1
|
Bujalowski W, Jezewska MJ, Bujalowski PJ. Signal and binding. I. Physico-chemical response to macromolecule-ligand interactions. Biophys Chem 2017; 222:7-24. [PMID: 28092802 DOI: 10.1016/j.bpc.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/26/2016] [Accepted: 12/26/2016] [Indexed: 11/27/2022]
Abstract
Obtaining a detailed knowledge about energetics of ligand-macromolecule interactions is a prerequisite for elucidation of the nature, behavior, and activities of the formed complexes. The most commonly used methods in characterizing molecular interactions are physico-chemical techniques based mainly on spectroscopic, calorimetric, hydrodynamic, etc., measurements. The major advantage of the physico-chemical methods is that they do not require large quantities of material and, if performed carefully, do not perturb examined reactions. Applications of several different physico-chemical approaches, commonly encountered in analyses of biochemical interactions, are here reviewed and discussed, using examples of simple binding reactions. It is stressed that without determination of the relationship between the measured signal and the total average degree of binding, the performed analysis of a single physico-chemical titration curve may provide only fitting parameters, instead of meaningful interaction parameters, already for the binding systems with only two ligand molecules. Some possible pitfalls in the analyses of single titration curves are discussed.
Collapse
Affiliation(s)
- Wlodzimierz Bujalowski
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-1053, USA; Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-1053, USA; The Sealy Center for Structural Biology, Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-1053, USA.
| | - Maria J Jezewska
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-1053, USA; The Sealy Center for Structural Biology, Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-1053, USA
| | - Paul J Bujalowski
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-1053, USA; The Sealy Center for Structural Biology, Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-1053, USA
| |
Collapse
|
2
|
Abstract
Elucidation of ligand - macromolecule interactions requires detailed knowledge of energetics of the formed complexes. Spectroscopic methods are most commonly used in characterizing molecular interactions in solution. The methods do not require large quantities of material and most importantly, do not perturb the studied reactions. However, spectroscopic methods absolutely require the determination of the relationship between the observed signal and the degree of binding in order to obtain meaningful interaction parameters. In other words, the meaningful, thermodynamic interaction parameters can be only determined if the relationship between the observed signal and the degree of binding is determined and not assumed, based on an ad hoc model of the relationship. The approaches discussed here allow an experimenter to quantitatively determine the degree of binding and the free ligand concentration, i.e., they enable to construct thermodynamic binding isotherms in a model-independent fashion.
Collapse
Affiliation(s)
- Wlodzimierz Bujalowski
- Department of Obstetrics and Gynecology, The Sealy Center for Structural Biology, Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas 77555-1053
| | - Maria J Jezewska
- Department of Biochemistry and Molecular Biology, The Sealy Center for Structural Biology, Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas 77555-1053
| |
Collapse
|
3
|
Macromolecular competition titration method accessing thermodynamics of the unmodified macromolecule-ligand interactions through spectroscopic titrations of fluorescent analogs. Methods Enzymol 2011. [PMID: 21195223 DOI: 10.1016/b978-0-12-381268-1.00002-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Analysis of thermodynamically rigorous binding isotherms provides fundamental information about the energetics of the ligand-macromolecule interactions and often an invaluable insight about the structure of the formed complexes. The Macromolecular Competition Titration (MCT) method enables one to quantitatively obtain interaction parameters of protein-nucleic acid interactions, which may not be available by other methods, particularly for the unmodified long polymer lattices and specific nucleic acid substrates, if the binding is not accompanied by adequate spectroscopic signal changes. The method can be applied using different fluorescent nucleic acids or fluorophores, although the etheno-derivatives of nucleic acid are especially suitable as they are relatively easy to prepare, have significant blue fluorescence, their excitation band lies far from the protein absorption spectrum, and the modification eliminates the possibility of base pairing with other nucleic acids. The MCT method is not limited to the specific size of the reference nucleic acid. Particularly, a simple analysis of the competition titration experiments is described in which the fluorescent, short fragment of nucleic acid, spanning the exact site-size of the protein-nucleic acid complex, and binding with only a 1:1 stoichiometry to the protein, is used as a reference macromolecule. Although the MCT method is predominantly discussed as applied to studying protein-nucleic acid interactions, it can generally be applied to any ligand-macromolecule system by monitoring the association reaction using the spectroscopic signal originating from the reference macromolecule in the presence of the competing macromolecule, whose interaction parameters with the ligand are to be determined.
Collapse
|
4
|
Bujalowski W. Thermodynamic and kinetic methods of analyses of protein-nucleic acid interactions. From simpler to more complex systems. Chem Rev 2006; 106:556-606. [PMID: 16464018 DOI: 10.1021/cr040462l] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wlodzimierz Bujalowski
- Department of Biochemistry and Molecular Biology, the Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, 77555-1053, USA.
| |
Collapse
|
5
|
Dragan AI, Read CM, Makeyeva EN, Milgotina EI, Churchill MEA, Crane-Robinson C, Privalov PL. DNA Binding and Bending by HMG Boxes: Energetic Determinants of Specificity. J Mol Biol 2004; 343:371-93. [PMID: 15451667 DOI: 10.1016/j.jmb.2004.08.035] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 06/23/2004] [Accepted: 08/06/2004] [Indexed: 11/26/2022]
Abstract
To clarify the physical basis of DNA binding specificity, the thermodynamic properties and DNA binding and bending abilities of the DNA binding domains (DBDs) of sequence-specific (SS) and non-sequence-specific (NSS) HMG box proteins were studied with various DNA recognition sequences using micro-calorimetric and optical methods. Temperature-induced unfolding of the free DBDs showed that their structure does not represent a single cooperative unit but is subdivided into two (in the case of NSS DBDs) or three (in the case of SS DBDs) sub-domains, which differ in stability. Both types of HMG box, most particularly SS, are partially unfolded even at room temperature but association with DNA results in stabilization and cooperation of all the sub-domains. Binding and bending measurements using fluorescence spectroscopy over a range of ionic strengths, combined with calorimetric data, allowed separation of the electrostatic and non-electrostatic components of the Gibbs energies of DNA binding, yielding their enthalpic and entropic terms and an estimate of their contributions to DNA binding and bending. In all cases electrostatic interactions dominate non-electrostatic in the association of a DBD with DNA. The main difference between SS and NSS complexes is that SS are formed with an enthalpy close to zero and a negative heat capacity effect, while NSS are formed with a very positive enthalpy and a positive heat capacity effect. This indicates that formation of SS HMG box-DNA complexes is specified by extensive van der Waals contacts between apolar groups, i.e. a more tightly packed interface forms than in NSS complexes. The other principal difference is that DNA bending by the NSS DBDs is driven almost entirely by the electrostatic component of the binding energy, while DNA bending by SS DBDs is driven mainly by the non-electrostatic component. The basic extensions of both categories of HMG box play a similar role in DNA binding and bending, making solely electrostatic interactions with the DNA.
Collapse
Affiliation(s)
- Anatoly I Dragan
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Dragan AI, Klass J, Read C, Churchill MEA, Crane-Robinson C, Privalov PL. DNA binding of a non-sequence-specific HMG-D protein is entropy driven with a substantial non-electrostatic contribution. J Mol Biol 2003; 331:795-813. [PMID: 12909011 DOI: 10.1016/s0022-2836(03)00785-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The thermal properties of two forms of the Drosophila melanogaster HMG-D protein, with and without its highly basic 26 residue C-terminal tail (D100 and D74) and the thermodynamics of their non-sequence-specific interaction with linear DNA duplexes were studied using scanning and titration microcalorimetry, spectropolarimetry, fluorescence anisotropy and FRET techniques at different temperatures and salt concentrations. It was shown that the C-terminal tail of D100 is unfolded at all temperatures, whilst the state of the globular part depends on temperature in a rather complex way, being completely folded only at temperatures close to 0 degrees C and unfolding with significant heat absorption at temperatures below those of the gross denaturational changes. The association constant and thus Gibbs energy of binding for D100 is much greater than for D74 but the enthalpies of their association are similar and are large and positive, i.e. DNA binding is a completely entropy-driven process. The positive entropy of association is due to release of counterions and dehydration upon forming the protein/DNA complex. Ionic strength variation showed that electrostatic interactions play an important but not exclusive role in the DNA binding of the globular part of this non-sequence-specific protein, whilst binding of the positively charged C-terminal tail of D100 is almost completely electrostatic in origin. This interaction with the negative charges of the DNA phosphate groups significantly enhances the DNA bending. An important feature of the non-sequence-specific association of these HMG boxes with DNA is that the binding enthalpy is significantly more positive than for the sequence-specific association of the HMG box from Sox-5, despite the fact that these proteins bend the DNA duplex to a similar extent. This difference shows that the enthalpy of dehydration of apolar groups at the HMG-D/DNA interface is not fully compensated by the energy of van der Waals interactions between these groups, i.e. the packing density at the interface must be lower than for the sequence-specific Sox-5 HMG box.
Collapse
Affiliation(s)
- Anatoly I Dragan
- Department of Biology, Johns Hopkins University, Mudd Hall, 3400 N Charles Street, Baltimore, MD 21218-2685, USA
| | | | | | | | | | | |
Collapse
|
7
|
Dragan AI, Liggins JR, Crane-Robinson C, Privalov PL. The energetics of specific binding of AT-hooks from HMGA1 to target DNA. J Mol Biol 2003; 327:393-411. [PMID: 12628246 DOI: 10.1016/s0022-2836(03)00050-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The interaction of the second and third AT-hooks of HMGA1 (formerly HMGI/Y), which bind selectively in the minor groove of an AT-rich DNA sequence, was studied at different temperatures and ionic strengths by spectropolarimetry, spectrofluorimetry, isothermal titration calorimetry and differential scanning calorimetry. The data show that binding of the ten amino acid core element of the two AT-hooks, which penetrates deep into the minor groove, is entropically driven: both the entropy and enthalpy of association of the peptides to the target DNA are positive up to 50 degrees C. The seven amino acid extension of the core in the second AT-hook, which extends out from the minor groove and loops over the phosphodiester backbone, adds a substantial negative enthalpic component into the binding of the 17 residue DBD2 peptide to DNA that corresponds in magnitude to the enthalpy of formation of two hydrogen bonds. The ionic strength dependence of the association constant allowed an estimation of the electrostatic component of binding and, by subtraction, the contribution of the non-electrostatic component, which results from dehydration of the contacting surfaces and makes up almost 70% of the total energy of complex formation. The exceptionally large positive entropy and enthalpy of association of the core AT-hook peptides with target DNA suggest that the water, which is removed from the minor groove of DNA upon binding, is in a highly ordered state. Acetylation of the lysine residue in the second AT-hook, which corresponds to Lys65 of HMGA1, has little effect on the DNA binding; so it appears that repression of the hIFNbeta gene, which follows this modification, is not a direct result of the abrogation of DNA binding.
Collapse
Affiliation(s)
- Anatoly I Dragan
- Department of Biology, Johns Hopkins University, 144 Mudd Hall, 3400 N Charles Street, Baltimore, MD 21218-2685, USA
| | | | | | | |
Collapse
|
8
|
Korber P, Zander T, Herschlag D, Bardwell JC. A new heat shock protein that binds nucleic acids. J Biol Chem 1999; 274:249-56. [PMID: 9867837 DOI: 10.1074/jbc.274.1.249] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe the isolation of Hsp15, a new, very abundant heat shock protein that binds to DNA and RNA. Hsp15 is well conserved and related to a number of RNA-binding proteins, including ribosomal protein S4, RNA pseudouridine synthase, and tyrosyl-tRNA synthetase. The region shared between these proteins appears to represent a common, but previously unrecognized, RNA binding motif. Filter binding studies showed that Hsp15 binds to a 17-mer single-stranded RNA with a dissociation constant of 9 microM in 22.5 mM Hepes, pH 7. 0, 5 mM MgCl2. A role of Hsp15 in binding nucleic acids puts this protein into a different functional category from that of many other heat shock proteins that act as molecular chaperones or proteases on protein substrates.
Collapse
Affiliation(s)
- P Korber
- Department of Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | |
Collapse
|
9
|
Jana R, Hazbun TR, Mollah AK, Mossing MC. A folded monomeric intermediate in the formation of lambda Cro dimer-DNA complexes. J Mol Biol 1997; 273:402-16. [PMID: 9344748 DOI: 10.1006/jmbi.1997.1256] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The folding, dimerization and DNA binding equilibria of the bacteriophage lambda Cro repressor have been characterized. Comparison with four engineered variants shows that a folded monomeric species is substantially populated under conditions used for the formation of dimer-DNA complexes. Although Cro dimers are the only DNA-bound species observed in electrophoretic mobility shift assays, cooperativity in Cro-DNA binding isotherms shows that the predominant free protein species is monomeric at nanomolar concentrations. Micromolar dissociation constants for Cro dimers have been measured in the absence of DNA by sedimentation equilibrium and gel filtration chromatography. Denaturation of Cro dimers in the 10 to 100 micromolar concentration range by guanidine hydrochloride (GdnHCl) is well modeled as a two-state process, with folded dimers and unfolded monomers as the only significantly populated species. However, linear extrapolation of this composite unfolding and dimer dissociation free energy predicts a nanomolar dissociation constant in the absence of denaturant. This extrapolation is clearly inconsistent with the DNA binding and hydrodynamic measurements. Our interpretation of these results is that the monomeric species detected in DNA binding and hydrodynamic experiments is predominantly folded. The stability of the folded monomeric species can be calculated as the difference between the dimerization free energy determined from hydrodynamic measurements and the folding free energy extrapolated from GdnHCl denaturation. The calculated stability of the Cro F58W monomer is greater than that of the wild-type Cro monomer. Thus, residue 58, which makes critical intermolecular contacts across the dimer interface, is also involved in intramolecular stabilization of the monomeric intermediate.
Collapse
Affiliation(s)
- R Jana
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | | | | | | |
Collapse
|
10
|
Jezewska MJ, Bujalowski W. Quantitative analysis of ligand-macromolecule interactions using differential dynamic quenching of the ligand fluorescence to monitor the binding. Biophys Chem 1997; 64:253-69. [PMID: 9127949 DOI: 10.1016/s0301-4622(96)02221-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Quantitative analyses of the thermodynamics and kinetics of ligand-macromolecule interactions in biological systems rely predominately on monitoring changes in the spectroscopic properties of the ligand or macromolecule, particularly fluorescence changes, which accompany the formation of the studied complexes. However, in many instances the interactions do not affect the fluorescence properties of interacting species and do not provide a resolution high enough to perform quantitative and rigorous measurements of the thermodynamic and/or kinetic parameters. In this communication, we describe the theoretical and experimental aspects of a method of studying complex, multiple ligand-macromolecule interactions by the fluorescence titration technique, when the intrinsic fluorescence changes accompanying binding do not provide a resolution necessary to perform quantitative analyses. The method is based on the fact that a fluorescent ligand, or binding sites of the macromolecule, can have different accessibility to the collisional (dynamic) quencher, when involved in the complex, rather than in the free, unbound state. The presence of an external dynamic quencher in solution, i.e., the presence of an extra collisional quenching process, transforms the fluorescence of the ligand or macromolecule, intrinsically independent of the complex formation, into a property which is dramatically different in the free state than in the bound state of the fluorophore. The approach is applicable to any model of noncooperative or cooperative ligand binding to a macromolecule and allows for the optimization of the resolution of the binding or kinetic studies for a given ligand-macromolecule system. The application of the method is illustrated by applying it to the study of the binding of the fluorescent derivative of a nucleotide cofactor, epsilon ADP, to the six interacting sites of the E. coli primary replicative helicase DnaB protein hexamer.
Collapse
Affiliation(s)
- M J Jezewska
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch at Galveston 77555-1053, USA
| | | |
Collapse
|
11
|
Abstract
Using a highly sensitive pulsed-flow microcalorimeter, we have measured the changes in enthalpy and determined the thermodynamic parameters delta H, delta S degree, delta G degree, and delta C(p) for Cro protein-DNA association reactions. The reactions studied include sequence-nonspecific DNA association and sequence-specific DNA associations involving single- and multiple-base alterations and/or single-amino acid alteration mutants. (i) The association of Cro protein with nonspecific DNA at 15 degrees C is characterized by delta H = +4.4 kcal.mol-1 (1 cal = 4.18J), delta S degrees = 49 cal.mol-1.K-1, delta G degrees = -9.7 kcal.mol-1, and delta Cp congruent to 0; the association with specific high-affinity operator OR3 DNA is characterized by delta H = +0.8 kcal.mol-1, delta S degree = 59 cal.mol-1.K-1, delta G degree = -16.1 kcal.mol-1, and delta Cp = -360 cal.mol-1.K-1, respectively. Both nonspecific and specific Cro-DNA associations are entropy-driven. (ii) Plots of delta H vs. delta Cp and delta S degree vs. delta Cp for the 20 association reactions studied fall into two correlation groups with linear slopes of +9.4 K and -20.5 K and of -0.03 and -0.14, respectively. These regression lines have common intercepts, at the delta H and delta S degree values of nonspecific association (where delta Cp congruent to 0). The results suggest that there are, at least, two distinct conformational subclasses in specific Cro-DNA complexes, stabilized by different combinations of enthalpic and entropic contributions. The delta G degree and delta Cp values form an approximately single linear correlation group as a consequence of compensatory contributions from delta H and delta S degree to delta G degree and to delta Cp. Cro protein-DNA associations share some similar thermodynamic properties with protein folding, but their overall energetics are quite different. Although the nonspecific complex is stabilized predominantly by electrostatic forces, it appears that H bonds, van der Waals contacts, hydrophobic effects, and charge interactions all contribute to the stability (delta G degree and delta Cp) of the specific complex. (iii) The variations in the values of the thermodynamic parameters are in general accord with our knowledge of the structure of the Cro-DNA complex.
Collapse
Affiliation(s)
- Y Takeda
- Laboratory of Molecular Biology, National Cancer Institute-Frederick Cancer Research Facility, MD 21701
| | | | | |
Collapse
|
12
|
Baleja J, Anderson W, Sykes B. Different interactions of Cro repressor dimer with the left and right halves of OR3 operator DNA. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54541-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Torigoe C, Kidokoro S, Takimoto M, Kyogoku Y, Wada A. Spectroscopic studies on lambda cro protein-DNA interactions. J Mol Biol 1991; 219:733-46. [PMID: 2056536 DOI: 10.1016/0022-2836(91)90668-v] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Spectroscopic (circular dichroism and fluorescence) and thermodynamic studies were conducted on lambda Cro-DNA interactions. Some base substitutions were introduced to the operator and the effects on the conformation of the complex and thermodynamic parameters for dissociation of the complex were examined. It was found that, (1) in the specific binding of Cro with DNA which has a (pseudo) consensus sequence, DNA is overwound, while in non-specific binding it is unchanged, or rather unwound; (2) substitution of central base-pairs or the introduction of a mismatched base-pair at the center of the operator reduces the extent of DNA conformational change on Cro binding and lessens the stability of the Cro-DNA complex, even though there is apparently no direct interaction between Cro and DNA at these positions; (3) stability of the complex increases with the degree of DNA conformational change of the same type during binding; (4) in some cases of specific binding, there are three states in the dissociation of the complex as observed by salt titration: two conformational states for the complex depending on salt concentration and, in non-specific binding, dissociation is a two-state transition; (5) the number of ions involved in interactions between Cro and 17 base-pair DNA is about 7.7 for NaCl titrations; (6) dissociation free energy prediction of the Cro-DNA complex by simple addition of the dissociation free energy change of a single base-pair substitution agrees with our experimental results when DNA overwinding occurs during binding, i.e. in specific binding.
Collapse
Affiliation(s)
- C Torigoe
- Department of Physics, Faculty of Science, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
14
|
Lohman TM, Bujalowski W. Thermodynamic methods for model-independent determination of equilibrium binding isotherms for protein-DNA interactions: spectroscopic approaches to monitor binding. Methods Enzymol 1991; 208:258-90. [PMID: 1779838 DOI: 10.1016/0076-6879(91)08017-c] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The measurement of equilibrium binding constants for ligand-macromolecule interactions by monitoring a change in some spectral property of the ligand or the macromolecule is a common method used to study these interactions. This is due to the high sensitivity of the spectroscopic methods and general ease in applying these experimental procedures. In addition, binding can be monitored continuously, thus facilitating kinetic measurements. The main problem with these methods results from the fact that the spectroscopic signal is an indirect measure of binding, since the relationship between the change in the spectroscopic signal and the extent of binding is unknown, a priori. A common recourse is to assume a strict proportionality between the signal change and the fractional saturation of the ligand or macromolecule; however, it is often the case that such a direct proportionality does not hold. In this chapter we have reviewed the use of methods to analyze ligand-macromolecule equilibrium titrations that are monitored by indirect spectroscopic techniques. These methods of analysis yield thermodynamically rigorous, model-independent binding isotherms, hence assumptions concerning the relationship between the signal change and the extent of binding are not required. In fact, these methods can also be used to determine quantitatively the relationship between the signal change and the average degree of binding. In addition, the approaches discussed here are general and not limited to spectroscopic signals and therefore can be used with any intensive physicochemical property that reflects binding.
Collapse
|
15
|
Cook J, Holtom G, Lu P. Detection of protein-DNA complex formation by time-resolved fluorescence depolarization of bound ethidium bromide. Anal Biochem 1990; 190:331-9. [PMID: 2291477 DOI: 10.1016/0003-2697(90)90204-m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We introduce the use of time-resolved fluorescence spectroscopy to probe the interaction between gene regulatory proteins and DNA. Changes in the decay kinetics of fluorescence polarization anisotropy of ethidium bromide bound to DNA segments report changes in hydrodynamic volume and shape which occurs upon complex formation between protein and DNA. We have used the decay of fluorescence polarization anisotropy as a spectroscopic handle on the interaction between several site-specific DNA-binding proteins involved in transcriptional regulation (the cro repressor of coliphage lambda, the lac repressor of Escherichia coli, and the RNA polymerase of coliphage T7) and their target DNA fragments ranging in length from 17 to 36 base pairs. The technique allows one to follow complex formation while varying solution conditions such as temperature, pH, ionic strength, and presence of effector molecules. Macromolecular concentrations ranging from 10(-7) to 10(-4) M can be used, allowing estimates of relative binding affinities. The magnitude of the observed rotational correlation times (phi obs) can be used to infer information about the size and shape of the complexes.
Collapse
Affiliation(s)
- J Cook
- Department of Chemistry, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
16
|
Mitsis PG, Wensink PC. Purification and Properties of Yolk Protein Factor I, a Sequence-specific DNA-binding Protein from Drosophila melanogaster. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83718-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Abstract
The six operators of phage lambda and their consensus sequence were synthesized as 21 base-pair DNAs and their interactions with Cro repressor were studied using a filter binding assay. The measured equilibrium dissociation constants suggest that Cro has the highest affinity to the consensus operator (KD = 1.2 X 10(-12) M) and then the OR3 operator (KD = 2.0 X 10(-12) M), after that the affinity becomes lower in the following order: OR1, OL1, OL2, OL3, OR2. The competition experiments show that Cro forms the most stable complex with the consensus operator (t1/2 = 150 min), which is followed by the complex with OR3 (t1/2 = 70 min), OR1, OL1, OL2, OL3 and OR2. The association rate constants (ka) were also measured. They are approximately the same (2 X 10(8) to 4 X 10(8) m-1 s-1) for the consensus, OR3, OR2 and OR1 operators. These experiments have thus shown that the sequence difference in the operator affects the dissociation (KD and kd) but not the association (ka) process. The operators' binding strengths relative to OR1 are 14 (for consensus operator), 7.6 (OR3), 0.73 (OL1), 0.42 (OL2), 0.16 (OL3) and 0.1 (OR2). Seven different lengths of OR-containing DNA fragments were prepared. Measurement of kinetic parameters shows that the affinity of Cro to operator DNA (measured by KD) is essentially constant and independent of the DNA length, while the association and dissociation rate constants increase as the DNA length increases. This is consistent with the idea that Cro locates and leaves its operator via a two-step mechanism. It appears that Cro binds first at an arbitrary site on DNA, then is transferred to its operator site by a facilitated mechanism. The process is reversed when Cro dissociates from the operator. Most of our data fit to the theoretical expression formulated by Berg, Winter & von Hippel for the sliding mechanism. We conclude that Cro slides along the DNA to locate and leave the operator.
Collapse
Affiliation(s)
- J G Kim
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892
| | | | | | | |
Collapse
|
18
|
Lane AN, Jardetzky O. Unfolding of the trp repressor from Escherichia coli monitored by fluorescence, circular dichroism and nuclear magnetic resonance. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 164:389-96. [PMID: 3552669 DOI: 10.1111/j.1432-1033.1987.tb11070.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The denaturation of the trp repressor from Escherichia coli has been studied by fluorescence, circular dichroism and proton magnetic resonance spectroscopy. The dependences of the fluorescence emission of the two tryptophan residues on the concentration of urea are not identical. The dependence of the quenching of tryptophan fluorescence by iodide as a function of urea concentration also rules out a two-state transition. The circular dichroism at 222 nm decreases in two phases as urea is added. Normalised curves for different residues observed by 1H NMR also do not coincide, and require the presence of at least one stable intermediate. Analysis of the dependence of the denaturation curves on the concentration of protein indicate that the first transition is a partial unfolding of the dimeric repressor, resulting in a loss of about 25% of the helical content. The second transition is the dissociation and unfolding of the partially unfolded dimer. At high concentrations of protein (500 microM) about 73% of the repressor exists as the intermediate in 4 M urea. The apparent dissociation constant is about 10(-4) M; the subunits are probably strongly stabilised by the subunit interaction. The native repressor is stable up to at least 70 degrees C, whereas the intermediate formed at 4 M urea can be denatured reversibly by heating (melting temperature approximately 60 degrees C, delta H approximately 230 kJ/mol).
Collapse
|
19
|
Poteete AR, Hehir K, Sauer RT. Bacteriophage P22 Cro protein: sequence, purification, and properties. Biochemistry 1986; 25:251-6. [PMID: 3954988 DOI: 10.1021/bi00349a035] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The DNA sequence of part of the bacteriophage P22 early regulatory region, including genes cro and c1, was determined. The protein product of the cro gene consists of 61 amino acid residues, and that of c1, 92 amino acid residues. Both genes were placed separately in plasmids from which they are expressed from a controllable promoter in vivo. Induced cells bearing the cro-expressing plasmid were used as a source for purifying and characterizing the Cro protein. The amino-terminal sequence of this protein was found to be as predicted by the DNA sequence; close agreement was also observed between its predicted and experimentally determined amino acid composition and molar extinction coefficient at 280 nm. In gel filtration experiments, Cro protein at concentrations around 10(-5) M appears to have a molecular weight of 8600, which is more consistent with monomers (6800) than with dimers (13 600). Cro protein binds specifically to the three repressor binding sites in the P22 right operator; in order of decreasing affinity, these are OR3, OR1, and OR2.
Collapse
|
20
|
Metzler WJ, Arndt K, Tecza E, Wasilewski J, Lu P. Lambda phage cro repressor interaction with its operator DNA: 2'-deoxy-5-fluorouracil OR3 analogues. Biochemistry 1985; 24:1418-24. [PMID: 3157402 DOI: 10.1021/bi00327a020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The experiments here show that chemically synthesized DNA containing fluorine at selected sites can be used to test specific predictions of a model for cro repressor--operator interaction. This is done by observation of the perturbation to the fluorine-19 NMR spectra of analogues of OR3 synthesized with 2'-deoxy-5-fluorouracil at specific positions in the DNA helix. Although the three-dimensional structure of the cro repressor from phage lambda has been determined by Matthews and co-workers [Anderson, W., Ohlendorf, D., Takeda, Y., & Matthews, B. (1981) Nature (London) 290, 754-758], direct structural observations on the complex of the protein with its specific DNA recognition sequence, OR3, are limited. From that structure of the protein, alone, a model of its complex to DNA was built by fitting B-form DNA, with some distortion [Ohlendorf, D., Anderson, W., Fisher, R., Takeda, Y., & Matthews, B. (1982) Nature (London) 298, 718-723]. That model proposes that the cro repressor contacts only one side of this DNA double helix and a number of specific protein--DNA contacts. To test the model, 2'-deoxy-5-fluorouracil was used to place the fluorine-19 nuclear spin-label on the side of the DNA contacting the cro repressor and on the opposite side facing away from the cro repressor. The results presented here are consistent with the prediction that lambda phage cro repressor contacts only one side of the DNA double helix.
Collapse
|
21
|
Rein R, Kieber-Emmons T, Haydock K, Garduno-Juarez R, Shibata M. Molecular modelling of protein-nucleic acid interactions. J Biomol Struct Dyn 1983; 1:1051-79. [PMID: 6400904 DOI: 10.1080/07391102.1983.10507502] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Computer modeling techniques to study the interaction of proteins with nucleic acids are presented. The methods utilize information from genetic and chemical modification experiments and macromolecular structural constraints. These techniques, in addition to computer model building procedures and theoretical energy calculations, are illustrated for the study of the lac and cro repressor-operator systems. Our predicted interactions between lac and its operator agree with those recently reported for lac based upon sequence alignment with the cro repressor. Several molecular models of the putative helical segment of cro interacting with its OR3 operator are presented. These models are reflective of intermediate conformations experienced by the repressor in recognition of the operator sequence. The results of our studies are further discussed in terms of the design of short peptides interacting with nucleic acid sequences and the evolutionary requirements in establishing these repressor interactions.
Collapse
Affiliation(s)
- R Rein
- Dept. of Experimental Pathology, Roswell Park Memorial Institute, Buffalo, N.Y. 14263
| | | | | | | | | |
Collapse
|
22
|
Ulrich EL, John EM, Gough GR, Brunden MJ, Gilham PT, Westler WM, Markley JL. Imino proton assignments in the proton nuclear magnetic resonance spectrum of the lambda phage OR3 deoxyribonucleic acid fragment. Biochemistry 1983; 22:4362-5. [PMID: 6226312 DOI: 10.1021/bi00288a003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The 17 base pair duplex d(TATCACCGCAAGGGATAp) . d(TATCCCTTGCGGTGATAp) corresponding to the OR3 operator site of lambda phage has been synthesized and studied by 1H nuclear magnetic resonance spectroscopy at 470 MHz. The 13 imino proton resonances observed at 20 degrees C have been assigned to specific base pairs at positions 3-15 on the basis of nuclear Overhauser effect measurements and studies of the temperature dependence of peak intensities. Resonances from the A-T base pairs at positions 1, 2, 16, and 17 are assumed to be absent from the spectrum because of terminal fraying. Resonance from many of the base pairs suggested by Ohlendorf et al. [Ohlendorf, D. H., Anderson, W. F., Fisher, R. G., Takeda, Y., & Matthews, B. W. (1982) Nature (London) 298, 718-723] to be involved in specific binding of the lambda phage cro repressor are well resolved.
Collapse
|
23
|
Arndt KT, Boschelli F, Cook J, Takeda Y, Tecza E, Lu P. lambda Phage cro repressor interaction with DNA. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32602-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Boschelli F, Arndt K, Nick H, Zhang Q, Lu P, Takeda Y. Lambda phage cro repressor. DNA sequence-dependent interactions seen by tyrosine fluorescence. J Mol Biol 1982; 162:251-66. [PMID: 6219228 DOI: 10.1016/0022-2836(82)90525-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|