1
|
Lehnherr H, Velleman M, Guidolin A, Arber W. Bacteriophage P1 gene 10 is expressed from a promoter-operator sequence controlled by C1 and Bof proteins. J Bacteriol 1992; 174:6138-44. [PMID: 1400162 PMCID: PMC207680 DOI: 10.1128/jb.174.19.6138-6144.1992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gene 10 of bacteriophage P1 encodes a regulatory function required for the activation of P1 late promoter sequences. In this report cis and trans regulatory functions involved in the transcriptional control of gene 10 are identified. Plasmid-borne fusions of gene 10 to the indicator gene lacZ were constructed to monitor expression from the gene 10 promoter. Production of gp10-LacZ fusion protein became measurable at about 15 min after prophage induction, whereas no expression was observed during lysogenic growth. The activity of an Escherichia coli-like promoter, Pr94, upstream of gene 10, was confirmed by mapping the initiation site of transcription in primer extension reactions. Two phage-encoded proteins cooperate in the trans regulation of transcription from Pr94: C1 repressor and Bof modulator. Both proteins are necessary for complete repression of gene 10 expression during lysogeny. Under conditions that did not ensure repression by C1 and Bof, the expression of gp10-LacZ fusion proteins from Pr94 interfered with transformation efficiency and cell viability. Results of in vitro DNA-binding studies confirmed that C1 binds specifically to an operator sequence, Op94, which overlaps the -35 region of Pr94. Although Bof alone does not bind to DNA, together with C1 it increases the efficiency of the repressor-operator interaction. These results are in line with the idea that gp10 plays the role of mediator between early and late gene transcription during lytic growth of bacteriophage P1.
Collapse
Affiliation(s)
- H Lehnherr
- Department of Microbiology, University of Basel, Switzerland
| | | | | | | |
Collapse
|
2
|
Baumstark BR, Stovall SR, Bralley P. The ImmC region of phage P1 codes for a gene whose product promotes lytic growth. Virology 1990; 179:217-27. [PMID: 2120849 DOI: 10.1016/0042-6822(90)90291-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ImmC region of the temperate bacteriophage P1 contains c1, a gene that codes for a repressor of lytic growth. Located in the region upstream of c1 are four open reading frames capable of coding for low-molecular-weight proteins. The efficiency of lysogeny by P1+Cm was found to be reduced by almost 10(5)-fold when the host cells carry this region of ImmC on a multicopy plasmid. The sequences responsible for interfering with lysogen formation were localized to one of the small open reading frames (orf4) within ImmC. Insertions and deletions within orf4 suppress the virulent phenotype of P1virC mutants when introduced into the phage by recombination. These virC-suppressed mutant phage were found to be incapable of lytic growth unless the product of orf4 is provided in trans. The presence of orf4 was observed to interfere with repression by the c1 protein of ImmC-encoded promoters fused to lacZ. For this reason, we suggest that orf4 corresponds to coi, a gene previously proposed to code for an inactivator of c1-mediated repression.
Collapse
Affiliation(s)
- B R Baumstark
- Department of Biology, Georgia State University, Atlanta 30303
| | | | | |
Collapse
|
3
|
Heinrich J, Riedel HD, Baumstark BR, Kimura M, Schuster H. The c1 repressor of bacteriophage P1 operator-repressor interaction of wild-type and mutant repressor proteins. Nucleic Acids Res 1989; 17:7681-92. [PMID: 2678004 PMCID: PMC334877 DOI: 10.1093/nar/17.19.7681] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The c1 repressor gene of bacteriophage P1 and the temperature-sensitive mutants P1c1.100 and P1c1.162 was cloned into an expression vector and the repressor proteins were overproduced. A rapid purification procedure was required for the isolation of the thermolabile repressor proteins. Identification of the highly purified protein of an apparent molecular weight of 33,000 as the product of the c1 gene was verified by (i) the coincidence of partial amino acid sequences determined experimentally to that deduced from the c1 DNA sequence, and (ii) the temperature-sensitive binding to the operator DNA of the thermolabile repressor proteins. Analysis of the products of c1-c1.100 recombinant DNAs relates the thermolability to an unknown alteration in the C-terminal half of the c1.100 repressor. Binding to the operator DNA of c1 repressor is sensitive to N-ethylmaleimide. Since the only three cysteine residues are located in the C-terminal half of the repressor it is suggested that this part of the molecule is important for the binding to the operator DNA. This assumption is supported by the findings that a 14-kDa C-terminal repressor fragment obtained by cyanogen bromide cleavage retains DNA binding properties.
Collapse
Affiliation(s)
- J Heinrich
- Max-Planck Institut für Molekulare Genetik, Berlin, FRG
| | | | | | | | | |
Collapse
|
4
|
Guidolin A, Zingg JM, Lehnherr H, Arber W. Bacteriophage P1 tail-fibre and dar operons are expressed from homologous phage-specific late promoter sequences. J Mol Biol 1989; 208:615-22. [PMID: 2810357 DOI: 10.1016/0022-2836(89)90152-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two plasmid systems, containing the easily assayable galK and lacZ functions, were employed to study the regulation of the bacteriophage P1 tail-fibre and dar operons. Various P1 DNA fragments carrying either the 5' end of lydA (the 1st gene in the dar operon) or the tail-fibre gene 19 precede the promoterless coding region of galK or were fused, in-frame, to the lacZ gene. In the presence of an induced P1 prophage, GalK and LacZ activities were both detected after a 20 to 30 minute lag period, indicating that the dar and tail-fibre operons are expressed from positively regulated, late promoters. The corresponding DNA operons are expressed from positively regulated, late promoters. The corresponding DNA region of the closely related p15B plasmid exhibits comparable promoter properties. Deletion analysis mapped the promoter of a gene 19-lacZ fusion to a DNA region upstream from gene R, an open reading frame that precedes the coding frame of gene 19. The tail-fibre gene thus forms the second gene in a three gene operon (genes R, 19 (S) and U). Sequence comparison between this promoter region, upstream sequences of the lydA gene and the corresponding portions of the p15B genome allowed the identification of a highly conserved 38 base-pair sequence, which most likely represents a P1-specific late promoter. This was confirmed by 5' mapping of P1 mRNA. Transcription of both the tail-fibre and dar operons is initiated at sites five and six base-pairs, respectively, downstream from the first conserved nucleotide of this sequence. The conserved motif consists of a standard Escherichia coli -10 region followed by a nine base-pair palindromic sequence located centrally about position -22.
Collapse
Affiliation(s)
- A Guidolin
- Department of Microbiology, Biozentrum, University of Basel, Switzerland
| | | | | | | |
Collapse
|
5
|
Heinzel T, Velleman M, Schuster H. ban operon of bacteriophage P1. Mutational analysis of the c1 repressor-controlled operator. J Mol Biol 1989; 205:127-35. [PMID: 2647997 DOI: 10.1016/0022-2836(89)90370-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The repressor of bacteriophage P1, encoded by the c1 gene, represses the phage lytic functions and is responsible for maintaining the P1 prophage in the lysogenic state. The c1 repressor interacts with at least 11 binding sites or operators widely scattered over the P1 genome. From these operators, a 17 base-pair asymmetric consensus sequence, ATTGCTCTAATAAATTT, was derived. Here, we show that the operator, Op72 of the P1ban operon consists of two overlapping 17 base-pair sequences a and b forming an incomplete palindrome. Op72a matches the consensus sequence, whereas Op72b contains two mismatches. The evidence is based on the sequence analysis of 27 operator mutants constitutive for ban expression. They were identified as single-base substitutions at positions 2 to 10 of Op72a (26 mutants) and at position 8 of Op72b (one mutant). We conclude from gel retardation and footprinting studies that two repressor molecules bind to the operator and that positions 4, 5 and 7 to 10 of the operator play an essential role in repressor recognition.
Collapse
Affiliation(s)
- T Heinzel
- Max-Planck-Institut für Molekulare Genetik, Berlin, F.R.G
| | | | | |
Collapse
|
6
|
Dreiseikelmann B, Velleman M, Schuster H. The c1 repressor of bacteriophage P1. Isolation and characterization of the repressor protein. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)57316-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
7
|
Eliason JL, Sternberg N. Characterization of the binding sites of c1 repressor of bacteriophage P1. Evidence for multiple asymmetric sites. J Mol Biol 1987; 198:281-93. [PMID: 3430609 DOI: 10.1016/0022-2836(87)90313-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The repressor of bacteriophage P1, encoded by the c1 gene, is responsible for maintaining a P1 prophage in the lysogenic state. In this paper we present: (1) the sequence of the rightmost 943 base-pairs of the P1 genetic map that includes the 5'-terminal 224 base-pairs of the c1 gene plus its upstream region; (2) the construction of a plasmid that directs the production of approximately 5% of the cell's protein as P1 repressor; (3) a deletion analysis that establishes the startpoint of P1 repressor translation; (4) filter binding experiments that demonstrate that P1 repressor binds to several regions upstream from the c1 gene; (5) DNase I footprint experiments that directly identify two of the P1 repressor binding sites. Sequences very similar to the identified binding sites occur in at least 11 sites in P1, in most cases near functions known, or likely, to be controlled by repressor. From these sites we have derived the consensus binding site sequence ATTGCTCTAATAAATTT. We suggest that, unlike other phage operators, the P1 repressor binding sites lack rotational symmetry.
Collapse
Affiliation(s)
- J L Eliason
- Central Research and Development Department, E. I. du Pont de Nemours and Company, Inc., Wilmington, DE 19898
| | | |
Collapse
|
8
|
Velleman M, Dreiseikelmann B, Schuster H. Multiple repressor binding sites in the genome of bacteriophage P1. Proc Natl Acad Sci U S A 1987; 84:5570-4. [PMID: 3039493 PMCID: PMC298904 DOI: 10.1073/pnas.84.16.5570] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
After digestion of bacteriophage P1 DNA with EcoRI in the presence of P1 repressor, 6 repressor binding sites were identified in 5 of 26 EcoRI fragments. Binding sites were localized by the decreased mobility of DNA fragment-repressor complexes during electrophoresis and by DNase protection ("footprinting") analysis. The repressor binding sites, or operators, comprise a 17-base-pair-long consensus sequence lacking symmetrical elements. Three operators can be related to known genes, whereas the function of the others is still unknown. The mutant P1 bac, rendering ban expression constitutive, is identified as an operator-constitutive mutation of the ban operon.
Collapse
|
9
|
Abstract
The c4 gene of phage P1 has been localized to 335 bp of the P1EcoRI-9 fragment, within 50 bp of the EcoRI-9/14 junction. DNA sequence analysis of this fragment reveals a single open reading frame of 66 amino acids. The location of two c4 mutations, both of which produce changes in the predicted amino acid sequence in this reading frame, suggests that the reading frame codes for the c4 repressor. A region with high homology to the E. coli promoter consensus sequence is located approximately 50 bp upstream from the reading frame. Deletion of this potential promoter region abolishes expression of c4, as indicated by the loss of complementation of c4 mutants for lysogeny. Complementation is restored by the introduction of a heterologous promoter (the T7 phi 10 promoter), indicating that c4 expression is absolutely dependent on transcription of the 66-amino acid reading frame.
Collapse
|
10
|
Baumstark BR, Stovall SR, Ashkar S. Interaction of the P1c1 repressor with P1 DNA: localization of repressor binding sites near the c1 gene. Virology 1987; 156:404-13. [PMID: 3811241 DOI: 10.1016/0042-6822(87)90420-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The c1 repressor of phage P1 was previously shown (B.R. Baumstark and J.R. Scott, 1980, J. Mol. Biol. 140, 471-480) to bind specifically to P1BamHI-9, a 1.4-kb fragment that is closely linked to the c1 structural gene and spans the ends of the P1 genetic map. The position of the repressor binding site(s) relative to the ends of the genetic map and the c1 gene was investigated by testing cloned fragments of EcoRI-7 and BamHI-9 for c1 expression and repressor binding. Although sequences in both BamHI-9 and the adjacent 2.7-kb EcoRI/BamHI fragment were found to be required for the production of the c1 protein, c1 expression could be restored to the 2.7-kb fragment by the addition of a heterologous promoter (ptac). These observations are consistent with the localization of the c1 reading frame to the 2.7-kb fragment and at least part of the c1 promoter region to BamHI-9. The c1 repressor was shown to bind in vitro to two distinct cloned fragments of BamHI-9 derived from the far right side of the P1 map, indicating the presence of at least two recognition sites in this region. DNA sequence analysis revealed that these two fragments share a 23-bp region of homology. A synthetic DNA containing an 11-bp sequence from this region acts as an effective competitor for repressor binding in vitro, suggesting that at least part of the sequence shared by the fragments is involved in repressor-DNA recognition.
Collapse
|
11
|
Lundqvist B, Bertani G. Immunity repressor of bacteriophage P2. Identification and DNA-binding activity. J Mol Biol 1984; 178:629-51. [PMID: 6492160 DOI: 10.1016/0022-2836(84)90242-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The product of gene C of the temperate bacteriophage P2, the immunity repressor, can be detected as a unique band eluting from phosphocellulose columns at 0.12 M-potassium phosphate when differentially labelled with a radioactive amino acid: the band is absent when phages that either have lost gene C through deletion or carry a suppressor-sensitive mutation in the gene are used. The repressor in its monomeric form is about 11,000 in molecular weight. At near physiological salt concentrations, the form predominantly recovered is the dimer. In filter-binding assays, the partially purified repressor binds wild-type P2 DNA strongly. It does not bind DNA of P2 vir94, a deletion that removes all the genetic elements involved in the regulation of lysogeny; it also does not bind, or binds inefficiently, DNA of P2 vir3, a mutation in the operator that controls the early replicative functions of P2. At the concentrations employed, the dimer is the active form in binding. The P2 repressor clearly differs in several features from the well-studied immunity repressor of bacteriophage lambda.
Collapse
|
12
|
Ljungquist E, Kockum K, Bertani LE. DNA sequences of the repressor gene and operator region of bacteriophage P2. Proc Natl Acad Sci U S A 1984; 81:3988-92. [PMID: 6330728 PMCID: PMC345353 DOI: 10.1073/pnas.81.13.3988] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The nucleotide sequence of the repressor gene C of the temperate phage P2 has been determined. It codes for a nonbasic polypeptide, 99 amino acids long. Twelve repressor-defective mutants have been mapped. All but one are located within the presumed coding part of the gene. There is a strong promoter sequence and an 8-base-pair inverted repeat preceding the gene. The P2 repressor protein shows structural similarity to other DNA-binding proteins. The operator region for the early replication functions was located by sequencing the DNA of three virulent mutants. The sequence indicates that there are two repressor-binding sites. In addition, one of the sites shows sequence homology with part of the operator region of the biotin operon of Escherichia coli.
Collapse
|
13
|
Capage MA, Goodspeed JK, Scott JR. Incompatibility group Y member relationships: pIP231 and plasmid prophages P1 and P7. Plasmid 1982; 8:307-11. [PMID: 6294713 DOI: 10.1016/0147-619x(82)90068-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Devlin BH, Baumstark BR, Scott JR. Superimmunity: characterization of a new gene in the immunity region of P1. Virology 1982; 120:360-75. [PMID: 6285609 DOI: 10.1016/0042-6822(82)90037-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
|
16
|
|
17
|
|