1
|
Manna D, Cordara G, Krengel U. Crystal structure of MOA in complex with a peptide fragment: A protease caught in flagranti. Curr Res Struct Biol 2020; 2:56-67. [PMID: 34235469 PMCID: PMC8244254 DOI: 10.1016/j.crstbi.2020.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/28/2020] [Accepted: 04/06/2020] [Indexed: 11/20/2022] Open
Abstract
The Marasmius oreades agglutinin (MOA) is the holotype of an emerging family of fungal chimerolectins and an active Ca2+/Mn2+-dependent protease, which exhibits a unique papain-like fold with special active site features. Here we investigated the functional significance of the structural elements differentiating MOA from other papain-like cysteine proteases. X-ray crystal structures of MOA co-crystallized with two synthetic substrates reveal cleaved peptides bound to the catalytic site, corresponding to the final products of the proteolytic reaction. Anomalous diffraction data on crystals grown in the presence of calcium and manganese, cadmium or zinc resolve the calcium/manganese preference of MOA and elucidate the inhibitory roles of zinc and cadmium towards papain-like cysteine proteases in general. The reported structures, together with activity data of MOA active site variants, point to a conservation of the general proteolysis mechanism established for papain. Ultimately, the findings suggest that papain and the papain-like domain of MOA are the product of convergent evolution.
Collapse
Affiliation(s)
- Dipankar Manna
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0315, Oslo, Norway
| | - Gabriele Cordara
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0315, Oslo, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0315, Oslo, Norway
| |
Collapse
|
2
|
Cordara G, Manna D, Krengel U. Family of Papain-Like Fungal Chimerolectins with Distinct Ca2+-Dependent Activation Mechanism. Biochemistry 2017; 56:4689-4700. [DOI: 10.1021/acs.biochem.7b00317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gabriele Cordara
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Dipankar Manna
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| |
Collapse
|
3
|
Cordara G, van Eerde A, Grahn EM, Winter HC, Goldstein IJ, Krengel U. An Unusual Member of the Papain Superfamily: Mapping the Catalytic Cleft of the Marasmius oreades agglutinin (MOA) with a Caspase Inhibitor. PLoS One 2016; 11:e0149407. [PMID: 26901797 PMCID: PMC4764322 DOI: 10.1371/journal.pone.0149407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/01/2016] [Indexed: 11/18/2022] Open
Abstract
Papain-like cysteine proteases (PLCPs) constitute the largest group of thiol-based protein degrading enzymes and are characterized by a highly conserved fold. They are found in bacteria, viruses, plants and animals and involved in a number of physiological and pathological processes, parasitic infections and host defense, making them interesting targets for drug design. The Marasmius oreades agglutinin (MOA) is a blood group B-specific fungal chimerolectin with calcium-dependent proteolytic activity. The proteolytic domain of MOA presents a unique structural arrangement, yet mimicking the main structural elements in known PLCPs. Here we present the X-ray crystal structure of MOA in complex with Z-VAD-fmk, an irreversible caspase inhibitor known to cross-react with PLCPs. The structural data allow modeling of the substrate binding geometry and mapping of the fundamental enzyme-substrate interactions. The new information consolidates MOA as a new, yet strongly atypical member of the papain superfamily. The reported complex is the first published structure of a PLCP in complex with the well characterized caspase inhibitor Z-VAD-fmk.
Collapse
Affiliation(s)
- Gabriele Cordara
- Department of Chemistry, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | | | - Elin M. Grahn
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Harry C. Winter
- Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Irwin J. Goldstein
- Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Rathod NR, Raghuveer I, Chitme HR, Chandra R. Free Radical Scavenging Activity of Calotropis gigantea on Streptozotocin-Induced Diabetic Rats. Indian J Pharm Sci 2011; 71:615-21. [PMID: 20376213 PMCID: PMC2846465 DOI: 10.4103/0250-474x.59542] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 08/28/2009] [Accepted: 11/05/2009] [Indexed: 01/24/2023] Open
Abstract
Swarnabhasma, an Ayurvedic preparation containing Calotropis gigantea R. Br. (Asclepiadaceae) is extensively used by Ayurvedic physicians for treatment of diabetes mellitus, bronchial asthma, rheumatoid arthritis and nervous disorders. In the present study, we report the effect of chloroform extracts of Calotropis gigantea leaf and flower on free radical scavenging activity, and lipid profile in streptozotozin-induced diabetic rats. The lipid peroxidation, superoxide dismutase, and catalase were measured in liver homogenate and serum glutamic pyruvic transaminase, serum glutamic oxaloacetic transaminase, alkaline phosphatase, lipid profile were measured in blood serum. Administration of single dose of streptozotozin (55 mg/kg, i.p.) caused significant increases in lipid peroxidation, serum glutamic pyruvic transaminase, serum glutamic oxaloacetic transaminase, alkaline phosphatase, cholesterol and triglyceride levels, while superoxide dismutase and catalase levels were significantly decreased. Further, administration of chloroform extracts of Calotropis gigantea leaf and flower to streptozotocin-induced diabetes rats at a dose of 10, 20 and 50 mg/kg orally for 27 d lead to a significant decrease in lipid peroxidation, serum glutamic pyruvic transaminase, serum glutamic oxaloacetic transaminase, alkaline phosphatase, cholesterol and triglyceride levels. Consequently, superoxide dismutase and catalase levels were significantly increased. Glibenclamide was used as a positive control (10 mg/kg). It was observed that the effect of chloroform extracts of Calotropis gigantea on alkaline phosphatase, cholesterol, superoxide dismutase, serum glutamic pyruvic transaminase, serum glutamic oxaloacetic transaminase, levels are comparable to that of those produced by the positive control.
Collapse
Affiliation(s)
- N R Rathod
- Department of Pharmacology, H. S. K. College of Pharmacy, Bagalkot-587101, India
| | | | | | | |
Collapse
|
5
|
Bhattacharya S, Ghosh S, Chakraborty S, Bera AK, Mukhopadhayay BP, Dey I, Banerjee A. Insight to structural subsite recognition in plant thiol protease-inhibitor complexes : understanding the basis of differential inhibition and the role of water. BMC STRUCTURAL BIOLOGY 2001; 1:4. [PMID: 11602025 PMCID: PMC57815 DOI: 10.1186/1472-6807-1-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2001] [Accepted: 09/11/2001] [Indexed: 12/03/2022]
Abstract
BACKGROUND This work represents an extensive MD simulation / water-dynamics studies on a series of complexes of inhibitors (leupeptin, E-64, E-64-C, ZPACK) and plant cysteine proteases (actinidin, caricain, chymopapain, calotropin DI) of papain family to understand the various interactions, water binding mode, factors influencing it and the structural basis of differential inhibition. RESULTS The tertiary structure of the enzyme-inhibitor complexes were built by visual interactive modeling and energy minimization followed by dynamic simulation of 120 ps in water environment. DASA study with and without the inhibitor revealed the potential subsite residues involved in inhibition. Though the interaction involving main chain atoms are similar, critical inspection of the complexes reveal significant differences in the side chain interactions in S2-P2 and S3-P3 pairs due to sequence differences in the equivalent positions of respective subsites leading to differential inhibition. CONCLUSION The key finding of the study is a conserved site of a water molecule near oxyanion hole of the enzyme active site, which is found in all the modeled complexes and in most crystal structures of papain family either native or complexed. Conserved water molecules at the ligand binding sites of these homologous proteins suggest the structural importance of the water, which changes the conventional definition of chemical geometry of inhibitor binding domain, its shape and complimentarity. The water mediated recognition of inhibitor to enzyme subsites (Pn.H2O.Sn) of leupeptin acetyl oxygen to caricain, chymopapain and calotropinDI is an additional information and offer valuable insight to potent inhibitor design.
Collapse
Affiliation(s)
- Suparna Bhattacharya
- Biophysics Division, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Calcutta, 700054, India
| | - Sreya Ghosh
- Biophysics Division, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Calcutta, 700054, India
| | - Sibani Chakraborty
- Biophysics Division, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Calcutta, 700054, India
| | - Asim K Bera
- Biophysics Division, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Calcutta, 700054, India
| | - Bishnu P Mukhopadhayay
- Biophysics Division, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Calcutta, 700054, India
| | - Indrani Dey
- Biophysics Division, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Calcutta, 700054, India
| | - Asok Banerjee
- Biophysics Division, Bose Institute, P 1/12, C.I.T. Scheme VIIM, Calcutta, 700054, India
| |
Collapse
|
6
|
Abstract
A significant number of exciting papain-like cysteine protease structures have been determined by crystallographic methods over the last several years. This trove of data allows for an analysis of the structural features that empower these molecules as they efficiently carry out their specialized tasks. Although the structure of the paradigm for the family, papain, has been known for twenty years, recent efforts have reaped several structures of specialized mammalian enzymes. This review first covers the commonalities of architecture and purpose of the papain-like cysteine proteases. From that broad platform, each of the lysosomal enzymes for which there is an X-ray structure (or structures) is then examined to gain an understanding of what structural features are used to customize specificity and activity. Structure-based design of inhibitors to control pathological cysteine protease activity will also be addressed.
Collapse
Affiliation(s)
- M E McGrath
- Axys Pharmaceuticals, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
7
|
Turk D, Guncar G, Podobnik M, Turk B. Revised definition of substrate binding sites of papain-like cysteine proteases. Biol Chem 1998; 379:137-47. [PMID: 9524065 DOI: 10.1515/bchm.1998.379.2.137] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A review of kinetic and structural data has enabled us to reconsider the definition of substrate binding sites in papain-like cysteine proteases. Only three substrate binding sites, S2, S1 and S1', involve main as well as side chain contacts between substrate and enzyme residues. Interactions between the enzymes and the substrate P3 and P2' residues are based on side chains (an exception is cathepsin B which is a carboxydipeptidase), so their interaction surface spreads over a relatively wide area. The location and definition of substrate binding sites beyond S3 and S2' is even more questionable.
Collapse
Affiliation(s)
- D Turk
- Department of Biochemistry and Molecular Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
8
|
Cygler M, Mort JS. Proregion structure of members of the papain superfamily. Mode of inhibition of enzymatic activity. Biochimie 1997; 79:645-52. [PMID: 9479446 DOI: 10.1016/s0300-9084(97)83497-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Papain-like cysteine proteases have been divided into two subfamilies represented by mammalian enzymes cathepsin L and cathepsin B, respectively. The recent determination of the three-dimensional structures of four cysteine protease proenzymes showed that the mechanism of inhibition of the activity by the proregions is the same in both subfamilies despite significant differences in the proregion lengths. Here we describe the structures of the proregions, their binding to cognate enzymes and analyze similarities and differences between them.
Collapse
Affiliation(s)
- M Cygler
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada
| | | |
Collapse
|
9
|
Affiliation(s)
- Hans-Hartwig Otto
- Department of Pharmaceutical Chemistry, University of Freiburg, Hermann-Herder-Str. 9, D-79104 Freiburg i.Br., Germany
| | | |
Collapse
|
10
|
Pei Z, Sebti SM. Cys102 and His398 are required for bleomycin-inactivating activity but not for hexamer formation of yeast bleomycin hydrolase. Biochemistry 1996; 35:10751-6. [PMID: 8718865 DOI: 10.1021/bi9605447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The bleomycin-inactivating enzyme, bleomycin hydrolase, is believed to be involved in tumor resistance to the anticancer drug bleomycin. This homohexamer is an aminopeptidase that shows homology to cysteine proteinases around the cysteine and histidine active site. The role that these residues play in hydrolyzing bleomycin and in hexamer oligomerization of bleomycin hydrolase is not known. In this study, the yeast bleomycin hydrolase gene was expressed in Escherichia coli, and site-directed mutagenesis was employed to precisely investigate the roles of the conserved Cys102 and His398 residues in its structure and enzymatic activity. Three mutants were created, in which Cys102 was replaced by arginine or serine, and His398 was changed to glycine. The ability of bleomycin hydrolase to oligomerize was neither affected by the subtle cysteine/serine mutation nor affected by cysteine/arginine or histidine/glycine mutations. However, the ability of bleomycin hydrolase to hydrolyze and inactivate bleomycin was totally abolished in all three mutants, suggesting that the cysteine thiol and histidine imidazole are critical for hydrolyzing bleomycin. Furthermore, in contrast to predictions from the recently reported crystal structure of this enzyme, hexamer formation is not required for the enzymatic activity of bleomycin hydrolase. Thus, these results demonstrate that Cys102 and His398 are required for bleomycin hydrolase activity but not hexamer formation, and that both monomer and hexamer are active forms of bleomycin hydrolase.
Collapse
Affiliation(s)
- Z Pei
- Department of Pharmacology, School of Medicine, University of Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
11
|
Joshua-Tor L, Xu HE, Johnston SA, Rees DC. Crystal structure of a conserved protease that binds DNA: the bleomycin hydrolase, Gal6. Science 1995; 269:945-50. [PMID: 7638617 DOI: 10.1126/science.7638617] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bleomycin hydrolase is a cysteine protease that hydrolyzes the anticancer drug bleomycin. The homolog in yeast, Gal6, has recently been identified and found to bind DNA and to act as a repressor in the Gal4 regulatory system. The crystal structure of Gal6 at 2.2 A resolution reveals a hexameric structure with a prominent central channel. The papain-like active sites are situated within the central channel, in a manner resembling the organization of active sites in the proteasome. The Gal6 channel is lined with 60 lysine residues from the six subunits, suggesting a role in DNA binding. The carboxyl-terminal arm of Gal6 extends into the active site cleft and may serve a regulatory function. Rather than each residing in distinct, separable domains, the protease and DNA-binding activities appear structurally intertwined in the hexamer, implying a coupling of these two activities.
Collapse
Affiliation(s)
- L Joshua-Tor
- Divison of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125, USA
| | | | | | | |
Collapse
|
12
|
Jia Z, Hasnain S, Hirama T, Lee X, Mort JS, To R, Huber CP. Crystal structures of recombinant rat cathepsin B and a cathepsin B-inhibitor complex. Implications for structure-based inhibitor design. J Biol Chem 1995; 270:5527-33. [PMID: 7890671 DOI: 10.1074/jbc.270.10.5527] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The lysosomal cysteine proteinase cathepsin B (EC 3.4.22.1) plays an important role in protein catabolism and has also been implicated in various disease states. The crystal structures of two forms of native recombinant rat cathepsin B have been determined. The overall folding of rat cathepsin B was shown to be very similar to that of the human liver enzyme. The structure of the native enzyme containing an underivatized active site cysteine (Cys29) showed the active enzyme conformation to be similar to that determined previously for the oxidized form. In a second structure Cys29 was derivatized with the reversible blocking reagent pyridyl disulfide. In this structure large side chain conformational changes were observed for the two key catalytic residues Cys29 and His199, demonstrating the potential flexibility of these side chains. In addition the structure of the complex between rat cathepsin B and the inhibitor benzyloxycarbonyl-Arg-Ser(O-Bzl) chloromethylketone was determined. The complex structure showed that very little conformational change occurs in the enzyme upon inhibitor binding. It also allowed visualization of the interaction between the enzyme and inhibitor. In particular the interaction between Glu245 and the P2 Arg residue was clearly demonstrated, and it was found that the benzyl group of the P1 substrate residue occupies a large hydrophobic pocket thought to represent the S'1 subsite. This may have important implications for structure-based design of cathepsin B inhibitors.
Collapse
Affiliation(s)
- Z Jia
- Institute for Biological Sciences, National Research Council of Canada, Ottawa
| | | | | | | | | | | | | |
Collapse
|
13
|
Walker NP, Talanian RV, Brady KD, Dang LC, Bump NJ, Ferenz CR, Franklin S, Ghayur T, Hackett MC, Hammill LD. Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10)2 homodimer. Cell 1994; 78:343-52. [PMID: 8044845 DOI: 10.1016/0092-8674(94)90303-4] [Citation(s) in RCA: 424] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Interleukin-1 beta-converting enzyme (ICE) proteolytically cleaves pro-IL-1 beta to its mature, active form. The crystal structure at 2.5 A resolution of a recombinant human ICE-tetrapeptide chloromethylketone complex reveals that the holoenzyme is a homodimer of catalytic domains, each of which contains a p20 and a p10 subunit. The spatial separation of the C-terminus of p20 and the N-terminus of p10 in each domain suggests two alternative pathways of assembly and activation in vivo. ICE is homologous to the C. elegans cell death gene product, CED-3, and these may represent a novel class of cytoplasmic cysteine proteases that are important in programmed cell death (apoptosis). Conservation among members of the ICE/CED-3 family of the amino acids that form the active site region of ICE supports the hypothesis that they share functional similarities.
Collapse
Affiliation(s)
- N P Walker
- BASF Aktiengesellschaft, Main Laboratory, Ludwigshafen, Federal Republic of Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
This chapter presents families of cysteine peptidases. The activity of all cysteine peptidases depends on a catalytic dyad of cysteine and histidine. The order of the cysteine and histidine residues (Cys/His or His/Cys) in the linear sequence differs between families and this is among the lines of evidence suggesting that cysteine peptidases have had many separate evolutionary origins. The families C1, C2, and C10 can be described as “papainlike,” and form clan CA. The papain family contains peptidases with a wide variety of activities, including endopeptidases with broad specificity, endopeptidases with narrow specificity, aminopeptidases, and peptidases with both endopeptidase and exopeptidase activities. Papain homologs are generally either lysosomal or secreted proteins. The calpain family includes the calcium-dependent cytosolic endopeptidase calpain, which is known from birds and mammals, and the product of the sol gene in Drosophila. Calpain is a complex of two peptide chains. Picornains are a family of polyprotein-processing endopeptidases from single-stranded RNA viruses. Each picornavirus has two picornains (2A and 3C).
Collapse
Affiliation(s)
- N D Rawlings
- Strangeways Research Laboratory, Cambridge, United Kingdom
| | | |
Collapse
|
15
|
Affiliation(s)
- A C Storer
- Biotechnology Research Institute, National Research Council of Canada, Montréal, Quebec
| | | |
Collapse
|
16
|
Thibault P, Pleasance S, Laycock M, Mackay R, Boyd R. Characterization of a mixture of lobster digestive cysteine proteinases by ionspray mass spectrometry and tryptic mapping with LC—MS and LC—MS—MS. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0168-1176(91)85063-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Yamamoto D, Matsumoto K, Ohishi H, Ishida T, Inoue M, Kitamura K, Mizuno H. Refined x-ray structure of papain.E-64-c complex at 2.1-A resolution. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98753-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
18
|
Brocklehurst K, Willenbrock F, Salih E. Chapter 2 Cysteine proteinases. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/s0167-7306(09)60016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
19
|
Kamphuis IG, Drenth J, Baker EN. Thiol proteases. Comparative studies based on the high-resolution structures of papain and actinidin, and on amino acid sequence information for cathepsins B and H, and stem bromelain. J Mol Biol 1985; 182:317-29. [PMID: 3889350 DOI: 10.1016/0022-2836(85)90348-1] [Citation(s) in RCA: 232] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An accurate three-dimensional structure is known for papain (1.65 A resolution) and actinidin (1.7 A). A detailed comparison of these two structures was performed to determine the effect of amino acid changes on the conformation. It appeared that, despite only 48% identity in their amino acid sequence, different crystallization conditions and different X-ray data collection techniques, their structures are surprisingly similar with a root-mean-square difference of 0.40 A between 76% of the main-chain atoms (differences less than 3 sigma). Insertions and deletions cause larger differences but they alter the conformation over a very limited range of two to three residues only. Conformations of identical side-chains are generally retained to the same extent as the main-chain conformation. If they do change, this is due to a modified local environment. Several examples are described. Spatial positions of hydrogen bonds are conserved to a greater extent than are the specific groups involved. The greatest structural similarity is found for the active site residues of papain and actinidin, for the internal water molecules and for the main-chain conformation of residues in alpha-helices and anti-parallel beta-sheet structure. This was reflected also in the similarity of the temperature factors. It suggests that the secondary structural elements form the skeleton of the molecule and that their interaction is the main factor in directing the fold of the polypeptide chain. Therefore, substitution of residues in the skeleton will, in general, have the most drastic effect on the conformation of the protein molecule. In papain and actinidin, some main-chain-side-chain hydrogen bonds are also strongly conserved and these may determine the folding of non-repetitive parts of the structure. Furthermore, we included primary structure information for three homologous thiol proteases: stem bromelain, and the cathepsins B and H. By combining the three-dimensional structural information for papain and actinidin with sequence homologies and identities, we conclude that the overall folding pattern of the polypeptide chain is grossly the same in all five proteases, and that they utilize the same catalytic mechanism.
Collapse
|
20
|
Bode W, Brzin J, Turk V. Crystallization of chicken egg white cystatin, a low molecular weight protein inhibitor of cysteine proteinases, and preliminary X-ray diffraction data. J Mol Biol 1985; 181:331-2. [PMID: 3838557 DOI: 10.1016/0022-2836(85)90098-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The shorter-chain form of chicken egg white cystatin has been crystallized in 1.6 M-phosphate buffer at pH 4.0 by vapour diffusion. The crystals are of trigonal space group P3121 (or P3221), have cell constants a = b = 47.9 A, c = 87.5 A, alpha = beta = 90 degrees, gamma = 120 degrees, and contain one molecule of 12,191 molecular weight per asymmetric unit. They diffract well to about 2.0 A resolution and are suitable for X-ray crystal structure analysis.
Collapse
|
21
|
Abstract
Papain is a sulfhydryl protease from the latex of the papaya fruit. Its molecules consist of one polypeptide chain with 212 amino acid residues. The chain is folded into two domains with the active site in a groove between the domains. We have refined the crystal structure of papain, in which the sulfhydryl group was oxidized, by a restrained least-squares procedure at 1.65 A to an R-factor of 16.1%. The estimated accuracy in the atomic co-ordinates is 0.1 A, except for disordered atoms. All phi/psi angles for non-glycine residues are found within the outer limit boundary of a Ramachandran plot and this provides another check on the quality of the model. In the alpha-helical parts of the structure, the C = O bonds are directed more away from the helix axis than in a classical alpha-helix, leading to somewhat longer hydrogen bonds, 2.98 A, compared to 2.89 A. The hydrogen-bonding parameters and conformational angles in the anti-parallel beta-sheet structure show a large diversity. Hydrogen bonds in the core of the sheet are generally shorter than those at the more twisted ends. The average value is 2.91 A. The hydrogen bond distance Ni+3-Oi in turns is relatively long and the geometry is far from linear. Hydrogen bond formation, therefore, is perhaps not an essential prerequisite for turn formation. Although the crystallization medium is 62% (w/w) methanol in water, only 29 out of 224 solvent molecules can be regarded with any certainty as methanol molecules. The water molecules play an important role in maintaining structural stability. This is specially true for internal water. Twenty-one water molecules are located in contact areas between adjacent papain molecules. It seems as if the enzyme is trapped in a grid of water molecules with only a limited number of direct interactions between the protein molecules. The residues in the active site cleft belong to the most static parts of the structure. In general, disorder in atomic positions increases when going from the interior of the protein molecule to its surface. This behavior was quantified and it was found that the point of minimum disorder is near the molecular centroid.
Collapse
|