1
|
Oshiro RT, Dunham DT, Seed KD. The vibriophage-encoded inhibitor OrbA abrogates BREX-mediated defense through the ATPase BrxC. J Bacteriol 2024:e0020624. [PMID: 39404463 DOI: 10.1128/jb.00206-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Bacteria and phages are locked in a co-evolutionary arms race where each entity evolves mechanisms to restrict the proliferation of the other. Phage-encoded defense inhibitors have proven powerful tools to interrogate how defense systems function. A relatively common defense system is BREX (bacteriophage exclusion); however, how BREX functions to restrict phage infection remains poorly understood. A BREX system encoded by the sulfamethoxazole and trimethoprim (SXT) integrative and conjugative element, VchInd5, was recently identified in Vibrio cholerae, the causative agent of the diarrheal disease cholera. The lytic phage ICP1 (International Centre for Diarrhoeal Disease Research, Bangladesh cholera phage 1) that co-circulates with V. cholerae encodes the BREX-inhibitor OrbA, but how OrbA inhibits BREX is unclear. Here, we determine that OrbA inhibits BREX using a unique mechanism from known BREX inhibitors by directly binding to the BREX component BrxC. BrxC has a functional ATPase domain that, when mutated, not only disrupts BrxC function but also alters how BrxC multimerizes. Furthermore, we find that OrbA binding disrupts BrxC-BrxC interactions. We determine that OrbA cannot bind BrxC encoded by the distantly related BREX system encoded by the aSXT VchBan9, and thus fails to inhibit this BREX system that also circulates in epidemic V. cholerae. Lastly, we find that homologs of the VchInd5 BrxC are more diverse than the homologs of the VchBan9 BrxC. These data provide new insight into the function of the BrxC ATPase and highlight how phage-encoded inhibitors can disrupt phage defense systems using different mechanisms.IMPORTANCEWith renewed interest in phage therapy to combat antibiotic-resistant pathogens, understanding the mechanisms bacteria use to defend themselves against phages and the counter-strategies phages evolve to inhibit defenses is paramount. Bacteriophage exclusion (BREX) is a common defense system with few known inhibitors. Here, we probe how the vibriophage-encoded inhibitor OrbA inhibits the BREX system of Vibrio cholerae, the causative agent of the diarrheal disease cholera. By interrogating OrbA function, we have begun to understand the importance and function of a BREX component. Our results demonstrate the importance of identifying inhibitors against defense systems, as they are powerful tools for dissecting defense activity and can inform strategies to increase the efficacy of some phage therapies.
Collapse
Affiliation(s)
- Reid T Oshiro
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Drew T Dunham
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Kimberley D Seed
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
2
|
Zou X, Mo Z, Wang L, Chen S, Lee SY. Overcoming Bacteriophage Contamination in Bioprocessing: Strategies and Applications. SMALL METHODS 2024:e2400932. [PMID: 39359025 DOI: 10.1002/smtd.202400932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/14/2024] [Indexed: 10/04/2024]
Abstract
Bacteriophage contamination has a devastating impact on the viability of bacterial hosts and can significantly reduce the productivity of bioprocesses in biotechnological industries. The consequences range from widespread fermentation failure to substantial economic losses, highlighting the urgent need for effective countermeasures. Conventional prevention methods, which focus primarily on the physical removal of bacteriophages from equipment, bioprocess units, and the environment, have proven ineffective in preventing phage entry and contamination. The coevolutionary dynamics between phages and their bacterial hosts have spurred the development of a diverse repertoire of antiviral defense mechanisms within microbial communities. These naturally occurring defense strategies can be harnessed through genetic engineering to convert phage-sensitive hosts into robust, phage-resistant cell factories, providing a strategic approach to mitigate the threats posed by bacteriophages to industrial bacterial processes. In this review, an overview of the various defense strategies and immune systems that curb the propagation of bacteriophages and highlight their applications in fermentation bioprocesses to combat phage contamination is provided. Additionally, the tactics employed by phages to circumvent these defense strategies are also discussed, as preventing the emergence of phage escape mutants is a key component of effective contamination management.
Collapse
Affiliation(s)
- Xuan Zou
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen Univeristy Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Ziran Mo
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen Univeristy Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong, 518035, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea
- Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea
| |
Collapse
|
3
|
Vizzarro G, Lemopoulos A, Adams DW, Blokesch M. Vibrio cholerae pathogenicity island 2 encodes two distinct types of restriction systems. J Bacteriol 2024; 206:e0014524. [PMID: 39133004 PMCID: PMC11411939 DOI: 10.1128/jb.00145-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
In response to predation by bacteriophages and invasion by other mobile genetic elements such as plasmids, bacteria have evolved specialized defense systems that are often clustered together on genomic islands. The O1 El Tor strains of Vibrio cholerae responsible for the ongoing seventh cholera pandemic (7PET) contain a characteristic set of genomic islands involved in host colonization and disease, many of which contain defense systems. Notably, Vibrio pathogenicity island 2 contains several characterized defense systems as well as a putative type I restriction-modification (T1RM) system, which, interestingly, is interrupted by two genes of unknown function. Here, we demonstrate that the T1RM system is active, methylates the host genomes of a representative set of 7PET strains, and identify a specific recognition sequence that targets non-methylated plasmids for restriction. We go on to show that the two genes embedded within the T1RM system encode a novel two-protein modification-dependent restriction system related to the GmrSD family of type IV restriction enzymes. Indeed, we show that this system has potent anti-phage activity against diverse members of the Tevenvirinae, a subfamily of bacteriophages with hypermodified genomes. Taken together, these results expand our understanding of how this highly conserved genomic island contributes to the defense of pandemic V. cholerae against foreign DNA. IMPORTANCE Defense systems are immunity systems that allow bacteria to counter the threat posed by bacteriophages and other mobile genetic elements. Although these systems are numerous and highly diverse, the most common types are restriction enzymes that can specifically recognize and degrade non-self DNA. Here, we show that the Vibrio pathogenicity island 2, present in the pathogen Vibrio cholerae, encodes two types of restriction systems that use distinct mechanisms to sense non-self DNA. The first system is a classical Type I restriction-modification system, and the second is a novel modification-dependent type IV restriction system that recognizes hypermodified cytosines. Interestingly, these systems are embedded within each other, suggesting that they are complementary to each other by targeting both modified and non-modified phages.
Collapse
Affiliation(s)
- Grazia Vizzarro
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Lemopoulos
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David William Adams
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
4
|
Bullen NP, Johnson CN, Andersen SE, Arya G, Marotta SR, Lee YJ, Weigele PR, Whitney JC, Duerkop BA. An enterococcal phage protein broadly inhibits type IV restriction enzymes involved in antiphage defense. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.16.567456. [PMID: 38014348 PMCID: PMC10680825 DOI: 10.1101/2023.11.16.567456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The prevalence of multidrug resistant (MDR) bacterial infections continues to rise as the development of antibiotics needed to combat these infections remains stagnant. MDR enterococci are a major contributor to this crisis. A potential therapeutic approach for combating MDR enterococci is bacteriophage (phage) therapy, which uses lytic viruses to infect and kill pathogenic bacteria. While phages that lyse some strains of MDR enterococci have been identified, other strains display high levels of resistance and the mechanisms underlying this resistance are poorly defined. Here, we use a CRISPR interference (CRISPRi) screen to identify a genetic locus found on a mobilizable plasmid from Enterococcus faecalis involved in phage resistance. This locus encodes a putative serine recombinase followed by a Type IV restriction enzyme (TIV-RE) that we show restricts the replication of phage phi47 in E. faecalis. We further find that phi47 evolves to overcome restriction by acquiring a missense mutation in a TIV-RE inhibitor protein. We show that this inhibitor, termed type IV restriction inhibiting factor A (tifA), binds and inactivates diverse TIV-REs. Overall, our findings advance our understanding of phage defense in drug-resistant E. faecalis and provide mechanistic insight into how phages evolve to overcome antiphage defense systems.
Collapse
Affiliation(s)
- Nathan P. Bullen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8S 4L8
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Cydney N. Johnson
- Department of Immunology and Microbiology, University of Colorado School – Anschutz Medical Campus, School of Medicine, Aurora, CO, USA, 80045
| | - Shelby E. Andersen
- Department of Immunology and Microbiology, University of Colorado School – Anschutz Medical Campus, School of Medicine, Aurora, CO, USA, 80045
| | - Garima Arya
- Department of Immunology and Microbiology, University of Colorado School – Anschutz Medical Campus, School of Medicine, Aurora, CO, USA, 80045
| | - Sonia R. Marotta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8S 4L8
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Yan-Jiun Lee
- Research Department, New England Biolabs, Ipswich, MA, USA, 01938
| | - Peter R. Weigele
- Research Department, New England Biolabs, Ipswich, MA, USA, 01938
| | - John C. Whitney
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8S 4L8
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School – Anschutz Medical Campus, School of Medicine, Aurora, CO, USA, 80045
| |
Collapse
|
5
|
Oshiro RT, Dunham DT, Seed KD. The vibriophage-encoded inhibitor OrbA abrogates BREX-mediated defense through the ATPase BrxC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593382. [PMID: 38766029 PMCID: PMC11100822 DOI: 10.1101/2024.05.09.593382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Bacteria and phages are locked in a co-evolutionary arms race where each entity evolves mechanisms to restrict the proliferation of the other. Phage-encoded defense inhibitors have proven powerful tools to interrogate how defense systems function. A relatively common defense system is BREX (Bacteriophage exclusion); however, how BREX functions to restrict phage infection remains poorly understood. A BREX system encoded by the SXT integrative and conjugative element, Vch Ind5, was recently identified in Vibrio cholerae , the causative agent of the diarrheal disease cholera. The lytic phage ICP1 that co-circulates with V. cholerae encodes the BREX inhibitor OrbA, but how OrbA inhibits BREX is unclear. Here, we determine that OrbA inhibits BREX using a unique mechanism from known BREX inhibitors by directly binding to the BREX component BrxC. BrxC has a functional ATPase domain that, when mutated, not only disrupts BrxC function but also alters how BrxC multimerizes. Furthermore, we find that OrbA binding disrupts BrxC-BrxC interactions. We determine that OrbA cannot bind BrxC encoded by the distantly related BREX system encoded by the SXT Vch Ban9, and thus fails to inhibit this BREX system that also circulates in epidemic V. cholerae . Lastly, we find that homologs of the Vch Ind5 BrxC are more diverse than the homologs of the Vch Ban9 BrxC. These data provide new insight into the function of the BrxC ATPase and highlight how phage-encoded inhibitors can disrupt phage defense systems using different mechanisms. Importance With renewed interest in phage therapy to combat antibiotic-resistant pathogens, understanding the mechanisms bacteria use to defend themselves against phages and the counter-strategies phages evolve to inhibit defenses is paramount. Bacteriophage exclusion (BREX) is a common defense system with few known inhibitors. Here, we probe how the vibriophage-encoded inhibitor OrbA inhibits the BREX system of Vibrio cholerae , the causative agent of the diarrheal disease cholera. By interrogating OrbA function, we have begun to understand the importance and function of a BREX component. Our results demonstrate the importance of identifying inhibitors against defense systems, as they are powerful tools for dissecting defense activity and can inform strategies to increase the efficacy of some phage therapies.
Collapse
|
6
|
Andriianov A, Trigüis S, Drobiazko A, Sierro N, Ivanov NV, Selmer M, Severinov K, Isaev A. Phage T3 overcomes the BREX defense through SAM cleavage and inhibition of SAM synthesis by SAM lyase. Cell Rep 2023; 42:112972. [PMID: 37578860 DOI: 10.1016/j.celrep.2023.112972] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023] Open
Abstract
Bacteriophage T3 encodes a SAMase that, through cleavage of S-adenosyl methionine (SAM), circumvents the SAM-dependent type I restriction-modification (R-M) defense. We show that SAMase also allows T3 to evade the BREX defense. Although SAM depletion weakly affects BREX methylation, it completely inhibits the defensive function of BREX, suggesting that SAM could be a co-factor for BREX-mediated exclusion of phage DNA, similar to its anti-defense role in type I R-M. The anti-BREX activity of T3 SAMase is mediated not just by enzymatic degradation of SAM but also by direct inhibition of MetK, the host SAM synthase. We present a 2.8 Å cryoelectron microscopy (cryo-EM) structure of the eight-subunit T3 SAMase-MetK complex. Structure-guided mutagenesis reveals that this interaction stabilizes T3 SAMase in vivo, further stimulating its anti-BREX activity. This work provides insights in the versatility of bacteriophage counterdefense mechanisms and highlights the role of SAM as a co-factor of diverse bacterial immunity systems.
Collapse
Affiliation(s)
| | - Silvia Trigüis
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, 751 24 Uppsala, Sweden
| | - Alena Drobiazko
- Skolkovo Institute of Science and Technology, Moscow 143028, Russia
| | - Nicolas Sierro
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Maria Selmer
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, 751 24 Uppsala, Sweden.
| | | | - Artem Isaev
- Skolkovo Institute of Science and Technology, Moscow 143028, Russia.
| |
Collapse
|
7
|
Abstract
CRISPR-Cas is a widespread adaptive immune system in bacteria and archaea that protects against viral infection by targeting specific invading nucleic acid sequences. Whereas some CRISPR-Cas systems sense and cleave viral DNA, type III and type VI CRISPR-Cas systems sense RNA that results from viral transcription and perhaps invasion by RNA viruses. The sequence-specific detection of viral RNA evokes a cell-wide response that typically involves global damage to halt the infection. How can one make sense of an immune strategy that encompasses broad, collateral effects rather than specific, targeted destruction? In this Review, we summarize the current understanding of RNA-targeting CRISPR-Cas systems. We detail the composition and properties of type III and type VI systems, outline the cellular defence processes that are instigated upon viral RNA sensing and describe the biological rationale behind the broad RNA-activated immune responses as an effective strategy to combat viral infection.
Collapse
|
8
|
Genome Sequence of SN1, a Bacteriophage That Infects Sphaerotilus natans and Pseudomonas aeruginosa. Microbiol Resour Announc 2022; 11:e0047822. [PMID: 35920671 PMCID: PMC9476957 DOI: 10.1128/mra.00478-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage SN1 infects
Sphaerotilus natans
and
Pseudomonas aeruginosa
strains. Its genome consists of 61,858 bp (64.3% GC) and 89 genes, including 32 with predicted functions. SN1 genome is very similar to
Pseudomonas
phage M6, which contains hypermodified thymidines. Genome analyses revealed similar base-modifying genes as those found in M6.
Collapse
|
9
|
Bubnov DM, Yuzbashev TV, Khozov AA, Melkina OE, Vybornaya TV, Stan GB, Sineoky SP. Robust counterselection and advanced λRed recombineering enable markerless chromosomal integration of large heterologous constructs. Nucleic Acids Res 2022; 50:8947-8960. [PMID: 35920321 PMCID: PMC9410887 DOI: 10.1093/nar/gkac649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/07/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Despite advances in bacterial genome engineering, delivery of large synthetic constructs remains challenging in practice. In this study, we propose a straightforward and robust approach for the markerless integration of DNA fragments encoding whole metabolic pathways into the genome. This approach relies on the replacement of a counterselection marker with cargo DNA cassettes via λRed recombineering. We employed a counterselection strategy involving a genetic circuit based on the CI repressor of λ phage. Our design ensures elimination of most spontaneous mutants, and thus provides a counterselection stringency close to the maximum possible. We improved the efficiency of integrating long PCR-generated cassettes by exploiting the Ocr antirestriction function of T7 phage, which completely prevents degradation of unmethylated DNA by restriction endonucleases in wild-type bacteria. The employment of highly restrictive counterselection and ocr-assisted λRed recombineering allowed markerless integration of operon-sized cassettes into arbitrary genomic loci of four enterobacterial species with an efficiency of 50–100%. In the case of Escherichia coli, our strategy ensures simple combination of markerless mutations in a single strain via P1 transduction. Overall, the proposed approach can serve as a general tool for synthetic biology and metabolic engineering in a range of bacterial hosts.
Collapse
Affiliation(s)
- Dmitrii M Bubnov
- Bioresource Center Russian National Collection of Industrial Microorganisms (BRC VKPM), State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center 'Kurchatov Institute' (NRC 'Kurchatov Institute' - GosNIIgenetika), 1-st Dorozhny pr., 1, Moscow 117545, Russia.,Kurchatov Complex of Genetic Research, NRC 'Kurchatov Institute', Kurchatov Square, 1, Moscow 123098, Russia
| | - Tigran V Yuzbashev
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Andrey A Khozov
- Bioresource Center Russian National Collection of Industrial Microorganisms (BRC VKPM), State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center 'Kurchatov Institute' (NRC 'Kurchatov Institute' - GosNIIgenetika), 1-st Dorozhny pr., 1, Moscow 117545, Russia.,Kurchatov Complex of Genetic Research, NRC 'Kurchatov Institute', Kurchatov Square, 1, Moscow 123098, Russia.,Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, Lenin's Hills 1-12, Moscow 119234, Russia
| | - Olga E Melkina
- Kurchatov Complex of Genetic Research, NRC 'Kurchatov Institute', Kurchatov Square, 1, Moscow 123098, Russia.,Laboratory of Bacterial Genetics, NRC 'Kurchatov Institute' - GosNIIgenetika, 1-st Dorozhny pr., 1, Moscow 117545, Russia
| | - Tatiana V Vybornaya
- Bioresource Center Russian National Collection of Industrial Microorganisms (BRC VKPM), State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center 'Kurchatov Institute' (NRC 'Kurchatov Institute' - GosNIIgenetika), 1-st Dorozhny pr., 1, Moscow 117545, Russia.,Kurchatov Genomic Center, NRC 'Kurchatov Institute' - GosNIIgenetika, 1-st Dorozhny pr., 1, Moscow 117545, Russia
| | - Guy-Bart Stan
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Sergey P Sineoky
- Bioresource Center Russian National Collection of Industrial Microorganisms (BRC VKPM), State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center 'Kurchatov Institute' (NRC 'Kurchatov Institute' - GosNIIgenetika), 1-st Dorozhny pr., 1, Moscow 117545, Russia.,Kurchatov Complex of Genetic Research, NRC 'Kurchatov Institute', Kurchatov Square, 1, Moscow 123098, Russia
| |
Collapse
|
10
|
Tsuji A, Takei Y, Azuma Y. Establishment of genetic tools for genomic DNA engineering of Halomonas sp. KM-1, a bacterium with potential for biochemical production. Microb Cell Fact 2022; 21:122. [PMID: 35725447 PMCID: PMC9208146 DOI: 10.1186/s12934-022-01797-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/13/2022] [Indexed: 01/09/2023] Open
Abstract
Halomonas species are halophilic and alkaliphilic bacteria, which exhibit potential for industrial production of a variety of chemicals, such as polyhydroxyalkanoates and ectoine, by fermentation because of their favorable characteristics, including high-density culturing capacity and low risk of contamination. However, genetic tools to modify the metabolism of Halomonas for suitable fermentation performance are limited. In this study, we developed two independent basic vectors for Halomonas, named pUCpHAw and pHA1AT_32, consisting of ori regions from two plasmids isolated from Halomonas sp. A020, and chloramphenicol- and tetracycline-resistant genes as cloning markers, respectively. These vectors can independently transform and co-transform the Halomonas sp. KM-1 (KM-1). A protein that was highly and constitutively accumulated was identified as a hemolysin coregulated protein (Hcp) based on proteome analysis of KM-1. Using the hcp promoter, various genes, such as phaA and EGFP, were highly expressed. To establish a gene disruption system, the Streptococcus pyogenes cas9 gene and guide RNA for the pyrF gene, a yeast URA3 homologue, were expressed in pUCpHAw and pHA1AT_32, respectively. As a result, gene disruption mutants were isolated based on phenotypes, 5-fluoroorotic acid resistance, and uracil auxotrophy. A combination of KM-1 and these vectors could be a suitable platform for industrial chemical and protein production.
Collapse
Affiliation(s)
- Ayaka Tsuji
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Yasuko Takei
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Yoshinao Azuma
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan.
| |
Collapse
|
11
|
Maffei E, Shaidullina A, Burkolter M, Heyer Y, Estermann F, Druelle V, Sauer P, Willi L, Michaelis S, Hilbi H, Thaler DS, Harms A. Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection. PLoS Biol 2021; 19:e3001424. [PMID: 34784345 PMCID: PMC8594841 DOI: 10.1371/journal.pbio.3001424] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
Bacteriophages, the viruses infecting bacteria, hold great potential for the treatment of multidrug-resistant bacterial infections and other applications due to their unparalleled diversity and recent breakthroughs in their genetic engineering. However, fundamental knowledge of the molecular mechanisms underlying phage-host interactions is mostly confined to a few traditional model systems and did not keep pace with the recent massive expansion of the field. The true potential of molecular biology encoded by these viruses has therefore remained largely untapped, and phages for therapy or other applications are often still selected empirically. We therefore sought to promote a systematic exploration of phage-host interactions by composing a well-assorted library of 68 newly isolated phages infecting the model organism Escherichia coli that we share with the community as the BASEL (BActeriophage SElection for your Laboratory) collection. This collection is largely representative of natural E. coli phage diversity and was intensively characterized phenotypically and genomically alongside 10 well-studied traditional model phages. We experimentally determined essential host receptors of all phages, quantified their sensitivity to 11 defense systems across different layers of bacterial immunity, and matched these results to the phages' host range across a panel of pathogenic enterobacterial strains. Clear patterns in the distribution of phage phenotypes and genomic features highlighted systematic differences in the potency of different immunity systems and suggested the molecular basis of receptor specificity in several phage groups. Our results also indicate strong trade-offs between fitness traits like broad host recognition and resistance to bacterial immunity that might drive the divergent adaptation of different phage groups to specific ecological niches. We envision that the BASEL collection will inspire future work exploring the biology of bacteriophages and their hosts by facilitating the discovery of underlying molecular mechanisms as the basis for an effective translation into biotechnology or therapeutic applications.
Collapse
Affiliation(s)
- Enea Maffei
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Yannik Heyer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | - Luc Willi
- Biozentrum, University of Basel, Basel, Switzerland
| | - Sarah Michaelis
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - David S. Thaler
- Biozentrum, University of Basel, Basel, Switzerland
- Program for the Human Environment, Rockefeller University, New York City, New York, United States of America
| | | |
Collapse
|
12
|
Isaev AB, Musharova OS, Severinov KV. Microbial Arsenal of Antiviral Defenses - Part I. BIOCHEMISTRY (MOSCOW) 2021; 86:319-337. [PMID: 33838632 DOI: 10.1134/s0006297921030081] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacteriophages or phages are viruses that infect bacterial cells (for the scope of this review we will also consider viruses that infect Archaea). Constant threat of phage infection is a major force that shapes evolution of the microbial genomes. To withstand infection, bacteria had evolved numerous strategies to avoid recognition by phages or to directly interfere with phage propagation inside the cell. Classical molecular biology and genetic engineering have been deeply intertwined with the study of phages and host defenses. Nowadays, owing to the rise of phage therapy, broad application of CRISPR-Cas technologies, and development of bioinformatics approaches that facilitate discovery of new systems, phage biology experiences a revival. This review describes variety of strategies employed by microbes to counter phage infection, with a focus on novel systems discovered in recent years. First chapter covers defense associated with cell surface, role of small molecules, and innate immunity systems relying on DNA modification.
Collapse
Affiliation(s)
- Artem B Isaev
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia.
| | - Olga S Musharova
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia. .,Institute of Molecular Genetics, Moscow, 119334, Russia
| | - Konstantin V Severinov
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia. .,Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
| |
Collapse
|
13
|
Isaev A, Drobiazko A, Sierro N, Gordeeva J, Yosef I, Qimron U, Ivanov NV, Severinov K. Phage T7 DNA mimic protein Ocr is a potent inhibitor of BREX defence. Nucleic Acids Res 2020; 48:5397-5406. [PMID: 32338761 PMCID: PMC7261183 DOI: 10.1093/nar/gkaa290] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 11/12/2022] Open
Abstract
BREX (for BacteRiophage EXclusion) is a superfamily of common bacterial and archaeal defence systems active against diverse bacteriophages. While the mechanism of BREX defence is currently unknown, self versus non-self differentiation requires methylation of specific asymmetric sites in host DNA by BrxX (PglX) methyltransferase. Here, we report that T7 bacteriophage Ocr, a DNA mimic protein that protects the phage from the defensive action of type I restriction-modification systems, is also active against BREX. In contrast to the wild-type phage, which is resistant to BREX defence, T7 lacking Ocr is strongly inhibited by BREX, and its ability to overcome the defence could be complemented by Ocr provided in trans. We further show that Ocr physically associates with BrxX methyltransferase. Although BREX+ cells overproducing Ocr have partially methylated BREX sites, their viability is unaffected. The result suggests that, similar to its action against type I R-M systems, Ocr associates with as yet unidentified BREX system complexes containing BrxX and neutralizes their ability to both methylate and exclude incoming phage DNA.
Collapse
Affiliation(s)
- Artem Isaev
- Skolkovo Institute of Science and Technology, Moscow 143028, Russia
| | - Alena Drobiazko
- Skolkovo Institute of Science and Technology, Moscow 143028, Russia
| | - Nicolas Sierro
- Philip Morris International R&D, Philip Morris Products S.A., Neuchatel 2000, Switzerland
| | - Julia Gordeeva
- Skolkovo Institute of Science and Technology, Moscow 143028, Russia
| | - Ido Yosef
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., Neuchatel 2000, Switzerland
| | - Konstantin Severinov
- Skolkovo Institute of Science and Technology, Moscow 143028, Russia
- Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
- Institute of Gene Biology, Russian Academy of Sciences, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov str., 119334 Moscow, Russia
| |
Collapse
|
14
|
Ye F, Kotta-Loizou I, Jovanovic M, Liu X, Dryden DTF, Buck M, Zhang X. Structural basis of transcription inhibition by the DNA mimic protein Ocr of bacteriophage T7. eLife 2020; 9:e52125. [PMID: 32039758 PMCID: PMC7064336 DOI: 10.7554/elife.52125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/08/2020] [Indexed: 01/25/2023] Open
Abstract
Bacteriophage T7 infects Escherichia coli and evades the host restriction/modification system. The Ocr protein of T7 was shown to exist as a dimer mimicking DNA and to bind to host restriction enzymes, thus preventing the degradation of the viral genome by the host. Here we report that Ocr can also inhibit host transcription by directly binding to bacterial RNA polymerase (RNAP) and competing with the recruitment of RNAP by sigma factors. Using cryo electron microscopy, we determined the structures of Ocr bound to RNAP. The structures show that an Ocr dimer binds to RNAP in the cleft, where key regions of sigma bind and where DNA resides during transcription synthesis, thus providing a structural basis for the transcription inhibition. Our results reveal the versatility of Ocr in interfering with host systems and suggest possible strategies that could be exploited in adopting DNA mimicry as a basis for forming novel antibiotics.
Collapse
Affiliation(s)
- Fuzhou Ye
- Section of Structural Biology, Department of Infectious Diseases, Faculty of MedicineImperial College LondonLondonUnited Kingdom
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural SciencesImperial College LondonLondonUnited Kingdom
| | - Milija Jovanovic
- Department of Life Sciences, Faculty of Natural SciencesImperial College LondonLondonUnited Kingdom
| | - Xiaojiao Liu
- Section of Structural Biology, Department of Infectious Diseases, Faculty of MedicineImperial College LondonLondonUnited Kingdom
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina
| | | | - Martin Buck
- Department of Life Sciences, Faculty of Natural SciencesImperial College LondonLondonUnited Kingdom
| | - Xiaodong Zhang
- Section of Structural Biology, Department of Infectious Diseases, Faculty of MedicineImperial College LondonLondonUnited Kingdom
| |
Collapse
|
15
|
Rusinov IS, Ershova AS, Karyagina AS, Spirin SA, Alexeevski AV. Avoidance of recognition sites of restriction-modification systems is a widespread but not universal anti-restriction strategy of prokaryotic viruses. BMC Genomics 2018; 19:885. [PMID: 30526500 PMCID: PMC6286503 DOI: 10.1186/s12864-018-5324-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/28/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Restriction-modification (R-M) systems protect bacteria and archaea from attacks by bacteriophages and archaeal viruses. An R-M system specifically recognizes short sites in foreign DNA and cleaves it, while such sites in the host DNA are protected by methylation. Prokaryotic viruses have developed a number of strategies to overcome this host defense. The simplest anti-restriction strategy is the elimination of recognition sites in the viral genome: no sites, no DNA cleavage. Even a decrease of the number of recognition sites can help a virus to overcome this type of host defense. Recognition site avoidance has been a known anti-restriction strategy of prokaryotic viruses for decades. However, recognition site avoidance has not been systematically studied with the currently available sequence data. We analyzed the complete genomes of almost 4000 prokaryotic viruses with known host species and more than 17,000 restriction endonucleases with known specificities in terms of recognition site avoidance. RESULTS We observed considerable limitations of recognition site avoidance as an anti-restriction strategy. Namely, the avoidance of recognition sites is specific for dsDNA and ssDNA prokaryotic viruses. Avoidance is much more pronounced in the genomes of non-temperate bacteriophages than in the genomes of temperate ones. Avoidance is not observed for the sites of Type I and Type IIG systems and is very rarely observed for the sites of Type III systems. The vast majority of avoidance cases concern recognition sites of orthodox Type II restriction-modification systems. Even under these constraints, complete or almost complete elimination of sites is observed for approximately one-tenth of viral genomes and a significant under-representation for approximately one-fourth of them. CONCLUSIONS Avoidance of recognition sites of restriction-modification systems is a widespread but not universal anti-restriction strategy of prokaryotic viruses.
Collapse
Affiliation(s)
- I S Rusinov
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - A S Ershova
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia.,Gamaleya National Research Center of Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, 127550, Moscow, Russia
| | - A S Karyagina
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia.,Gamaleya National Research Center of Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, 127550, Moscow, Russia
| | - S A Spirin
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991, Moscow, Russia.,National Research University Higher School of Economics, 101000, Moscow, Russia.,Institute of System Studies, 117281, Moscow, Russia
| | - A V Alexeevski
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia. .,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991, Moscow, Russia. .,Institute of System Studies, 117281, Moscow, Russia.
| |
Collapse
|
16
|
Jeamton W, Dulsawat S, Tanticharoen M, Vonshak A, Cheevadhanarak S. Overcoming Intrinsic Restriction Enzyme Barriers Enhances Transformation Efficiency in Arthrospira platensis C1. PLANT & CELL PHYSIOLOGY 2017; 58:822-830. [PMID: 28158667 DOI: 10.1093/pcp/pcx016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
The development of a reliable genetic transformation system for Arthrospira platensis has been a long-term goal, mainly for those trying either to improve its performance in large-scale cultivation systems or to enhance its value as food and feed additives. However, so far, most of the attempts to develop such a transformation system have had limited success. In this study, an efficient and stable transformation system for A. platensis C1 was successfully developed. Based on electroporation and transposon techniques, exogenous DNA could be transferred to and stably maintained in the A. platensis C1 genome. Most strains of Arthrospira possess strong restriction barriers, hampering the development of a gene transfer system for this group of cyanobacteria. By using a type I restriction inhibitor and liposomes to protect the DNA from nuclease digestion, the transformation efficiency was significantly improved. The transformants were able to grow on a selective medium for more than eight passages, and the transformed DNA could be detected from the stable transformants. We propose that the intrinsic endonuclease enzymes, particularly the type I restriction enzyme, in A. platensis C1 play an important role in the transformation efficiency of this industrial important cyanobacterium.
Collapse
Affiliation(s)
- Wattana Jeamton
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Sudarat Dulsawat
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Morakot Tanticharoen
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Avigad Vonshak
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Israel
| | - Supapon Cheevadhanarak
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| |
Collapse
|
17
|
Kanwar N, Roberts GA, Cooper LP, Stephanou AS, Dryden DTF. The evolutionary pathway from a biologically inactive polypeptide sequence to a folded, active structural mimic of DNA. Nucleic Acids Res 2016; 44:4289-303. [PMID: 27095198 PMCID: PMC4872106 DOI: 10.1093/nar/gkw234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/24/2016] [Indexed: 11/13/2022] Open
Abstract
The protein Ocr (overcome classical restriction) from bacteriophage T7 acts as a mimic of DNA and inhibits all Type I restriction/modification (RM) enzymes. Ocr is a homodimer of 116 amino acids and adopts an elongated structure that resembles the shape of a bent 24 bp DNA molecule. Each monomer includes 34 acidic residues and only six basic residues. We have delineated the mimicry of Ocr by focusing on the electrostatic contribution of its negatively charged amino acids using directed evolution of a synthetic form of Ocr, termed pocr, in which all of the 34 acidic residues were substituted for a neutral amino acid. In vivo analyses confirmed that pocr did not display any antirestriction activity. Here, we have subjected the gene encoding pocr to several rounds of directed evolution in which codons for the corresponding acidic residues found in Ocr were specifically re-introduced. An in vivo selection assay was used to detect antirestriction activity after each round of mutation. Our results demonstrate the variation in importance of the acidic residues in regions of Ocr corresponding to different parts of the DNA target which it is mimicking and for the avoidance of deleterious effects on the growth of the host.
Collapse
Affiliation(s)
- Nisha Kanwar
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3FJ, UK
| | - Gareth A Roberts
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3FJ, UK
| | - Laurie P Cooper
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3FJ, UK
| | - Augoustinos S Stephanou
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3FJ, UK
| | - David T F Dryden
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3FJ, UK
| |
Collapse
|
18
|
Yüksel D, Bianco PR, Kumar K. De novo design of protein mimics of B-DNA. MOLECULAR BIOSYSTEMS 2016; 12:169-77. [PMID: 26568416 PMCID: PMC4699573 DOI: 10.1039/c5mb00524h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural mimicry of DNA is utilized in nature as a strategy to evade molecular defences mounted by host organisms. One such example is the protein Ocr - the first translation product to be expressed as the bacteriophage T7 infects E. coli. The structure of Ocr reveals an intricate and deliberate arrangement of negative charges that endows it with the ability to mimic ∼24 base pair stretches of B-DNA. This uncanny resemblance to DNA enables Ocr to compete in binding the type I restriction modification (R/M) system, and neutralizes the threat of hydrolytic cleavage of viral genomic material. Here, we report the de novo design and biophysical characterization of DNA mimicking peptides, and describe the inhibitory action of the designed helical bundles on a type I R/M enzyme, EcoR124I. This work validates the use of charge patterning as a design principle for creation of protein mimics of DNA, and serves as a starting point for development of therapeutic peptide inhibitors against human pathogens that employ molecular camouflage as part of their invasion stratagem.
Collapse
Affiliation(s)
- Deniz Yüksel
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA 02155, USA.
| | - Piero R Bianco
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA.
| | - Krishna Kumar
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA 02155, USA. and Cancer Center, Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|
19
|
Dy RL, Richter C, Salmond GP, Fineran PC. Remarkable Mechanisms in Microbes to Resist Phage Infections. Annu Rev Virol 2014; 1:307-31. [DOI: 10.1146/annurev-virology-031413-085500] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ron L. Dy
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand;
| | - Corinna Richter
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand;
| | - George P.C. Salmond
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand;
| |
Collapse
|
20
|
Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev 2013; 77:53-72. [PMID: 23471617 PMCID: PMC3591985 DOI: 10.1128/mmbr.00044-12] [Citation(s) in RCA: 388] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Restriction-modification (R-M) systems are ubiquitous and are often considered primitive immune systems in bacteria. Their diversity and prevalence across the prokaryotic kingdom are an indication of their success as a defense mechanism against invading genomes. However, their cellular defense function does not adequately explain the basis for their immaculate specificity in sequence recognition and nonuniform distribution, ranging from none to too many, in diverse species. The present review deals with new developments which provide insights into the roles of these enzymes in other aspects of cellular function. In this review, emphasis is placed on novel hypotheses and various findings that have not yet been dealt with in a critical review. Emerging studies indicate their role in various cellular processes other than host defense, virulence, and even controlling the rate of evolution of the organism. We also discuss how R-M systems could have successfully evolved and be involved in additional cellular portfolios, thereby increasing the relative fitness of their hosts in the population.
Collapse
Affiliation(s)
- Kommireddy Vasu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
21
|
Roberts GA, Stephanou AS, Kanwar N, Dawson A, Cooper LP, Chen K, Nutley M, Cooper A, Blakely GW, Dryden DTF. Exploring the DNA mimicry of the Ocr protein of phage T7. Nucleic Acids Res 2012; 40:8129-43. [PMID: 22684506 PMCID: PMC3439906 DOI: 10.1093/nar/gks516] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 11/30/2022] Open
Abstract
DNA mimic proteins have evolved to control DNA-binding proteins by competing with the target DNA for binding to the protein. The Ocr protein of bacteriophage T7 is the most studied DNA mimic and functions to block the DNA-binding groove of Type I DNA restriction/modification enzymes. This binding prevents the enzyme from cleaving invading phage DNA. Each 116 amino acid monomer of the Ocr dimer has an unusual amino acid composition with 34 negatively charged side chains but only 6 positively charged side chains. Extensive mutagenesis of the charges of Ocr revealed a regression of Ocr activity from wild-type activity to partial activity then to variants inactive in antirestriction but deleterious for cell viability and lastly to totally inactive variants with no deleterious effect on cell viability. Throughout the mutagenesis the Ocr mutant proteins retained their folding. Our results show that the extreme bias in charged amino acids is not necessary for antirestriction activity but that less charged variants can affect cell viability by leading to restriction proficient but modification deficient cell phenotypes.
Collapse
Affiliation(s)
- Gareth A. Roberts
- EastChem School of Chemistry, School of Physics and Astronomy, The University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JR, UK
| | - Augoustinos S. Stephanou
- EastChem School of Chemistry, School of Physics and Astronomy, The University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JR, UK
| | - Nisha Kanwar
- EastChem School of Chemistry, School of Physics and Astronomy, The University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JR, UK
| | - Angela Dawson
- EastChem School of Chemistry, School of Physics and Astronomy, The University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JR, UK
| | - Laurie P. Cooper
- EastChem School of Chemistry, School of Physics and Astronomy, The University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JR, UK
| | - Kai Chen
- EastChem School of Chemistry, School of Physics and Astronomy, The University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JR, UK
| | - Margaret Nutley
- EastChem School of Chemistry, School of Physics and Astronomy, The University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JR, UK
| | - Alan Cooper
- EastChem School of Chemistry, School of Physics and Astronomy, The University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JR, UK
| | - Garry W. Blakely
- EastChem School of Chemistry, School of Physics and Astronomy, The University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JR, UK
| | - David T. F. Dryden
- EastChem School of Chemistry, School of Physics and Astronomy, The University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, School of Chemistry, The University of Glasgow, Glasgow G12 8QQ and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JR, UK
| |
Collapse
|
22
|
Abstract
Bacteria, the most abundant organisms on the planet, are outnumbered by a factor of 10 to 1 by phages that infect them. Faced with the rapid evolution and turnover of phage particles, bacteria have evolved various mechanisms to evade phage infection and killing, leading to an evolutionary arms race. The extensive co-evolution of both phage and host has resulted in considerable diversity on the part of both bacterial and phage defensive and offensive strategies. Here, we discuss the unique and common features of phage resistance mechanisms and their role in global biodiversity. The commonalities between defense mechanisms suggest avenues for the discovery of novel forms of these mechanisms based on their evolutionary traits.
Collapse
Affiliation(s)
- Adi Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
23
|
Roberts GA, Cooper LP, White JH, Su TJ, Zipprich JT, Geary P, Kennedy C, Dryden DTF. An investigation of the structural requirements for ATP hydrolysis and DNA cleavage by the EcoKI Type I DNA restriction and modification enzyme. Nucleic Acids Res 2011; 39:7667-76. [PMID: 21685455 PMCID: PMC3177214 DOI: 10.1093/nar/gkr480] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Type I DNA restriction/modification systems are oligomeric enzymes capable of switching between a methyltransferase function on hemimethylated host DNA and an endonuclease function on unmethylated foreign DNA. They have long been believed to not turnover as endonucleases with the enzyme becoming inactive after cleavage. Cleavage is preceded and followed by extensive ATP hydrolysis and DNA translocation. A role for dissociation of subunits to allow their reuse has been proposed for the EcoR124I enzyme. The EcoKI enzyme is a stable assembly in the absence of DNA, so recycling was thought impossible. Here, we demonstrate that EcoKI becomes unstable on long unmethylated DNA; reuse of the methyltransferase subunits is possible so that restriction proceeds until the restriction subunits have been depleted. We observed that RecBCD exonuclease halts restriction and does not assist recycling. We examined the DNA structure required to initiate ATP hydrolysis by EcoKI and find that a 21-bp duplex with single-stranded extensions of 12 bases on either side of the target sequence is sufficient to support hydrolysis. Lastly, we discuss whether turnover is an evolutionary requirement for restriction, show that the ATP hydrolysis is not deleterious to the host cell and discuss how foreign DNA occasionally becomes fully methylated by these systems.
Collapse
|
24
|
Zavilgelsky GB, Kotova VY, Rastorguev SM. Antimodification activity of the ArdA and Ocr proteins. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795410081034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Ishikawa K, Fukuda E, Kobayashi I. Conflicts targeting epigenetic systems and their resolution by cell death: novel concepts for methyl-specific and other restriction systems. DNA Res 2010; 17:325-42. [PMID: 21059708 PMCID: PMC2993543 DOI: 10.1093/dnares/dsq027] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epigenetic modification of genomic DNA by methylation is important for defining the epigenome and the transcriptome in eukaryotes as well as in prokaryotes. In prokaryotes, the DNA methyltransferase genes often vary, are mobile, and are paired with the gene for a restriction enzyme. Decrease in a certain epigenetic methylation may lead to chromosome cleavage by the partner restriction enzyme, leading to eventual cell death. Thus, the pairing of a DNA methyltransferase and a restriction enzyme forces an epigenetic state to be maintained within the genome. Although restriction enzymes were originally discovered for their ability to attack invading DNAs, it may be understood because such DNAs show deviation from this epigenetic status. DNAs with epigenetic methylation, by a methyltransferase linked or unlinked with a restriction enzyme, can also be the target of DNases, such as McrBC of Escherichia coli, which was discovered because of its methyl-specific restriction. McrBC responds to specific genome methylation systems by killing the host bacterial cell through chromosome cleavage. Evolutionary and genomic analysis of McrBC homologues revealed their mobility and wide distribution in prokaryotes similar to restriction–modification systems. These findings support the hypothesis that this family of methyl-specific DNases evolved as mobile elements competing with specific genome methylation systems through host killing. These restriction systems clearly demonstrate the presence of conflicts between epigenetic systems.
Collapse
Affiliation(s)
- Ken Ishikawa
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | | | | |
Collapse
|
26
|
Taylor JE, Callow P, Swiderska A, Kneale GG. Structural and functional analysis of the engineered type I DNA methyltransferase EcoR124I NT. J Mol Biol 2010; 398:391-9. [PMID: 20302878 PMCID: PMC2877798 DOI: 10.1016/j.jmb.2010.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/02/2010] [Accepted: 03/04/2010] [Indexed: 11/17/2022]
Abstract
The Type I R-M system EcoR124I is encoded by three genes. HsdM is responsible for modification (DNA methylation), HsdS for DNA sequence specificity and HsdR for restriction endonuclease activity. The trimeric methyltransferase (M2S) recognises the asymmetric sequence (GAAN6RTCG). An engineered R-M system, denoted EcoR124INT, has two copies of the N-terminal domain of the HsdS subunit of EcoR124I, instead of a single S subunit with two domains, and recognises the symmetrical sequence GAAN7TTC. We investigate the methyltransferase activity of EcoR124INT, characterise the enzyme and its subunits by analytical ultracentrifugation and obtain low-resolution structural models from small-angle neutron scattering experiments using contrast variation and selective deuteration of subunits.
Collapse
Affiliation(s)
- James E.N. Taylor
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Phil Callow
- Partnership for Structural Biology, Institut Laue Langevin, 38042 Grenoble Cedex 9, Grenoble, France
| | - Anna Swiderska
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - G. Geoff Kneale
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|
27
|
Abstract
Phages are now acknowledged as the most abundant microorganisms on the planet and are also possibly the most diversified. This diversity is mostly driven by their dynamic adaptation when facing selective pressure such as phage resistance mechanisms, which are widespread in bacterial hosts. When infecting bacterial cells, phages face a range of antiviral mechanisms, and they have evolved multiple tactics to avoid, circumvent or subvert these mechanisms in order to thrive in most environments. In this Review, we highlight the most important antiviral mechanisms of bacteria as well as the counter-attacks used by phages to evade these systems.
Collapse
Affiliation(s)
- Simon J Labrie
- Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
28
|
Serfiotis-Mitsa D, Herbert AP, Roberts GA, Soares DC, White JH, Blakely GW, Uhrín D, Dryden DTF. The structure of the KlcA and ArdB proteins reveals a novel fold and antirestriction activity against Type I DNA restriction systems in vivo but not in vitro. Nucleic Acids Res 2009; 38:1723-37. [PMID: 20007596 PMCID: PMC2836571 DOI: 10.1093/nar/gkp1144] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plasmids, conjugative transposons and phage frequently encode anti-restriction proteins to enhance their chances of entering a new bacterial host that is highly likely to contain a Type I DNA restriction and modification (RM) system. The RM system usually destroys the invading DNA. Some of the anti-restriction proteins are DNA mimics and bind to the RM enzyme to prevent it binding to DNA. In this article, we characterize ArdB anti-restriction proteins and their close homologues, the KlcA proteins from a range of mobile genetic elements; including an ArdB encoded on a pathogenicity island from uropathogenic Escherichia coli and a KlcA from an IncP-1b plasmid, pBP136 isolated from Bordetella pertussis. We show that all the ArdB and KlcA act as anti-restriction proteins and inhibit the four main families of Type I RM systems in vivo, but fail to block the restriction endonuclease activity of the archetypal Type I RM enzyme, EcoKI, in vitro indicating that the action of ArdB is indirect and very different from that of the DNA mimics. We also present the structure determined by NMR spectroscopy of the pBP136 KlcA protein. The structure shows a novel protein fold and it is clearly not a DNA structural mimic.
Collapse
Affiliation(s)
- Dimitra Serfiotis-Mitsa
- EaStChem School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Stephanou AS, Roberts GA, Cooper LP, Clarke DJ, Thomson AR, MacKay CL, Nutley M, Cooper A, Dryden DT. Dissection of the DNA mimicry of the bacteriophage T7 Ocr protein using chemical modification. J Mol Biol 2009; 391:565-76. [PMID: 19523474 PMCID: PMC2806950 DOI: 10.1016/j.jmb.2009.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 12/02/2022]
Abstract
The homodimeric Ocr (overcome classical restriction) protein of bacteriophage T7 is a molecular mimic of double-stranded DNA and a highly effective competitive inhibitor of the bacterial type I restriction/modification system. The surface of Ocr is replete with acidic residues that mimic the phosphate backbone of DNA. In addition, Ocr also mimics the overall dimensions of a bent 24-bp DNA molecule. In this study, we attempted to delineate these two mechanisms of DNA mimicry by chemically modifying the negative charges on the Ocr surface. Our analysis reveals that removal of about 46% of the carboxylate groups per Ocr monomer results in an approximately 50-fold reduction in binding affinity for a methyltransferase from a model type I restriction/modification system. The reduced affinity between Ocr with this degree of modification and the methyltransferase is comparable with the affinity of DNA for the methyltransferase. Additional modification to remove approximately 86% of the carboxylate groups further reduces its binding affinity, although the modified Ocr still binds to the methyltransferase via a mechanism attributable to the shape mimicry of a bent DNA molecule. Our results show that the electrostatic mimicry of Ocr increases the binding affinity for its target enzyme by up to approximately 800-fold.
Collapse
Key Words
- ocr, overcome classical restriction
- r/m, restriction/modification
- edc, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride
- hobt, hydroxybenzotriazole
- ms, mass spectrometry
- maldi-tof, matrix-assisted laser desorption/ionization time of flight
- ft-icr, fourier transform ion cyclotron resonance
- gdmcl, guanidinium hydrochloride
- sam, s-adenosyl-l-methionine
- itc, isothermal titration calorimetry
- wt, wild type
- dna mimic
- chemical modification
- restriction/modification system
Collapse
Affiliation(s)
| | - Gareth A. Roberts
- EastChem School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK
| | - Laurie P. Cooper
- EastChem School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK
| | - David J. Clarke
- EastChem School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK
| | - Andrew R. Thomson
- EastChem School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK
| | - C. Logan MacKay
- EastChem School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK
| | - Margaret Nutley
- West Chem Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Alan Cooper
- West Chem Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - David T.F. Dryden
- EastChem School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK
| |
Collapse
|
30
|
Roucourt B, Lavigne R. The role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome. Environ Microbiol 2009; 11:2789-805. [PMID: 19691505 DOI: 10.1111/j.1462-2920.2009.02029.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interactions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved in these bacteriophage-host interactions are often produced immediately after infection. A survey of the available set of published bacteriophage-host interactions reveals the targeted host proteins are inhibited, activated or functionally redirected by the phage protein. These interactions protect the bacteriophage from bacterial defence mechanisms or adapt the host-cell metabolism to establish an efficient infection cycle. Regrettably, a large majority of bacteriophage early proteins lack any identified function. Recent research into the antibacterial potential of bacteriophage-host interactions indicates that phage early proteins seem to target a wide variety of processes in the host cell - many of them non-essential. Since a clear understanding of such interactions may become important for regulations involving phage therapy and in biotechnological applications, increased scientific emphasis on the biological elucidation of such proteins is warranted.
Collapse
Affiliation(s)
- Bart Roucourt
- Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21 box 2462, B-3001 Leuven, Belgium
| | | |
Collapse
|
31
|
McMahon SA, Roberts GA, Johnson KA, Cooper LP, Liu H, White JH, Carter LG, Sanghvi B, Oke M, Walkinshaw MD, Blakely GW, Naismith JH, Dryden DTF. Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance. Nucleic Acids Res 2009; 37:4887-97. [PMID: 19506028 PMCID: PMC2731889 DOI: 10.1093/nar/gkp478] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The ardA gene, found in many prokaryotes including important pathogenic species, allows associated mobile genetic elements to evade the ubiquitous Type I DNA restriction systems and thereby assist the spread of resistance genes in bacterial populations. As such, ardA contributes to a major healthcare problem. We have solved the structure of the ArdA protein from the conjugative transposon Tn916 and find that it has a novel extremely elongated curved cylindrical structure with defined helical grooves. The high density of aspartate and glutamate residues on the surface follow a helical pattern and the whole protein mimics a 42-base pair stretch of B-form DNA making ArdA by far the largest DNA mimic known. Each monomer of this dimeric structure comprises three alpha–beta domains, each with a different fold. These domains have the same fold as previously determined proteins possessing entirely different functions. This DNA mimicry explains how ArdA can bind and inhibit the Type I restriction enzymes and we demonstrate that 6 different ardA from pathogenic bacteria can function in Escherichia coli hosting a range of different Type I restriction systems.
Collapse
Affiliation(s)
- Stephen A McMahon
- Centre for Biomolecular Science, The University, St Andrews KY16 9ST, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zavilgelsky GB, Kotova VY, Rastorguev SM. Antirestriction and antimodification activities of T7 Ocr: Effects of amino acid substitutions in the interface. Mol Biol 2009. [DOI: 10.1134/s0026893309010130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Kennaway CK, Obarska-Kosinska A, White JH, Tuszynska I, Cooper LP, Bujnicki JM, Trinick J, Dryden DTF. The structure of M.EcoKI Type I DNA methyltransferase with a DNA mimic antirestriction protein. Nucleic Acids Res 2009; 37:762-70. [PMID: 19074193 PMCID: PMC2647291 DOI: 10.1093/nar/gkn988] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 12/25/2022] Open
Abstract
Type-I DNA restriction-modification (R/M) systems are important agents in limiting the transmission of mobile genetic elements responsible for spreading bacterial resistance to antibiotics. EcoKI, a Type I R/M enzyme from Escherichia coli, acts by methylation- and sequence-specific recognition, leading to either methylation of DNA or translocation and cutting at a random site, often hundreds of base pairs away. Consisting of one specificity subunit, two modification subunits, and two DNA translocase/endonuclease subunits, EcoKI is inhibited by the T7 phage antirestriction protein ocr, a DNA mimic. We present a 3D density map generated by negative-stain electron microscopy and single particle analysis of the central core of the restriction complex, the M.EcoKI M(2)S(1) methyltransferase, bound to ocr. We also present complete atomic models of M.EcoKI in complex with ocr and its cognate DNA giving a clear picture of the overall clamp-like operation of the enzyme. The model is consistent with a large body of experimental data on EcoKI published over 40 years.
Collapse
Affiliation(s)
- Christopher K. Kennaway
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - Agnieszka Obarska-Kosinska
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - John H. White
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - Irina Tuszynska
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - Laurie P. Cooper
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - Janusz M. Bujnicki
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - John Trinick
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| | - David T. F. Dryden
- Astbury Centre, Institute of Molecular and Cellular Biology, University of Leeds, UK, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, PL-02-109 Warsaw, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland, School of Chemistry, University of Edinburgh, The Kings’ Buildings, Edinburgh, EH9 3JJ, UK and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland
| |
Collapse
|
34
|
A mutational analysis of DNA mimicry by ocr, the gene 0.3 antirestriction protein of bacteriophage T7. Biochem Biophys Res Commun 2008; 378:129-32. [PMID: 19013430 DOI: 10.1016/j.bbrc.2008.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 11/06/2008] [Indexed: 11/24/2022]
Abstract
The ocr protein of bacteriophage T7 is a structural and electrostatic mimic of approximately 24 base pairs of double-stranded B-form DNA. As such, it inhibits all Type I restriction and modification (R/M) enzymes by blocking their DNA binding grooves and inactivates them. This allows the infection of the bacterial cell by T7 to proceed unhindered by the action of the R/M defence system. We have mutated aspartate and glutamate residues on the surface of ocr to investigate their contribution to the tight binding between the EcoKI Type I R/M enzyme and ocr. Contrary to expectations, all of the single and double site mutations of ocr constructed were active as anti-R/M proteins in vivo and in vitro indicating that the mimicry of DNA by ocr is very resistant to change.
Collapse
|
35
|
Zavilgelsky GB, Kotova VY, Rastorguev SM. Comparative analysis of anti-restriction activities of ArdA (ColIb-P9) and Ocr (T7) proteins. BIOCHEMISTRY (MOSCOW) 2008; 73:906-11. [PMID: 18774937 DOI: 10.1134/s0006297908080087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Anti-restriction proteins ArdA and Ocr are specific inhibitors of type I restriction-modification enzymes. The IncI1 transmissible plasmid ColIb-P9 ardA and bacteriophage T7 0.3(ocr) genes were cloned in pUC18 vector. Both ArdA (ColIb-P9) and Ocr (T7) proteins inhibit both restriction and modification activities of the type I restriction-modification enzyme (EcoKI) in Escherichia coli K12 cells. ColIb-P9 ardA, T7 0.3(ocr), and the Photorhabdus luminescens luxCDABE genes were cloned in pZ-series vectors with the P(ltetO-1) promoter, which is tightly repressible by the TetR repressor. Controlling the expression of the lux-genes encoding bacterial luciferase demonstrates that the P(ltetO-1) promoter can be regulated over an up to 5000-fold range by supplying anhydrotetracycline to the E. coli MG1655Z1 tetR(+) cells. Effectiveness of the anti-restriction activity of the ArdA and Ocr proteins depended on the intracellular concentration. It is shown that the dissociation constants K(d) for ArdA and Ocr proteins with EcoKI enzyme differ 1700-fold: K(d) (Ocr) = 10(-10) M, K(d) (ArdA) = 1.7.10(-7) M.
Collapse
Affiliation(s)
- G B Zavilgelsky
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia.
| | | | | |
Collapse
|
36
|
The Orf18 gene product from conjugative transposon Tn916 is an ArdA antirestriction protein that inhibits type I DNA restriction-modification systems. J Mol Biol 2008; 383:970-81. [PMID: 18838147 DOI: 10.1016/j.jmb.2008.06.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 11/20/2022]
Abstract
Gene orf18, which is situated within the intercellular transposition region of the conjugative transposon Tn916 from the bacterial pathogen Enterococcus faecalis, encodes a putative ArdA (alleviation of restriction of DNA A) protein. Conjugative transposons are generally resistant to DNA restriction upon transfer to a new host. ArdA from Tn916 may be responsible for the apparent immunity of the transposon to DNA restriction and modification (R/M) systems and for ensuring that the transposon has a broad host range. The orf18 gene was engineered for overexpression in Escherichia coli, and the recombinant ArdA protein was purified to homogeneity. The protein appears to exist as a dimer at nanomolar concentrations but can form larger assemblies at micromolar concentrations. R/M assays revealed that ArdA can efficiently inhibit R/M by all four major classes of Type I R/M enzymes both in vivo and in vitro. These R/M systems are present in over 50% of sequenced prokaryotic genomes. Our results suggest that ArdA can overcome the restriction barrier following conjugation and so helps increase the spread of antibiotic resistance genes by horizontal gene transfer.
Collapse
|
37
|
Tsonis PA, Dwivedi B. Molecular mimicry: structural camouflage of proteins and nucleic acids. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:177-87. [PMID: 18068679 DOI: 10.1016/j.bbamcr.2007.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 11/05/2007] [Accepted: 11/06/2007] [Indexed: 11/28/2022]
Abstract
When it comes to protein specificity and function their three-dimensional structure is the ultimate determinant. Thus, sequences that participate in key parts, such as catalytic sites or DNA binding have been favored and maintained highly conserved during evolution. However, in a reversal of fortune, selection has favored conservation of shapes over sequence, especially when proteins look like nucleic acids. Proteins from pathogens evade the host's defenses because they are shaped as DNA; others use such a disguise for transcriptional regulation. Several factors are tRNA look-alikes so that they can efficiently control the process of protein synthesis. Molecular mimicry among RNAs could result in a new unexplored level in gene regulation. This comprehensive review outlines this important area and aims to emphasize that molecular mimicry could in fact be more widespread than initially thought and eventually adds a new layer of genetic regulation.
Collapse
|
38
|
Court R, Cook N, Saikrishnan K, Wigley D. The crystal structure of lambda-Gam protein suggests a model for RecBCD inhibition. J Mol Biol 2007; 371:25-33. [PMID: 17544443 DOI: 10.1016/j.jmb.2007.05.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 05/10/2007] [Accepted: 05/11/2007] [Indexed: 11/29/2022]
Abstract
In Escherichia coli, RecBCD processes double-stranded DNA breaks during the initial stages of homologous recombination. RecBCD contains helicase and nuclease activities, and unwinds and digests the blunt-ended DNA until a specific eight-nucleotide sequence, Chi, is encountered. Chi modulates the nuclease activity of RecBCD and results in a resected DNA end, which is a substrate for RecA during subsequent steps in recombination. RecBCD also acts as a defence mechanism against bacteriophage infection by digesting linear viral DNA present during virus replication or resulting from the action of restriction endonucleases. To avoid this fate, bacteriophage lambda encodes the gene Gam whose product is an inhibitor of RecBCD. Gam has been shown to bind to RecBCD and inhibit its helicase and nuclease activities. We show that Gam inhibits RecBCD by preventing it from binding DNA. We have solved the crystal structure of Gam from two different crystal forms. Using the published crystal structure of RecBCD in complex with DNA we suggest models for the molecular mechanism of Gam-mediated inhibition of RecBCD. We also propose that Gam could be a mimetic of single-stranded, and perhaps also double-stranded, DNA.
Collapse
Affiliation(s)
- Robert Court
- Cancer Research UK Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, UK
| | | | | | | |
Collapse
|
39
|
Bair CL, Rifat D, Black LW. Exclusion of glucosyl-hydroxymethylcytosine DNA containing bacteriophages is overcome by the injected protein inhibitor IPI*. J Mol Biol 2006; 366:779-89. [PMID: 17188711 PMCID: PMC1868451 DOI: 10.1016/j.jmb.2006.11.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 11/01/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
The Escherichia coli isolate CT596 excludes infection by the Myoviridae T4 ip1(-) phage that lacks the encapsidated IPI* protein normally injected into the host with the phage DNA. Screening of a CT596 genomic library identified adjacent genes responsible for this exclusion, gmrS (942 bp) and gmrD (708 bp) that are encoded by a cryptic prophage DNA. The two genes are necessary and sufficient to confer upon a host the ability to exclude infection by T4 ip1(-) phage and other glucosyl-hydroxymethylcytosine (glc-HMC) Tevens lacking the ip1 gene, yet allow infection by phages with non-glucoslyated cytosine (C) DNA that lack the ip1 gene. A plasmid expressing the ip1 gene product, IPI*, allows growth of Tevens lacking ip1 on E. coli strains carrying the cloned gmrS/gmrD genes. Members of the Teven family carry a diverse and, in some cases, expanded set of ip1 locus genes. In vivo analysis suggests a family of gmr genes that specifically target sugar-HMC modified DNA have evolved to exclude Teven phages, and these exclusion genes have in turn been countered by a family of injected exclusion inhibitors that likely help determine the host range of different glc-HMC phages.
Collapse
Affiliation(s)
- Catherine L Bair
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201-1503, USA
| | | | | |
Collapse
|
40
|
Nekrasov SV, Agafonova OV, Belogurova NG, Delver EP, Belogurov AA. Plasmid-encoded antirestriction protein ArdA can discriminate between type I methyltransferase and complete restriction-modification system. J Mol Biol 2006; 365:284-97. [PMID: 17069852 DOI: 10.1016/j.jmb.2006.09.087] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 09/25/2006] [Accepted: 09/27/2006] [Indexed: 10/24/2022]
Abstract
Many promiscuous plasmids encode the antirestriction proteins ArdA (alleviation of restriction of DNA) that specifically affect the restriction activity of heterooligomeric type I restriction-modification (R-M) systems in Escherichia coli cells. In addition, a lot of the putative ardA genes encoded by plasmids and bacterial chromosomes are found as a result of sequencing of complete genomic sequences, suggesting that ArdA proteins and type I R-M systems that seem to be widespread among bacteria may be involved in the regulation of gene transfer among bacterial genomes. Here, the mechanism of antirestriction action of ArdA encoded by IncI plasmid ColIb-P9 has been investigated in comparison with that of well-studied T7 phage-encoded antirestriction protein Ocr using the mutational analysis, retardation assay and His-tag affinity chromatography. Like Ocr, ArdA protein was shown to be able to efficiently interact with EcoKI R-M complex and affect its in vivo and in vitro restriction activity by preventing its interaction with specific DNA. However, unlike Ocr, ArdA protein has a low binding affinity to EcoKI Mtase and the additional C-terminal tail region (VF-motif) is needed for ArdA to efficiently interact with the type I R-M enzymes. It seems likely that this ArdA feature is a basis for its ability to discriminate between activities of EcoKI Mtase (modification) and complete R-M system (restriction) which may interact with unmodified DNA in the cells independently. These findings suggest that ArdA may provide a very effective and delicate control for the restriction and modification activities of type I systems and its ability to discriminate against DNA restriction in favour of the specific modification of DNA may give some advantage for efficient transmission of the ardA-encoding promiscuous plasmids among different bacterial populations.
Collapse
Affiliation(s)
- Sergei V Nekrasov
- Department of Genetic Engineering, National Cardiology Research and Development Center, Moscow 121552, Russia
| | | | | | | | | |
Collapse
|
41
|
Abstract
It has been discovered recently, via structural and biophysical analyses, that proteins can mimic DNA structures in order to inhibit proteins that would normally bind to DNA. Mimicry of the phosphate backbone of DNA, the hydrogen-bonding properties of the nucleotide bases and the bending and twisting of the DNA double helix are all present in the mimics discovered to date. These mimics target a range of proteins and enzymes such as DNA restriction enzymes, DNA repair enzymes, DNA gyrase and nucleosomal and nucleoid-associated proteins. The unusual properties of these protein DNA mimics may provide a foundation for the design of targeted inhibitors of DNA-binding proteins.
Collapse
|
42
|
Abstract
The discoveries of DNA mimicry by proteins inspired by Ugi experiments led by Dale Mosbaugh and his colleagues have sparked dramatic insights for our understanding of DNA and protein interactions. Currently only a small number protein mimics of DNA are known or suspected, including Ugi, HI1450, Ocr, TAF1, MfpA, and Dinl. These proteins are structurally diverse, but together they share common themes we define here. These mimics tend to resemble distorted rather than normal B-DNA, possibly to prevent cross-reactions with other DNA metabolizing proteins that should not be inhibited. Side-chain carboxylates of glutamates and aspartates functionally replace phosphates and thereby generate an overall charge pattern resembling the DNA phosphate backbone. Most protein mimics of DNA have strikingly hydrophobic cores that likely stabilize the protein fold despite substantial charge localization and a relatively small internal volume enforced by the restrictions from DNA size. These common characteristics for protein mimicry of DNA should prove useful for future identifications of DNA mimics, which seem likely to be found in bacteriophages, conjugative plasmids, eukaryotic viruses, and transcription machinery. We also suggest approaches to the design of novel DNA mimics to inhibit specific pathways and could be important for basic science applications and for use as therapeutic agents. Moreover, mimicry in general is of critical importance in that it provides an elegant mechanism by which interfaces can be reused to force sequential rather than simultaneous complex formations such as seen in systems involving polar protein assemblies and DNA repair machinery.
Collapse
Affiliation(s)
- Christopher D Putnam
- Ludwig Institute for Cancer Research, Department of Medicine, University of California, San Diego School of Medicine, La Jolla, 92093-0669, USA
| | | |
Collapse
|
43
|
Tock MR, Dryden DTF. The biology of restriction and anti-restriction. Curr Opin Microbiol 2005; 8:466-72. [PMID: 15979932 DOI: 10.1016/j.mib.2005.06.003] [Citation(s) in RCA: 364] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 06/09/2005] [Indexed: 11/29/2022]
Abstract
The phenomena of prokaryotic restriction and modification, as well as anti-restriction, were first discovered five decades ago but have yielded only gradually to rigorous analysis. Work presented at the 5th New England Biolabs Meeting on Restriction-Modification (available on REBASE, http://www.rebase.com) and several recently published genetic, biochemical and biophysical analyses indicate that these fields continue to contribute significantly to basic science. Recently, there have been several studies that have shed light on the still developing field of restriction-modification and on the newly re-emerging field of anti-restriction.
Collapse
Affiliation(s)
- Mark R Tock
- School of Chemistry, The King's Buildings, The University of Edinburgh, Edinburgh, EH9 3JJ, UK
| | | |
Collapse
|
44
|
Loenen WAM. Tracking EcoKI and DNA fifty years on: a golden story full of surprises. Nucleic Acids Res 2004; 31:7059-69. [PMID: 14654681 PMCID: PMC291878 DOI: 10.1093/nar/gkg944] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
1953 was a historical year for biology, as it marked the birth of the DNA helix, but also a report by Bertani and Weigle on 'a barrier to infection' of bacteriophage lambda in its natural host, Escherichia coli K-12, that could be lifted by 'host-controlled variation' of the virus. This paper lay dormant till Nobel laureate Arber and PhD student Dussoix showed that the lambda DNA was rejected and degraded upon infection of different bacterial hosts, unless it carried host-specific modification of that DNA, thus laying the foundations for the phenomenon of restriction and modification (R-M). The restriction enzyme of E.coli K-12, EcoKI, was purified in 1968 and required S-adenosylmethionine (AdoMet) and ATP as cofactors. By the end of the decade there was substantial evidence for a chromosomal locus hsdK with three genes encoding restriction (R), modification (M) and specificity (S) subunits that assembled into a large complex of >400 kDa. The 1970s brought the message that EcoKI cut away from its DNA recognition target, to which site the enzyme remained bound while translocating the DNA past itself, with concomitant ATP hydrolysis and subsequent double-strand nicks. This translocation event created clearly visible DNA loops in the electron microscope. EcoKI became the archetypal Type I R-M enzyme with curious DNA translocating properties reminiscent of helicases, recognizing the bipartite asymmetric site AAC(N6)GTGC. Cloning of the hsdK locus in 1976 facilitated molecular understanding of this sophisticated R-M complex and in an elegant 'pas de deux' Murray and Dryden constructed the present model based on a large body of experimental data plus bioinformatics. This review celebrates the golden anniversary of EcoKI and ends with the exciting progress on the vital issue of restriction alleviation after DNA damage, also first reported in 1953, which involves intricate control of R subunit activity by the bacterial proteasome ClpXP, important results that will keep scientists on the EcoKI track for another 50 years to come.
Collapse
Affiliation(s)
- Wil A M Loenen
- Department of Medical Microbiology, University Maastricht, Maastricht, The Netherlands.
| |
Collapse
|
45
|
Raghavendra NK, Rao DN. Functional cooperation between exonucleases and endonucleases--basis for the evolution of restriction enzymes. Nucleic Acids Res 2003; 31:1888-96. [PMID: 12655005 PMCID: PMC152791 DOI: 10.1093/nar/gkg275] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many types of restriction enzymes cleave DNA away from their recognition site. Using the type III restriction enzyme, EcoP15I, which cleaves DNA 25-27 bp away from its recognition site, we provide evidence to show that an intact recognition site on the cleaved DNA sequesters the restriction enzyme and decreases the effective concentration of the enzyme. EcoP15I restriction enzyme is shown here to perform only a single round of DNA cleavage. Significantly, we show that an exonuclease activity is essential for EcoP15I restriction enzyme to perform multiple rounds of DNA cleavage. This observation may hold true for all restriction enzymes cleaving DNA sufficiently far away from their recognition site. Our results highlight the importance of functional cooperation in the modulation of enzyme activity. Based on results presented here and other data on well-characterised restriction enzymes, a functional evolutionary hierarchy of restriction enzymes is discussed.
Collapse
|
46
|
Thomas AT, Brammar WJ, Wilkins BM. Plasmid R16 ArdA protein preferentially targets restriction activity of the type I restriction-modification system EcoKI. J Bacteriol 2003; 185:2022-5. [PMID: 12618468 PMCID: PMC150139 DOI: 10.1128/jb.185.6.2022-2025.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ArdA antirestriction protein of the IncB plasmid R16 selectively inhibited the restriction activity of EcoKI, leaving significant levels of modification activity under conditions in which restriction was almost completely prevented. The results are consistent with the hypothesis that ArdA functions in bacterial conjugation to allow an unmodified plasmid to evade restriction in the recipient bacterium and yet acquire cognate modification.
Collapse
Affiliation(s)
- Angela T Thomas
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | |
Collapse
|
47
|
Atanasiu C, Su TJ, Sturrock SS, Dryden DTF. Interaction of the ocr gene 0.3 protein of bacteriophage T7 with EcoKI restriction/modification enzyme. Nucleic Acids Res 2002; 30:3936-44. [PMID: 12235377 PMCID: PMC137103 DOI: 10.1093/nar/gkf518] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ocr protein, the product of gene 0.3 of bacteriophage T7, is a structural mimic of the phosphate backbone of B-form DNA. In total it mimics 22 phosphate groups over approximately 24 bp of DNA. This mimicry allows it to block DNA binding by type I DNA restriction enzymes and to inhibit these enzymes. We have determined that multiple ocr dimers can bind stoichiometrically to the archetypal type I enzyme, EcoKI. One dimer binds to the core methyltransferase and two to the complete bifunctional restriction and modification enzyme. Ocr can also bind to the component subunits of EcoKI. Binding affinity to the methyltransferase core is extremely strong with a large favourable enthalpy change and an unfavourable entropy change. This strong interaction prevents the dissociation of the methyltransferase which occurs upon dilution of the enzyme. This stabilisation arises because the interaction appears to involve virtually the entire surface area of ocr and leads to the enzyme completely wrapping around ocr.
Collapse
Affiliation(s)
- C Atanasiu
- Department of Chemistry, The King's Buildings, University of Edinburgh, Edinburgh EH9 3JJ, UK
| | | | | | | |
Collapse
|
48
|
Pajunen MI, Elizondo MR, Skurnik M, Kieleczawa J, Molineux IJ. Complete nucleotide sequence and likely recombinatorial origin of bacteriophage T3. J Mol Biol 2002; 319:1115-32. [PMID: 12079351 DOI: 10.1016/s0022-2836(02)00384-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report the complete genome sequence (38,208 bp) of bacteriophage T3 and provide a bioinformatic comparative analysis with other completely sequenced members of the T7 group of phages. This comparison suggests that T3 has evolved from a recombinant between a T7-like coliphage and a yersiniophage. To assess this, recombination between T7 and the Yersinia enterocolitica serotype O:3 phage phiYeO3-12 was accomplished in vivo; coliphage progeny from this cross were selected that had many biological properties of T3. This represents the first experimentally observed recombination between lytic phages whose normal hosts are different bacterial genera.
Collapse
Affiliation(s)
- Maria I Pajunen
- Department of Medical Biochemistry and Molecular Biology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, Finland.
| | | | | | | | | |
Collapse
|
49
|
Murray NE. 2001 Fred Griffith review lecture. Immigration control of DNA in bacteria: self versus non-self. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3-20. [PMID: 11782494 DOI: 10.1099/00221287-148-1-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Noreen E Murray
- Institute of Cell and Molecular Biology, Darwin Building, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK1
| |
Collapse
|
50
|
Walkinshaw MD, Taylor P, Sturrock SS, Atanasiu C, Berge T, Henderson RM, Edwardson JM, Dryden DTF. Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA. Mol Cell 2002; 9:187-94. [PMID: 11804597 DOI: 10.1016/s1097-2765(02)00435-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have solved, by X-ray crystallography to a resolution of 1.8 A, the structure of a protein capable of mimicking approximately 20 base pairs of B-form DNA. This ocr protein, encoded by gene 0.3 of bacteriophage T7, mimics the size and shape of a bent DNA molecule and the arrangement of negative charges along the phosphate backbone of B-form DNA. We also demonstrate that ocr is an efficient inhibitor in vivo of all known families of the complex type I DNA restriction enzymes. Using atomic force microscopy, we have also observed that type I enzymes induce a bend in DNA of similar magnitude to the bend in the ocr molecule. This first structure of an antirestriction protein demonstrates the construction of structural mimetics of long segments of B-form DNA.
Collapse
Affiliation(s)
- M D Walkinshaw
- Institute of Cell and Molecular Biology, The King's Buildings, University of Edinburgh, EH9 3JR, Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|