyme activity. The absence of dipeptidyl aminopeptidase yscV or the combined loss of both dipeptidyl aminopeptidases yscIV and yscV did not affect mitotic growth under rich or poor growth conditions. In contrast to the dipeptidyl aminopeptidase yscIV lesion (ste13), which leads to alpha sterility because strains secrete incompletely processed forms of the alpha-factor pheromone, the dipeptidyl aminopeptidase yscV lesion did not affect mating, and strains produced fully active alpha-factor pheromone. dap2 mutants did not show any obvious phenotype under a variety of conditions tested.
Collapse
|
47
|
García-Alvarez N, Teichert U, Wolf DH. Proteinase yscD mutants of yeast. Isolation and characterization. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 163:339-46. [PMID: 3545833 DOI: 10.1111/j.1432-1033.1987.tb10805.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mutants of the yeast Saccharomyces cerevisiae, devoid of proteinase yscD activity, were isolated by screening for the inability of mutagenized cells to hydrolyze Ac-Ala-Ala-Pro-Ala-beta-naphthylamide in situ. One of the selected mutants bears a thermolabile activity pointing to the gene called PRD1 as being the structural gene for proteinase yscD. All mutants isolated fell into one complementation group. The defect segregates 2:2 in meiotic tetrads indicating a single gene mutation, which was shown to be recessive. Diploids heterozygous for PRD1 display gene dosage. The absence of proteinase yscD did not affect mitotic growth under rich or poor growth conditions, neither mating nor ascopore formation. Also growth of mutant cells after a nutritional shift-down was not altered. Inactivation of enzymes tested which are subject to carbon-catabolite inactivation, a process proposed to be of proteolytic nature, is not affected by the absence of proteinase yscD. Protein degradation rates in growing cells, in cells under conditions of differentiation or heat shock, showed no obvious alteration in the absence of proteinase yscD activity. Also inactivation of alpha-factor pheromone was not affected by proteinase yscD absence. Normal growth of mutant cells on glycerol indicates that the enzyme is not involved in any vital event in mitochondrial biogenesis.
Collapse
|
48
|
The energy utilized in protein breakdown by the ATP-dependent protease (La) from Escherichia coli. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(19)75844-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
49
|
Abstract
Immunological cross-reaction was employed for identification of proteolytic fragments of E. coli RNA polymerase generated both in vitro and in vivo. Several species of partially denatured but assembled RNA polymerase were isolated, which were composed of fragments of the two large subunits, beta and beta', and the two small and intact subunits, alpha and sigma. Comparison of the rate and pathway of proteolytic cleavage in vitro of unassembled subunits, subassemblies, and intact enzymes indicated that the susceptibility of RNA polymerase subunits to proteolytic degradation was dependent on the assembly state. Using this method, degradation in vivo was found for some, but not all, of the amber fragments of beta subunit in merodiploid cells carrying both wild-type and mutant rpoB genes. Although the RNA polymerase is a metabolically stable component in exponentially growing cells of E. coli, degradation of the full-sized subunits was found in two cases, i.e., several temperature-sensitive E. coli mutants with a defect in the assembly of RNA polymerase and the stationary-phase cells of a wild-type E. coli. The in vivo degradation of RNA polymerase was indicated to be initiated by alteration of the enzyme structure.
Collapse
Affiliation(s)
- A Ishihama
- Department of Molecular Genetics, National Institute of Genetics, Shizuoka, Japan
| | | | | |
Collapse
|
50
|
Bally M, Foglino M, Bruschi M, Murgier M, Lazdunski A. Nucleotide sequence of the promoter and amino-terminal encoding region of the Escherichia coli pepN gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 155:565-9. [PMID: 2869947 DOI: 10.1111/j.1432-1033.1986.tb09525.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The nucleotide sequence of the region probably responsible for regulation of pepN expression and of the region encoding the amino-terminal part of aminopeptidase N, has been determined. The transcription start site was identified by S1 nuclease mapping. All features of the promoter are those of a weak promoter and no obvious structure responsible for regulation was identified, although a possible Pho box is located 63 base pairs upstream from the Pribnow box. The reading frame was unambiguously determined by purifying the protein and by sequencing the first 21 NH2-terminal residues. The NH2-terminal region of aminopeptidase N does not contain any fragment resembling signal sequence and the protein is not produced in a precursor form. A divergent promoter, which might be that of pncB, encoding the nicotinic acid phosphoribosyltransferase (P. Terpstra, personal communication), has also been identified, which allows the assignment of the gene organization in this chromosomal region as ompF asnS pncB pepN.
Collapse
|