1
|
Inose-Maruyama A, Kasai S, Itoh K. Human Heme Oxygenase-1 Promoter Activity Is Mediated by Z-DNA Formation. Methods Mol Biol 2023; 2651:157-166. [PMID: 36892766 DOI: 10.1007/978-1-0716-3084-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
In recent years, it has been shown that Z-DNA formation in DNA plays functionally significant roles in nucleic acid metabolism, such as gene expression, chromosome recombination, and epigenetic regulation. The reason for the identification of these effects is mainly due to the advancement of Z-DNA detection methods in target genome regions in living cells.The heme oxygenase-1 (HO-1) gene encodes an enzyme that degrades an essential prosthetic heme, and environmental stimuli, including oxidative stress, lead to robust induction of the HO-1 gene. Many DNA elements and transcription factors are involved in the induction of the HO-1 gene, and Z-DNA formation in the thymine-guanine (TG) repetitive sequence in the human HO-1 gene promoter region is required for maximum gene induction.Here, we describe a detailed protocol for Z-DNA detection in the human HO-1 gene promoter region based on chromatin immunoprecipitation with quantitative PCR. We also provide some control experiments to consider in routine lab procedures.
Collapse
Affiliation(s)
- Atsushi Inose-Maruyama
- Division of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, Ina-machi, Kita-adachigun, Japan
| | - Shuya Kasai
- Center for Advanced Medical Sciences, Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ken Itoh
- Center for Advanced Medical Sciences, Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| |
Collapse
|
2
|
Construction of ssDNA-Attached LR-Chimera Involving Z-DNA for ZBP1 Binding Analysis. Molecules 2022; 27:molecules27123706. [PMID: 35744832 PMCID: PMC9230395 DOI: 10.3390/molecules27123706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
The binding of proteins to Z-DNA is hard to analyze, especially for short non-modified DNA, because it is easily transferred to B-DNA. Here, by the hybridization of a larger circular single-stranded DNA (ssDNA) with a smaller one, an LR-chimera (involving a left-handed part and a right-handed one) with an ssDNA loop is produced. The circular ssDNAs are prepared by the hybridization of two ssDNA fragments to form two nicks, followed by nick sealing with T4 DNA ligase. No splint (a scaffold DNA for circularizing ssDNA) is required, and no polymeric byproducts are produced. The ssDNA loop on the LR-chimera can be used to attach it with other molecules by hybridization with another ssDNA. The gel shift binding assay with Z-DNA specific binding antibody (Z22) or Z-DNA binding protein 1 (ZBP1) shows that stable Z-DNA can form under physiological ionic conditions even when the extra ssDNA part is present. Concretely, a 5'-terminal biotin-modified DNA oligonucleotide complementary to the ssDNA loop on the LR-chimera is used to attach it on the surface of a biosensor inlaid with streptavidin molecules, and the binding constant of ZBP1 with Z-DNA is analyzed by BLI (bio-layer interferometry). This approach is convenient for quantitatively analyzing the binding dynamics of Z-DNA with other molecules.
Collapse
|
3
|
Li L, Zhang Y, Ma W, Chen H, Liu M, An R, Cheng B, Liang X. Nonalternating purine pyrimidine sequences can form stable left-handed DNA duplex by strong topological constraint. Nucleic Acids Res 2021; 50:684-696. [PMID: 34967416 PMCID: PMC8789069 DOI: 10.1093/nar/gkab1283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/01/2021] [Accepted: 12/16/2021] [Indexed: 11/14/2022] Open
Abstract
In vivo, left-handed DNA duplex (usually refers to Z-DNA) is mainly formed in the region of DNA with alternating purine pyrimidine (APP) sequence and plays significant biological roles. It is well known that d(CG)n sequence can form Z-DNA most easily under negative supercoil conditions, but its essence has not been well clarified. The study on sequence dependence of Z-DNA stability is very difficult without modification or inducers. Here, by the strong topological constraint caused by hybridization of two complementary short circular ssDNAs, left-handed duplex part was generated for various sequences, and their characteristics were investigated by using gel-shift after binding to specific proteins, CD and Tm analysis, and restriction enzyme cleavage. Under the strong topological constraint, non-APP sequences can also form left-handed DNA duplex as stable as that of APP sequences. As compared with non-APP sequences, the thermal stability difference for APP sequences between Z-form and B-form is smaller, which may be the reason that Z-DNA forms preferentially for APP ones. This result can help us to understand why nature selected APP sequences to regulate gene expression by transient Z-DNA formation, as well as why polymer with chirality can usually form both duplexes with left- or right-handed helix.
Collapse
Affiliation(s)
- Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yaping Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Wanzhi Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mengqin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Bingxiao Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
4
|
Abstract
Because ribose residues carry hydroxyl groups in both the 2' and 3' positions, RNA is chemically much more reactive than DNA and is easy prey to cleavage by contaminating RNases-enzymes with various specificities that share the property of hydrolyzing diester bonds linking phosphate and ribose residues. Because RNases are released from cells following lysis and are present on the skin, constant vigilance is required to prevent contamination of glassware and bench tops and the creation of aerosols carrying RNase. The problem is compounded because there is no simple method to inactivate RNases. Because of the presence of intrachain disulfide bonds, many RNases are resistant to prolonged boiling and mild denaturants and are able to refold quickly when denatured. Unlike many DNases, RNases do not require divalent cations for activity and thus cannot be easily inactivated by the inclusion of ethylenediaminetetraacetic acid (EDTA) or other metal ion chelators in buffer solutions. The best way to prevent problems with RNase is to avoid contamination in the first place.
Collapse
|
5
|
Bailly C, Waring MJ. Footprinting Studies on the Sequence-Selective Binding of Tilorone to DNA. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029300400206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNAase I footprinting has been used to investigate sequence selectivity in the binding of the antiviral fluorenone derivative tilorone to DNA. Using the 160 base pair EcoRI-AvaI tyr T restriction fragment and the 166 base pair EcoRI-BstEII ptyr 2 restriction fragment, obtained respectively from the Plasmids pKMΔ-98 and pMLB 1048, it is shown that tilorone binds to DNA with a preference for alternating purine-pyrimidine sequences. Enhancement of DNAase I cleavage occurs at homopolymeric A and T stretches and, to a lesser extent, at GC-rich clusters suggesting that the drug discriminates against these sequences. However, tilorone has only limited selectivity and can bind reasonably well to many types of DNA sequences. By comparison with the footprinting patterns produced by a variety of intercalating agents, it appears that tilorone protects from DNAase I cleavage the same sequences as the intercalating drug ethidium bromide. Using diethylpyrocarbohate and osmium tetroxide as probes for chemical reactivity we can perceive deformation in the structure of DNA induced by tilorone binding. Results from enzymic and chemical probing experiments are compared and discussed with respect to the likely intercalative mode of binding of tilorone to DNA.
Collapse
Affiliation(s)
- C. Bailly
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1QJ Cambridge, UK
| | - M. J. Waring
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1QJ Cambridge, UK
| |
Collapse
|
6
|
Vaz de Andrade E, Freitas SM, Ventura MM, Maranhão AQ, Brigido MM. Thermodynamic basis for antibody binding to Z-DNA: comparison of a monoclonal antibody and its recombinant derivatives. Biochim Biophys Acta Gen Subj 2005; 1726:293-301. [PMID: 16214293 DOI: 10.1016/j.bbagen.2005.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 08/24/2005] [Accepted: 08/31/2005] [Indexed: 10/25/2022]
Abstract
Antibody engineering represents a promising area in biotechnology. Recombinant antibodies can be easily manipulated generating new ligand and effector activities that can be used as prototype magic bullets. On the other hand, an extensive knowledge of recombinant antibody binding and stability features are essential for an efficient substitution. In this study, we compared the stability and protein binding properties of two recombinant antibody fragments with their parental monoclonal antibody. The recombinant fragments were a monomeric scFv and a dimeric one, harboring human IgG1 CH2-CH3 domains. We have used fluorescence titration quenching to determine the thermodynamics of the interaction between an anti-Z-DNA monoclonal antibody and its recombinant antibody fragments with Z-DNA. All the antibody fragments seemed to bind DNA similarly, in peculiar two-affinity states. Enthalpy-entropy compensation was observed for both affinity states, but a marked entropy difference was observed for the monomeric scFv antibody fragment, mainly for the high affinity binding. In addition, we compared the stability of the dimeric antibody fragment and found differences favoring the monoclonal antibody. These differences seem to derive from the heterologous expression system used.
Collapse
|
7
|
Abstract
The mammalian BAF complex regulates gene expression by modifying chromatin structure. In this report, we identify 80 genes activated and 2 genes repressed by the BAF complex in SW-13 cells. We find that prior binding of NFI/CTF to the NFI/CTF binding site in CSF1 promoter is required for the recruitment of the BAF complex and the BAF-dependent activation of the promoter. Furthermore, the activation of the CSF1 promoter requires Z-DNA-forming sequences that are converted to Z-DNA structure upon activation by the BAF complex. The BAF complex facilitates Z-DNA formation in a nucleosomal template in vitro. We propose a model in which the BAF complex promotes Z-DNA formation which, in turn, stabilizes the open chromatin structure at the CSF1 promoter.
Collapse
Affiliation(s)
- R Liu
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
8
|
Rokita SE. Chemical reagents for investigating the major groove of DNA. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2001; Chapter 6:Unit 6.6. [PMID: 18428867 DOI: 10.1002/0471142700.nc0606s05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chemical modification provides an inexpensive and rapid method for characterizing the structure of DNA and its association with drugs and proteins. Numerous conformation-specific probes are available, but most investigations rely on only the most common and readily available of these. The major groove of DNA is typically characterized by reaction with dimethyl sulfate, diethyl pyrocarbonate, potassium permanganate, osmium tetroxide, and, quite recently, bromide with monoperoxysulfate. This commentary discusses the specificity of these reagents and their applications in protection, interference, and missing contact experiments.
Collapse
Affiliation(s)
- S E Rokita
- University of Maryland, College Park, Maryland, USA
| |
Collapse
|
9
|
Cal S, Connolly BA. DNA distortion and base flipping by the EcoRV DNA methyltransferase. A study using interference at dA and T bases and modified deoxynucleosides. J Biol Chem 1997; 272:490-6. [PMID: 8995288 DOI: 10.1074/jbc.272.1.490] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The EcoRV DNA methyltransferase introduces a CH3 group at the 6-amino position of the first dA in the duplex sequence d(GATATC). It has previously been reported that the methylase contacts the four phosphates (pNpNpGpA) at, and preceding, the 5'-end of the recognition sequence as well as the single dG in this sequence (Szczelkun, M. D., Jones, H., and Connolly, B. A. (1995) Biochemistry 34, 10734-10743). To study the possible role of the dA and T bases within the ATAT sequence, interference studies have been carried out using diethylpyrocarbonate and osmium tetroxide. The methylase bound very strongly to hemimethylated oligonucleotides modified at the second AT, of the ATAT sequence, in the unmethylated strand of the duplex. This probably arises because these modifications facilitate DNA distortion that follows the binding of the nucleic acid to the protein. Oligonucleotides containing modified bases at both the target dA base and its complementary T were used to determine whether this dA methylase flips out its target base in a similar manner to that observed for dC DNA methylases. In binary EcoRV methylase-DNA complexes, analogues that weakened the base pair caused an increase in affinity between the protein and the nucleic acid. In contrast, in ternary EcoRV methylase-DNA-sinefungin (an analogue of the natural co-factor, S-adenosyl-L-methionine (AdoMet)) complexes, only small differences in affinity were observed between the normal dA-T base pair and the analogues. These results are almost identical to those seen with DNA dC methylases (Klimasauskas, S., and Roberts R. J. (1995) Nucleic Acid Res. 23, 1388-1395; Yang, S. A., Jiang-Cheng, S., Zingg, J. M., Mi, S., and Jones, P. A. (1995) Nucleic Acids Res. 23, 1380-1387) and support a base-flipping mechanism for DNA dA methylases.
Collapse
Affiliation(s)
- S Cal
- Department of Biochemistry and Genetics, The University of Newcastle, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
10
|
Kubota T, Watanabe N, Kanai Y, Stollar BD. Enhancement of oxidative cleavage of DNA by the binding sites of two anti-double-stranded DNA antibodies. J Biol Chem 1996; 271:6555-61. [PMID: 8626460 DOI: 10.1074/jbc.271.11.6555] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Nucleic acid specificity was tested for two monoclonal anti-double-stranded DNA autoantibodies, 2C10 and H241, derived from two lupus-prone MRL/Mp-lpr/lpr mice. Antibody 2C10 bound double-stranded oligonucleotides with a preference for dA-dT over dG-dC base pairs and did not bind single-stranded oligonucleotides. Distamycin A, an antibiotic that binds to the minor groove, inhibited 2C10 binding of double-stranded DNA, suggesting that this antibody interacts with dA-dT base pairs in the minor groove. Antibody H241 binding was previously shown to have a dG-dC preference and to involve both major and minor grooves. In attempted footprinting assays, both 2C10 and H241 markedly en- hanced rather than protected against cleavage of DNA by hydroxyl radical-generating systems. With 2C10, this enhancement effect was observed only when hydroxyl radical generation was associated with oxidation of Fe(II). In contrast, H241 enhancement occurred in the presence of H2O2 and ascorbate or UV light irradiation and did not depend on added metal ion. The enhancement sites were related to the antibody binding specificities. The oligonucleotide 5'-AAAATATATATTT-3' was a much more effective inhibitor of the 2C10 enhancement than of the H241 effect, whereas the oligonucleotide 5'-GGGGCGCGCGCCC-3' was a much more effective inhibitor of the H241 enhancement. In addition, the enhanced cleavage occurred preferentially at dA-dT-rich regions with 2C10 and at dG-dC-rich regions with H241. These findings raise the possibility that anti-DNA autoantibodies could enhance DNA damage in inflammatory lesions in which hydroxyl radicals are generated.
Collapse
Affiliation(s)
- T Kubota
- School of Allied Health Sciences, Faculty of Medicine, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|
11
|
Swanson PC, Ackroyd C, Glick GD. Ligand recognition by anti-DNA autoantibodies. Affinity, specificity, and mode of binding. Biochemistry 1996; 35:1624-33. [PMID: 8634294 DOI: 10.1021/bi9516788] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Understanding the molecular basis of DNA recognition by anti-DNA autoantibodies is a key element in defining the role of antibody.DNA complexes in the pathogenesis of the autoimmune disorder systemic lupus erythematosus. As part of our efforts to relate anti-DNA affinity and specificity to antibody structure, and ultimately to disease pathogenesis, we have generated a panel of eight anti-DNA mAbs from an autoimmune MRL MpJ-lpr/lpr mouse and have assessed the binding properties of these antibodies. We find that none of our anti-DNA mAbs bind to RNA and only one low-affinity mAb cross-reacts with non-DNA antigens, albeit weakly. None of the mAbs in our panel bind double-stranded DNA exclusively. Antibodies that recognize single-stranded DNA can be categorized into two groups based on their affinity and apparent mode of binding. One group possesses relatively high affinity for oligo(dT) and may recognize single-stranded DNA ligands by accommodating thymine bases in hydrophobic pockets on the antigen binding site. The second group binds more weakly, apparently recognizes single-stranded DNA nonspecifically, and in some cases also binds double-stranded DNA. Although different mechanisms are used for binding single- and double-stranded ligands, the mode of DNA recognition appears conserved within groups of antibodies.
Collapse
Affiliation(s)
- P C Swanson
- Department of Chemistry, University of Michigan, Ann Arbor 48109-1055, USA
| | | | | |
Collapse
|
12
|
Wölfl S, Wittig B, Rich A. Identification of transcriptionally induced Z-DNA segments in the human c-myc gene. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1264:294-302. [PMID: 8547317 DOI: 10.1016/0167-4781(95)00155-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Using monoclonal antibodies against Z-DNA three AluI restriction fragments of the human c-myc gene were previously found to form Z-DNA in agarose-embedded, metabolically active permeabilized nuclei. The formation of Z-DNA in these fragments was dependent on negative supercoiling generated by transcription of the gene. Here we show which sequence elements of these three AluI restriction fragments adopt the Z conformation upon negative supercoiling. The three fragments (Z1, Z2 and Z3) were inserted in a suitable plasmid vector. Z-DNA forming elements were detected by comparing DEPC reactivity in relaxed circular and supercoiled plasmid DNA. Z1 and Z3 each contained one major Z-DNA forming region 20-25 nucleotides long, whereas Z2 contained two discrete regions 90 nucleotides apart one about 35 nucleotides the other about 20 nucleotides long.
Collapse
Affiliation(s)
- S Wölfl
- Massachusetts Institute of Technology, Department of Biology, Cambridge, USA
| | | | | |
Collapse
|
13
|
Herrmann M, Winkler TH, Fehr H, Kalden JR. Preferential recognition of specific DNA motifs by anti-double-stranded DNA autoantibodies. Eur J Immunol 1995; 25:1897-904. [PMID: 7621866 DOI: 10.1002/eji.1830250716] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although antibodies (Ab) specific for double-stranded (ds) DNA are thought to be involved in the etiopathogenesis of systemic lupus erythematosus (SLE), the fine structure of their DNA targets remains elusive. We have adapted a polymerase chain reaction (PCR)-assisted immunoprecipitation method to define the binding sites in DNA sequences recognized by high affinity anti-dsDNA Ab of SLE patients. SLE sera were used to bind templates from a pool of double-stranded oligonucleotides (ON). A central part of 20 base-pair random sequence was flanked by restriction endonuclease recognition sites and sequences complementary to predefined PCR primers. Immunoselected ON were precipitated, isolated from the immune complexes and then subjected to a further immunoprecipitation step after amplification by PCR. After five cycles of immunoprecipitation and PCR, the resulting ON were cloned. Sequence analysis revealed that sera from SLE patients and two human monoclonal anti-dsDNA Ab obtained from SLE patients preferentially select sequences expected to form non-B-DNA structures. Inhibition studies of the Farr assay confirmed the increased affinity of the selected epitopes for anti-DNA Ab as compared to random B-DNA.
Collapse
Affiliation(s)
- M Herrmann
- Institute of Clinical Immunology and Rheumatology, Department of Medicine III, Erlangen, Germany
| | | | | | | |
Collapse
|
14
|
Pietrasanta LI, Schaper A, Jovin TM. Probing specific molecular conformations with the scanning force microscope. Complexes of plasmid DNA and anti-Z-DNA antibodies. Nucleic Acids Res 1994; 22:3288-92. [PMID: 8078762 PMCID: PMC523720 DOI: 10.1093/nar/22.16.3288] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
An anti-Z-DNA IgG antibody was used to probe for the left-handed Z-DNA conformation of a d(CG)11 insert in a negatively supercoiled plasmid DNA (pAN022). The complexes were spread on mica in the presence of a quaternary ammonium detergent benzyldimethylalkylammonium chloride and imaged with a scanning force microscope (SFM). The high affinity anti-Z-DNA antibody was retained even after restriction endonuclease cleavage of the DNA. The two arms in the product molecules had unequal lengths in conformity with the known location of the Z-DNA forming insert. Most complexes exhibited one IgG per DNA molecule. The bound antibodies were up to approximately 35 nm in diameter and extended approximately 2 nm from the mica surface. They were generally in a lateral orientation relative to the DNA, in accordance with prior chemical modification experimental data indicating a bipedal mode of binding for an anti-Z-DNA IgG. However, the SFM images also suggest that the DNA bends to accommodate the two Fab combining regions of the antibody. This study demonstrates the utility of the SFM for investigating conformation-dependent molecular recognition.
Collapse
Affiliation(s)
- L I Pietrasanta
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | | | | |
Collapse
|
15
|
Gruskin EA, Rich A. B-DNA to Z-DNA structural transitions in the SV40 enhancer: stabilization of Z-DNA in negatively supercoiled DNA minicircles. Biochemistry 1993; 32:2167-76. [PMID: 8382945 DOI: 10.1021/bi00060a007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
During replication and transcription, the SV40 control region is subjected to significant levels of DNA unwinding. There are three, alternating purine-pyrimidine tracts within this region that can adopt the Z-DNA conformation in response to negative superhelix density: a single copy of ACACACAT and two copies of ATGCATGC. Since the control region is essential for both efficient transcription and replication, B-DNA to Z-DNA transitions in these vital sequence tracts may have significant biological consequences. We have synthesized DNA minicircles to detect B-DNA to Z-DNA transitions in the SV40 enhancer, and to determine the negative superhelix density required to stabilize the Z-DNA. A variety of DNA sequences, including the entire SV40 enhancer and the two segments of the enhancer with alternating purine-pyrimidine tracts, were incorporated into topologically relaxed minicircles. Negative supercoils were generated, and the resulting topoisomers were resolved by electrophoresis. Using an anti-Z-DNA Fab and an electrophoretic mobility shift assay, Z-DNA was detected in the enhancer-containing minicircles at a superhelix density of -0.05. Fab saturation binding experiments demonstrated that three, independent Z-DNA tracts were stabilized in the supercoiled minicircles. Two other minicircles, each with one of the two alternating purine-pyrimidine tracts, also contained single Z-DNA sites. These results confirm the identities of the Z-DNA-forming sequences within the control region. Moreover, the B-DNA to Z-DNA transitions were detected at superhelix densities observed during normal replication and transcription processes in the SV40 life cycle.
Collapse
Affiliation(s)
- E A Gruskin
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
16
|
Edgington SM, Stollar BD. Immunogenicity of Z-DNA depends on the size of polynucleotide presented in complexes with methylated BSA. Mol Immunol 1992; 29:609-17. [PMID: 1584229 DOI: 10.1016/0161-5890(92)90197-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The importance of polynucleotide size for immunogenicity was tested with size-fractionated Z-DNA. High molecular weight Z-DNA, larger than 1000 bp, was fragmented by digestion with micrococcal nuclease. Fractions corresponding to less than 60, 60-120, 100-200, 200-400 and 400-900 bp were isolated by gel filtration on Sepharose 4B. These fractions and the greater than 1000 bp Z-DNA were mixed with methylated BSA and the complexes were injected into C57BL/6 mice with RIBI adjuvant. Only one of four mice responded to the less than 60 bp immunogen. All the fractions larger than 60 bp induced specific anti-Z-DNA antibodies, mostly of IgG isotype, in all animals injected. Fractions larger than 200 bp induced antisera of higher titer than did 60-120 or 100-200 bp fractions. All positive sera reacted with Z-DNA but not with B-DNA and only very weakly with denatured DNA. In competitive assays, similar concentrations of fragments larger than 60 bp inhibited binding to immobilized Z-DNA. A higher concentration of less than 60 bp fragments was required for competitive binding. Even for a highly immunogenic nucleic acid that differs from the B-DNA conformation, a polynucleotide larger than 100 bp is much more immunogenic than smaller fragments.
Collapse
Affiliation(s)
- S M Edgington
- Department of Biochemistry, Tufts University School of Medicine, Dental Medicine and Veterinary Medicine, Boston, MA
| | | |
Collapse
|
17
|
Fourcade-Peronnet F, Codani-Simonart S, Best-Belpomme M. A nuclear single-stranded-DNA binding factor interacts with the long terminal repeats of the 1731 Drosophila retrotransposon. J Virol 1992; 66:1682-7. [PMID: 1371170 PMCID: PMC240910 DOI: 10.1128/jvi.66.3.1682-1687.1992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using gel mobility assays, we have detected two proteins that bind in the U3 region of the 1731 retrotransposon long terminal repeats (between positions -110 and -73) in nuclear extracts from Drosophila melanogaster cultured cells. The first one binds double-stranded DNA, whereas the other binds the mRNA-like strand in a sequence-specific manner. We report here the characterization of the latter protein, named NssBF for nuclear single-stranded-DNA binding factor. Gel filtration shows an apparent molecular mass of 95 kDa for NssBF. The points of contact between NssBF and its single-stranded DNA target were determined. This protein binds neither the complementary strand nor the corresponding RNA sequence. A possible role of NssBF in transcription is discussed.
Collapse
Affiliation(s)
- F Fourcade-Peronnet
- URA Centre National de la Recherche Scientifique 1135, Université Pierre et Marie Curie, Paris, France
| | | | | |
Collapse
|
18
|
Stollar BD. Immunochemical analyses of nucleic acids. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1992; 42:39-77. [PMID: 1574590 DOI: 10.1016/s0079-6603(08)60573-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- B D Stollar
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
19
|
Belguise-Valladier P, Fuchs RP. Strong sequence-dependent polymorphism in adduct-induced DNA structure: analysis of single N-2-acetylaminofluorene residues bound within the NarI mutation hot spot. Biochemistry 1991; 30:10091-100. [PMID: 1931941 DOI: 10.1021/bi00106a005] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have used a set of chemical probes to characterize and to compare the structural deformation of double-stranded oligomers bearing a single N-2-acetylaminofluorene (AAF) adduct covalently bound to each of the three guanine residues located within the frameshift mutation hot spot sequence -G1G2CG3CC-(NarI site). Two classes of chemical probes have been used, probes that sense the geometry of the helix, giving rise to cuts at every nucleotide (for example, 1,10-phenanthroline-copper), and probes that react with specific bases depending on their conformation (e.g., diethyl pyrocarbonate). For all probes that were tested, a distinct pattern of reactivity was observed according to the position of the adduct within the DNA sequence, revealing an important polymorphism in the adduct-induced DNA structure. With 1,10-phenanthroline-copper at least three base pairs 3' of the AAF-modified guanine were reactive on each strand, showing that the deformation of the DNA helix extends over a region of 4-6 bases pairs centered around the adduct and sensed by the probe in both strands. With the base-specific probes, reactivities were limited to the base complementary to the modified guanine and to adjacent bases. Within this sequence context, the three possible AAF adducts have previously been shown to exhibit strong differences in biological responses such as excision repair [Seeberg, E., & Fuchs, R. P. P. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 191-194] and mutagenesis [Burnouf, D., Koehl, P., & Fuchs, R. P. P. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 4147-4151].(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
20
|
Wittig B, Dorbic T, Rich A. Transcription is associated with Z-DNA formation in metabolically active permeabilized mammalian cell nuclei. Proc Natl Acad Sci U S A 1991; 88:2259-63. [PMID: 2006166 PMCID: PMC51210 DOI: 10.1073/pnas.88.6.2259] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mammalian cells have been encapsulated in agarose microbeads, and from these cells metabolically active permeabilized nuclei were prepared. Previously, we showed that biotin-labeled monoclonal antibodies against Z-DNA can be diffused into the nuclei and, over a specific concentration range, they will bind to Z-DNA within the nucleus in a concentration-independent manner. By using radiolabeled streptavidin, we showed that the amount of Z-DNA antibody bound is related to the torsional strain of the DNA in the nucleus. Relaxation of the DNA results in a decrease of Z-DNA formation, whereas increasing torsional strain through inhibiting topoisomerase I results in increased Z-DNA formation. Here we measure the influence of RNA transcription and DNA replication. Transcription is associated with a substantial increase in the binding of anti-Z-DNA antibodies, paralleling the increased level of RNA synthesized as the level of ribonucleoside triphosphate in the medium is increased. DNA replication yields smaller increases in the binding of Z-DNA antibodies. Stopping RNA transcription with inhibitors results in a large loss of Z-DNA antibody binding, whereas only a small decrease is associated with inhibition of DNA replication.
Collapse
Affiliation(s)
- B Wittig
- Institut für Molekularbiologie und Biochemie, Freie Universität, Berlin, Federal Republic of Germany
| | | | | |
Collapse
|
21
|
Chmielewski J, Schultz P. Monoclonal antibodies with sequence specific affinity for a stem - loop structure in DNA. Tetrahedron 1991. [DOI: 10.1016/s0040-4020(01)81789-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Wissmann A, Hillen W. DNA contacts probed by modification protection and interference studies. Methods Enzymol 1991; 208:365-79. [PMID: 1779841 DOI: 10.1016/0076-6879(91)08020-i] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Abstract
The DNA double helix exhibits local sequence-dependent polymorphism at the level of the single base pair and dinucleotide step. Curvature of the DNA molecule occurs in DNA regions with a specific type of nucleotide sequence periodicities. Negative supercoiling induces in vitro local nucleotide sequence-dependent DNA structures such as cruciforms, left-handed DNA, multistranded structures, etc. Techniques based on chemical probes have been proposed that make it possible to study DNA local structures in cells. Recent results suggest that the local DNA structures observed in vitro exist in the cell, but their occurrence and structural details are dependent on the DNA superhelical density in the cell and can be related to some cellular processes.
Collapse
Affiliation(s)
- E Palecek
- Max-Planck Institut für Biophysikalische Chemie, Göttingen, BRD
| |
Collapse
|
24
|
Rohner K, Hobi R, Kuenzle C. Z-DNA-binding proteins. Identification critically depends on the proper choice of ligands. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30631-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Abstract
An overview of the chemical and photochemical probes which over the past ten years have been used in studies of DNA/ligand complexes and of non-B-form DNA conformations is presented with emphasis on the chemical reactions of the probes with DNA and on their present 'use-profile'. The chemical probes include: dimethyl sulfate, ethyl nitroso urea, diethyl pyrocarbonate, osmium tetroxide, permanganate, aldehydes, methidiumpropyl-EDTA-Fell (MPE), phenanthroline metal complexes and EDTA/FeII. The photochemical probes that have been used include: psoralens, UVB, acridines and uranyl salts. The biological systems analysed by use of these probes are reviewed by tabulation.
Collapse
Affiliation(s)
- P E Nielsen
- Department of Biochemistry B, Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
26
|
Hartmann B, Malfoy B, Lavery R. Theoretical prediction of base sequence effects in DNA. Experimental reactivity of Z-DNA and B-Z transition enthalpies. J Mol Biol 1989; 207:433-44. [PMID: 2754731 DOI: 10.1016/0022-2836(89)90265-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Molecular modeling is used to study the sequence dependence of conformation and stability within helically regular duplex Z-DNA. The variations of conformation that are found are sufficiently important to be classified as a new type of polymorphism within the Z family. It is also demonstrated that certain sequences can adopt more than one of these polymorphic forms. Comparison with experimental studies of chemical reactivity within a natural DNA fragment, forced into a left-handed conformation, suggests that the results of our modeling may be used to explain the chemical reactivity observed. Comparison of the Z results with similar studies of the B form allow enthalpies of transition to be calculated as a function of base sequence.
Collapse
Affiliation(s)
- B Hartmann
- Institut de Biologie Physico-Chimique, Paris, France
| | | | | |
Collapse
|
27
|
Wittig B, Dorbic T, Rich A. The level of Z-DNA in metabolically active, permeabilized mammalian cell nuclei is regulated by torsional strain. J Cell Biol 1989; 108:755-64. [PMID: 2921282 PMCID: PMC2115406 DOI: 10.1083/jcb.108.3.755] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Permeabilized nuclei from mammalian cells encapsulated within agarose microbeads in an isotonic buffer are active in transcription and replication (Jackson, D. A., and P. R. Cook. 1985. EMBO (Eur. Mol. Biol. Organ.) J. 4:913-918). Their DNA is intact and the nuclei are accessible to macromolecules. Myeloma nuclei prepared in this way were used to probe the extent of DNA negative supercoiling and the effects of altering torsional strain by binding radioactively labeled monoclonal antibodies to Z-DNA. Control experiments used monoclonal antibodies against a nonhistone chromosomal protein, HMG-17. On increasing the amount of anti-HMG-17 added, a binding plateau was reached encompassing a 200-fold range of antibody concentration. On binding anti-Z-DNA antibody, a similar broad plateau of constant binding was found encompassing a 100-fold range of antibody concentration. The latter result was taken as a measure of preexisting Z-DNA in the nuclei. Additional anti-Z-DNA antibody binding can be "induced" in the presence of much higher concentration of antibody, apparently by perturbing the B-DNA/Z-DNA equilibrium. On inhibiting topoisomerase I with camptothecin, an elevated antibody binding plateau was found, suggesting that elastic torsional strain in the DNA is responsible for stabilizing the preexisting Z-DNA. This interpretation is supported by the fact that addition of small, nicking amounts of DNase I leads to a complete loss of antibody binding in the Z-DNA plateau region but not in the region of "induced" Z-DNA.
Collapse
Affiliation(s)
- B Wittig
- Institut fur Molekularbiologie und Biochemie, Freie Universitat Berlin, West Germany
| | | | | |
Collapse
|
28
|
Nejedlý K, Kłysik J, Palecek E. Supercoil-stabilized left-handed DNA in the plasmid (dA-dT)16 insert formed in the presence of Ni2+. FEBS Lett 1989; 243:313-7. [PMID: 2537234 DOI: 10.1016/0014-5793(89)80152-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The (dA-dT)16 insert of the plasmid pAT32 was probed with diethyl pyrocarbonate (DEPC) and nuclease Bal3l in the presence of Ni2+ known to be able to induce transition to left-handed conformation in the synthetic poly(dA-dT).poly(dA-T). It has been shown that this insert in a supercoiled plasmid displays a DEPC modification pattern characteristic of left-handed DNA under conditions not sufficient to induce a left-handed structure in the linear plasmid and poly(dA-dT).poly(dA-T).
Collapse
Affiliation(s)
- K Nejedlý
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lódź
| | | | | |
Collapse
|
29
|
Abstract
Since the first reports of anti-DNA antibodies in sera of patients with systemic lupus erythematosus (SLE) in 1957, studies of nucleic acid immunochemistry have grown in two directions. One has been the analysis of the specificity, the nature and the origins of these autoantibodies. The second has been exploration of anti-nucleic acid antibodies that can be induced experimentally, their specificities, and their application as biochemical reagents. Although the properties of autoantibodies and experimentally induced antibodies differ in certain respects, these two lines of research are complementary and provide important information for each other. For example, the production of autoantibodies by adjuvant-stimulated B cells yields a background that has to be considered in evaluating the specificity of weak responses to experimental nucleic acid immunogens: in turn, the possibilities and limitations of experimental immunization should be considered in evaluating possible stimuli for autoantibody production. Several aspects of nucleic acid immunochemistry have been described and evaluated in previous reviews. Following some general statements of historical perspective, this review will emphasize questions addressed and findings of about the last five years.
Collapse
Affiliation(s)
- B D Stollar
- Department of Biochemistry, Tufts University Health Science Campus, Boston, MA 02111
| |
Collapse
|
30
|
Sanford DG, Kotkow KJ, Stollar BD. Immunochemical detection of multiple conformations within a 36 base pair oligonucleotide. Nucleic Acids Res 1988; 16:10643-55. [PMID: 2462714 PMCID: PMC338930 DOI: 10.1093/nar/16.22.10643] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A 36 base pair chimeric oligonucleotide containing a central core of DNA duplex flanked by RNA/DNA hybrid at each end was synthesized. These distinct regions of the oligonucleotide adopt different conformations which were detected with antibody probes. Enzyme linked immunosorbent assays (ELISA) and a gel electrophoresis retardation assay were used to demonstrate the binding of antibodies which recognize B-DNA, Z-DNA and RNA/DNA hybrid. The DNA duplex core of this oligonucleotide adopts the B-conformation in 0.14 M NaCl. In high salt solution (4 M NaCl) the DNA core adopts the Z-conformation. The RNA/DNA hybrid at the ends of the oligomer adopt a conformation which is distinct from both B-DNA and A-RNA.
Collapse
Affiliation(s)
- D G Sanford
- Department of Biochemistry, Tufts University Health Sciences Campus, Boston, MA 02111
| | | | | |
Collapse
|
31
|
Abstract
Dot blot and transblot enzyme-linked immunosorbent assays (e.l.i.s.a.) are described which provide sensitive non-radioactive methods for screening Z-DNA-specific antisera and for detecting Z-DNA in polydeoxyribonucleotides and supercoiled plasmids. In the alkaline phosphatase dot blot e.l.i.s.a., Z-DNA, Br-poly(dG-dC).poly(dG-dC), or B-DNA, poly(dG-dC).poly(dG-dC), poly(dA-dT).poly(dA-dT), Br-poly(dI-dC).poly(dI-dC), or salmon sperm DNA were spotted onto nitrocellulose discs and baked. The e.l.i.s.a. was conducted in 48-well culture dishes at 37 degrees C using a rabbit polyclonal antiserum developed against Br-poly(dG-dC).poly(dG-dC), an alkaline phosphatase-conjugated second antibody, and p-nitrophenol as the substrate. Under conditions where antibody concentrations were not limiting, alkaline phosphatase activity was linear for 2 h. Dot blot e.l.i.s.a. conditions are described which allow quantification of Z-DNA [Br-poly(dG-dC).poly(dG-dC)] within the range 5-250 ng. Dot blot and transblot horseradish peroxidase e.l.i.s.a. are described that detect Z-DNA within supercoiled plasmid DNAs immobilized on diazophenylthioether (DPT) paper. In the transblot e.l.i.s.a., plasmid pUC8 derivatives containing 16, 24, or 32 residues of Z-DNA were electrophoresed in agarose gels and electrophoretically transferred to DPT paper. Z-DNA-antibody complexes were detected by the horseradish peroxidase-catalysed conversion of 4-chloro-1-naphthol to a coloured product that was covalently bound to the DPT paper. Z-DNA antibody reactivity was specific for supercoiled Z-DNA containing plasmids after removal of the antibodies cross-reactive with B-DNA by absorption onto native DNA-cellulose. The transblot e.l.i.s.a. was sensitive enough to detect 16 base pairs of alternating G-C residues in 100 ng of pUC8 DNA.
Collapse
Affiliation(s)
- M J Thomas
- Department of Pharmacology and Toxicology, West Virginia University Medical Center, Morgantown 26506
| | | |
Collapse
|
32
|
Heuer C, Hillen W. Tet repressor-tet operator contacts probed by operator DNA-modification interference studies. J Mol Biol 1988; 202:407-15. [PMID: 3050124 DOI: 10.1016/0022-2836(88)90274-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Contacts between tet operator DNA and Tet repressor protein are characterized by modification interference studies. The modified DNA fragments are separated into fractions with high, intermediate and low affinities for Tet repressor by polyacrylamide gel electrophoresis. Ethylation of the phosphates with N-ethylnitrosourea reveals 12 contacts of a repressor dimer to tet operator. Eight of these contacts appear to be important for Tet repressor binding, as judged by the strong interference at these positions, while four contacts are probably less important. All of the phosphate contacts are located on the same side of the B-DNA structure. The sequences of tet operators proposed to interact with the recognition alpha-helix of Tet repressor are TCTATC in three cases and CCTATC in one case. After methylation of N-7 with dimethylsulfate, strong interference is observed at the guanine residues at positions +/- 2. None of the N-7 functions of other guanine residues seems to be involved in tight contacts to Tet repressor. Tet repressor subunits form identical phosphate and guanine N-7 contacts with each half side of the two tet operators indicating twofold dyad symmetry of the complexes. Attempts to analyze the methylation interference at the adenine N-3 sites reveal different results for the operators. Modification of DNA fragments with diethylpyrocarbonate yields hypersensitive sites in the tet operators, indicating different local DNA structures. Carbethoxylation interference studies confirm the contacts at the purines found by methylation interference. All of the sequence-specific protein-DNA contacts detected in this study are centered at the inside four base-pairs in each tet operator half side. The contacts are discussed with respect to the structure of the repressor-operator complex.
Collapse
Affiliation(s)
- C Heuer
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie und Biochemie der Friedrich-Alexander-Universität, Erlangen, F.R.G
| | | |
Collapse
|
33
|
A study of the B-Z transition of the AC-rich region of the repeat unit of a satellite DNA from Cebus by means of chemical probes. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37860-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Abstract
We show that chloroacetaldehyde, a chemical compound known to be reactive with unpaired adenine and cytosine residues, reacts with adenine residues (syn conformation) but not with cytosine residues (anti conformation) within Z-DNA. These modified residues are sensitive to cleavage by piperidine, which allows mapping at the single nucleotide level.
Collapse
Affiliation(s)
- N Vogt
- Centre de Biophysique Moléculaire, Orléans, France
| | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- R S Schwartz
- Department of Medicine, New England Medical Center, Boston, MA 02111
| |
Collapse
|
36
|
Heus HA, van Knippenberg PH. The 3' terminal colicin fragment of Escherichia coli 16S ribosomal RNA. Conformational details revealed by enzymic and chemical probing. J Biomol Struct Dyn 1988; 5:951-63. [PMID: 2482760 DOI: 10.1080/07391102.1988.10506437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The conformation of the colicin fragment of E. coli 16S rRNA was probed with various nucleases and with the adenosine-specific reagent diethylpyrocarbonate (DEP). The results confirm the presence of a stable central hairpin in the colicin fragment and a weaker additional secondary structure involving the regions 5' and 3' to this hairpin. By monitoring DEP accessibility at various stages of heat-denaturation sequential unfolding of individual base pairs was followed. In agreement with previous results it could be shown that dimethylation of the two adjacent adenosines in the hairpin loop (a feature in virtually all ribosomes) leads to a destabilization of the hairpin helix. Accessibilities of G residues, involved in the weaker additional secondary structure is anomalous. One G residue is sensitive to the single strand specific RNase T1 and insensitive to DEP, while the situation is reversed for the adjoining G residue. The strong reaction of the latter G-residue with DEP is unusual and indicates a very special conformation.
Collapse
Affiliation(s)
- H A Heus
- Department of Biochemistry, State University of Leiden, The Netherlands
| | | |
Collapse
|
37
|
Nordheim A, Meese K. Topoisomer gel retardation: detection of anti-Z-DNA antibodies bound to Z-DNA within supercoiled DNA minicircles. Nucleic Acids Res 1988; 16:21-37. [PMID: 3340525 PMCID: PMC334610 DOI: 10.1093/nar/16.1.21] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Small DNA fragments of approximately 350 bp in length, either with or without d(CG)n tracts, are ligated into underwound DNA minicircles to generate topoisomeric rings with different topological linking numbers, Lk. These minicircles, differing by an Lk of one, can be separated by acrylamide gel electrophoresis. Furthermore, electrophoresis can be used to reveal DNA double helix conformational changes that are induced by supercoiling, such as left-handed Z-DNA. When anti-Z-DNA antibodies are added to such minicircles, their binding leads to a selective retardation of the electrophoretic migration of the Z-DNA containing circles. This effect is not seen with relaxed minicircles and those with insufficient torsional stress to induce a conformational transition. Thus the technique of 'topoisomer gel retardation' presents a very sensitive assay for the identification of proteins that selectively bind to DNA conformations stabilized by negative DNA supercoiling.
Collapse
Affiliation(s)
- A Nordheim
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, FRG
| | | |
Collapse
|
38
|
Nigg EA. Nuclear function and organization: the potential of immunochemical approaches. INTERNATIONAL REVIEW OF CYTOLOGY 1988; 110:27-92. [PMID: 3053500 DOI: 10.1016/s0074-7696(08)61847-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- E A Nigg
- Swiss Institute for Experimental Cancer Research, Chemin des Boveresses, Epalinges s/Lausanne
| |
Collapse
|
39
|
Müller BC, Raphael AL, Barton JK. Evidence for altered DNA conformations in the simian virus 40 genome: site-specific DNA cleavage by the chiral complex lambda-tris(4,7-diphenyl-1,10-phenanthroline)cobalt(III). Proc Natl Acad Sci U S A 1987; 84:1764-8. [PMID: 3031649 PMCID: PMC304521 DOI: 10.1073/pnas.84.7.1764] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
lambda-Tris(4,7-diphenyl-1,10-phenanthroline)cobalt(III), a photoactivated DNA-cleaving agent, is a small molecular probe of DNA structure. Because of its chirality, the complex cannot bind to regular right-handed B-form DNA but exhibits site-specific cleavage along the polymer strand at conformationally distinct sites such as those in a left-handed conformation. Both coarse and higher resolution mapping experiments using the chiral cobalt complex indicate intriguing conformational variations along the simian virus 40 genome. Highly specific cleavage is evident in the enhancer and promoter blocks and in the region downstream of 3' termini. A specific cleavage pattern borders an alternating purine/pyrimidine stretch within the enhancer, which was found earlier to bind anti-Z-DNA antibodies. Throughout the simian virus 40 genome, variations in structure delineated with the cobalt complex appear to correlate with regions important for control of gene expression.
Collapse
|
40
|
Nordheim A, Herrera RE, Rich A. Binding of anti-Z-DNA antibodies to negatively supercoiled SV40 DNA. Nucleic Acids Res 1987; 15:1661-77. [PMID: 3029723 PMCID: PMC340573 DOI: 10.1093/nar/15.4.1661] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The binding of anti-Z-DNA antibody preparations to negatively supercoiled, protein-free SC40 DNA was analyzed. Covalent cross-linking with 0.1% glutaraldehyde followed by DNA restriction endonucleolytic fragmentation and nitrocellulose filtration allowed accurate mapping of antibody binding sites. The critical superhelical density necessary to allow antibody binding was -sigma = 0.056. The major region of antibody-DNA interaction was found within an SV40 segment spanning viral map positions 40 to 474. This region coincides with the nucleosome free region in SV40 minichromosomes and harbours the early and late promoter regions including the SV40 enhancer segment. Although it is unknown whether alternative, non-B-DNA conformations are generated in vivo within SV40 minichromosomes our results emphasize the high degree of DNA structural flexibility that can be realized under negative torsional stress.
Collapse
|
41
|
|
42
|
Runkel L, Nordheim A. Conformational DNA transition in the in vitro torsionally strained chicken beta-globin 5' region. Nucleic Acids Res 1986; 14:7143-58. [PMID: 3763402 PMCID: PMC311742 DOI: 10.1093/nar/14.18.7143] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A sequence of 86 bp within the 5' region of the adult chicken beta-globin gene was found to undergo a DNA conformational transition at elevated levels of negative superhelical stress (- sigma = 0.068). In vitro chemical DNA modification studies which detect purine hyperreactivity (HR) to the alkylating agent diethyl pyrocarbonate (DEP) have identified this 86 bp long DEP-HR element. The DEP-HR element is composed of small, tandem segments with imperfect purine-pyrimidine alternations. Methylation of cytosines within GCGC sequences of the DEP-HR element facilitates this structural change. The binding of a monoclonal anti-Z-DNA antibody to the element has been revealed by chemical footprinting with DEP. These data suggest that the DEP-HR sequence can undergo a conformational transition to Z-DNA. It is unknown whether the conformational flexibility observed here occurs in vivo.
Collapse
|