1
|
Pang YLJ, Poruri K, Martinis SA. tRNA synthetase: tRNA aminoacylation and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:461-80. [PMID: 24706556 DOI: 10.1002/wrna.1224] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 01/14/2014] [Accepted: 02/06/2014] [Indexed: 01/20/2023]
Abstract
The aminoacyl-tRNA synthetases are prominently known for their classic function in the first step of protein synthesis, where they bear the responsibility of setting the genetic code. Each enzyme is exquisitely adapted to covalently link a single standard amino acid to its cognate set of tRNA isoacceptors. These ancient enzymes have evolved idiosyncratically to host alternate activities that go far beyond their aminoacylation role and impact a wide range of other metabolic pathways and cell signaling processes. The family of aminoacyl-tRNA synthetases has also been suggested as a remarkable scaffold to incorporate new domains that would drive evolution and the emergence of new organisms with more complex function. Because they are essential, the tRNA synthetases have served as pharmaceutical targets for drug and antibiotic development. The recent unfolding of novel important functions for this family of proteins offers new and promising pathways for therapeutic development to treat diverse human diseases.
Collapse
Affiliation(s)
- Yan Ling Joy Pang
- Department of Biochemistry, University of Illinois at Urbana, Urbana, IL, USA
| | | | | |
Collapse
|
2
|
Hammond JA, Rambo RP, Kieft JS. Multi-domain packing in the aminoacylatable 3' end of a plant viral RNA. J Mol Biol 2010; 399:450-63. [PMID: 20398674 DOI: 10.1016/j.jmb.2010.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 10/19/2022]
Abstract
Turnip yellow mosaic virus (TYMV) contains a tRNA-like structure (TLS) in its 3' untranslated region (3' UTR). This highly structured element induces valylation of the viral RNA by host cell enzymes and is important for virus proliferation. Directly upstream of the TYMV TLS is an upstream pseudoknot domain (UPD) that has been considered to be structurally distinct from the TLS. However, using a combination of functional, biochemical, and biophysical assays, we show that the entire 3' UTR of the viral genome is a single structured element in the absence of cellular protein. This packing architecture stabilizes the RNA structure and creates a better substrate for aminoacylation, and thus the UPD and TLS are functionally and structurally coupled. It has been proposed that the TYMV TLS acts as a molecular switch between translation and replication. Our results suggest that this putative switch could be based on structural changes within the global architecture of the UTR induced by interactions with the ribosome. The TYMV TLS.UPD might demonstrate how RNA structural plasticity can play a role in regulation of biological processes.
Collapse
Affiliation(s)
- John A Hammond
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | |
Collapse
|
3
|
Schwienhorst A. Structure-Function Analysis of RNAs Generated by In Vivo and In Vitro Selection. Z PHYS CHEM 2002. [DOI: 10.1524/zpch.2002.216.2.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Today, the concept of Darwinian evolution plays a significant role in studying structure-function relationships concerning known molecules and in helping to design previously unknown molecules with desired functionalities. Results from
Collapse
|
4
|
Wientges J, Pütz J, Giegé R, Florentz C, Schwienhorst A. Selection of viral RNA-derived tRNA-like structures with improved valylation activities. Biochemistry 2000; 39:6207-18. [PMID: 10821696 DOI: 10.1021/bi992852l] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tRNA-like structure (TLS) of turnip yellow mosaic virus (TYMV) RNA was previously shown to be efficiently charged by yeast valyl-tRNA synthetase (ValRS). This RNA has a noncanonical structure at its 3'-terminus but mimics a tRNA L-shaped fold, including an anticodon loop containing the major identity nucleotides for valylation, and a pseudoknotted amino acid accepting domain. Here we describe an in vitro selection experiment aimed (i) to verify the completeness of the valine identity set, (ii) to elucidate the impact of the pseudoknot on valylation, and (iii) to investigate whether functional communication exists between the two distal anticodon and amino acid accepting domains. Valylatable variants were selected from a pool of 2 x 10(13) RNA molecules derived from the TYMV TLS randomized in the anticodon loop nucleotides and in the length (1-6 nucleotides) and sequence of the pseudoknot loop L1. After nine rounds of selection by aminoacylation, 42 have been isolated. Among them, 17 RNAs could be efficiently charged by yeast ValRS. Their sequence revealed strong conservation of the second and the third anticodon triplet positions (A(56), C(55)) and the very 3'-end loop nucleotide C(53). A large variability of the other nucleotides of the loop was observed and no wild-type sequence was recovered. The selected molecules presented pseudoknot domains with loop L1 varying in size from 3-6 nucleotides and some sequence conservation, but did neither reveal the wild-type combination. All selected variants are 5-50 times more efficiently valylated than the wild-type TLS, suggesting that the natural viral sequence has emerged from a combination of evolutionary pressures among which aminoacylation was not predominant. This is in line with the role of the TLS in viral replication.
Collapse
Affiliation(s)
- J Wientges
- Abteilung Molekulare Genetik und Praeparative Molekularbiologie, Institut fuer Mikrobiologie und Genetik, Grisebachstrasse 8, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
5
|
Becker HF, Motorin Y, Florentz C, Giegé R, Grosjean H. Pseudouridine and ribothymidine formation in the tRNA-like domain of turnip yellow mosaic virus RNA. Nucleic Acids Res 1998; 26:3991-7. [PMID: 9705510 PMCID: PMC147804 DOI: 10.1093/nar/26.17.3991] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The last 82 nucleotides of the 6.3 kb genomic RNA of plant turnip yellow mosaic virus (TYMV), the so-called 'tRNA-like' domain, presents functional, structural and primary sequence homologies with canonical tRNAs. In particular, one of the stem-loops resembles the TPsi(pseudouridine)-branch of tRNA, except for the presence of a guanosine at position 37 (numbering is from the 3'-end) instead of the classical uridine-55 in tRNA (numbering is from the 5'-end). Both the wild-type TYMV-RNA fragment and a variant, TYMV-mut G37U in which G-37 has been replaced by U-37, have been tested as potential substrates for the yeast tRNA modification enzymes. Results indicate that two modified nucleotides were formed upon incubation of the wild-type TYMV-fragment in a yeast extract: one Psi which formed quantitatively at position 65, and one ribothymidine (T) which formed at low level at position U-38. In the TYMV-mutant G37U, besides the quantitative formation of both Psi-65 and T-38, an additional Psi was detected at position 37. Modified nucleotides Psi-65, T-38 and Psi-37 in TYMV RNA are equivalent to Psi-27, T-54 and Psi-55 in tRNA, respectively. Purified yeast recombinant tRNA:Psisynthases (Pus1 and Pus4), which catalyze respectively the formation of Psi-27 and Psi-55 in yeast tRNAs, are shown to catalyze the quantitative formation of Psi-65 and Psi-37, respectively, in the tRNA-like 3'-domain of mutant TYMV RNA in vitro . These results are discussed in relation to structural elements that are needed by the corresponding enzymes in order to catalyze these post-transcriptional modification reactions.
Collapse
Affiliation(s)
- H F Becker
- Laboratoire d'Enzymologie et Biochimie Structurales du CNRS, 1, avenue de la Terrasse, Bâtiment 34,F-91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
6
|
Mechulam Y, Meinnel T, Blanquet S. A family of RNA-binding enzymes. the aminoacyl-tRNA synthetases. Subcell Biochem 1995; 24:323-376. [PMID: 7900181 DOI: 10.1007/978-1-4899-1727-0_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- Y Mechulam
- Laboratoire de Biochimie, CNRS n. 240, Ecole Polytechnique, Palaiseau, France
| | | | | |
Collapse
|
7
|
Seal BS, Neill JD, Ridpath JF. Predicted stem-loop structures and variation in nucleotide sequence of 3' noncoding regions among animal calicivirus genomes. Virus Genes 1994; 8:243-7. [PMID: 7975270 DOI: 10.1007/bf01704518] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Caliciviruses are nonenveloped with a polyadenylated genome of approximately 7.6 kb and a single capsid protein. The "RNA Fold" computer program was used to analyze 3'-terminal noncoding sequences of five feline calicivirus (FCV), rabbit hemorrhagic disease virus (RHDV), and two San Miguel sea lion virus (SMSV) isolates. The FCV 3'-terminal sequences are 40-46 nucleotides in length and 72-91% similar. The FCV sequences were predicted to contain two possible duplex structures and one stem-loop structure with free energies of -2.1 to -18.2 kcal/mole. The RHDV genomic 3'-terminal RNA sequences are 54 nucleotides in length and share 49% sequence similarity to homologous regions of the FCV genome. The RHDV sequence was predicted to form two duplex structures in the 3'-terminal noncoding region with a single stem-loop structure, resembling that of FCV. In contrast, the SMSV 1 and 4 genomic 3'-terminal noncoding sequences were 185 and 182 nucleotides in length, respectively. Ten possible duplex structures were predicted with an average structural free energy of -35 kcal/mole. Sequence similarity between the two SMSV isolates was 75%. Furthermore, extensive cloverleaflike structures are predicted in the 3' noncoding region of the SMSV genome, in contrast to the predicted single stem-loop structures of FCV or RHDV.
Collapse
Affiliation(s)
- B S Seal
- Virology Swine Research Unit, National Animal Disease Center, USDA, Ames, IA
| | | | | |
Collapse
|
8
|
Giegé R, Puglisi JD, Florentz C. tRNA structure and aminoacylation efficiency. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993; 45:129-206. [PMID: 8341800 DOI: 10.1016/s0079-6603(08)60869-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- R Giegé
- Unité Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | |
Collapse
|
9
|
Abstract
The genomic RNA from turnip yellow mosaic virus presents a 3'-end functionally and structurally related to tRNAs. This report summarizes our knowledge about the peculiar structure of the tRNA-like domain and its interaction with tRNA specific proteins, like RNAse P, tRNA nucleotidyl-transferase, aminoacyl-tRNA synthetases, and elongation factors. It discusses also the biological role of this structure in the viral life cycle. A brief survey of our knowledge of other tRNA mimicries in biological systems, as well as their relevance for understanding canonical tRNA, will also be presented.
Collapse
Key Words
- turnip yellow mosaic virus rna
- trna-like structure
- aminoacylation
- replication
- tymv, turnip yellow mosaic virus
- bmv, brome mosaic virus
- tmv, tobacco mosaic virus
- tymc, corvallis strain of tymv rna
- ty-alu, clones of cdna fragments of different length starting at restriction sites alu containing the trna-like domain of tymv rna
- ty-dde, clones of cdna fragments of different length starting at restriction sites dde containing the trna-like domain of tymv rna
- ty-dra, clones of cdna fragments of different length starting at restriction sites dra containing the trna-like domain of tymv rna
- ty-sma, clones of cdna fragments of different length starting at restriction sites sma containing the trna-like domain of tymv rna
- ty-aa, clone of cdna containing the amino acid accepting branch of tymv rna
- aars, aminoacyl-trna synthetase (amino acids are abbreviated by the three-letter code)
- cp, coat protein
- orf, open reading frame
Collapse
Affiliation(s)
- R Giegé
- Unité Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | |
Collapse
|
10
|
Dreher TW, Tsai CH, Florentz C, Giegé R. Specific valylation of turnip yellow mosaic virus RNA by wheat germ valyl-tRNA synthetase determined by three anticodon loop nucleotides. Biochemistry 1992; 31:9183-9. [PMID: 1390705 DOI: 10.1021/bi00153a010] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The valylation by wheat germ valyl-tRNA synthetase of anticodon loop mutants of turnip yellow mosaic virus RNA has been studied. RNA substrates 264 nucleotides long were made by T7 RNA polymerase from cDNA encompassing the 3' tRNA-like region of genomic RNA. Substitution singly, or in combination, of three nucleotides in the anticodon loop resulted in very poor valylation (Vmax/KM less than 10(-3) relative to wild type). These nucleotides thus represent the major valine identity determinants recognized by wheat germ valyl-tRNA synthetase; their relative contribution to valine identity, in descending order, was as follows: the middle nucleotide of the anticodon (A56 in TYMV RNA), the 3' anticodon nucleotide (C55), and the 3'-most anticodon loop nucleotide (C53). Substitutions in the wobble position (C57) had no significant effect on valylation kinetics, while substitutions of the discriminator base (A4) resulted in small decreases in Vmax/Km. Mutations in the major identity nucleotides resulted in large increases in KM, suggesting that wheat germ valyl-tRNA synthetase has a lowered affinity for variant substrates with low valine identity. Comparison with other studies using valyl-tRNA synthetases from Escherichia coli and yeast indicates that the anticodon has been phylogenetically conserved as the dominant valine identity region, while the identity contribution of the discriminator base has been less conserved. The mechanism by which anticodon mutations are discriminated also appears to vary, being affinity-based for the wheat germ enzyme, and kinetically-based for the yeast enzyme [Florentz et al. (1991) Eur. J. Biochem. 195, 229-234].
Collapse
Affiliation(s)
- T W Dreher
- Department of Agricultural Chemistry, Oregon State University, Corvallis 97331
| | | | | | | |
Collapse
|
11
|
Mans RM, Van Steeg MH, Verlaan PW, Pleij CW, Bosch L. Mutational analysis of the pseudoknot in the tRNA-like structure of turnip yellow mosaic virus RNA. Aminoacylation efficiency and RNA pseudoknot stability. J Mol Biol 1992; 223:221-32. [PMID: 1731070 DOI: 10.1016/0022-2836(92)90727-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Site-directed mutations were introduced in the connecting loops and one of the two stem regions of the RNA pseudoknot in the tRNA-like structure of turnip yellow mosaic virus RNA. The kinetic parameters of valylation for each mutated RNA were determined in a cell-free extract from wheat germ. Structure mapping was performed on most mutants with enzymic probes, like RNase T1, nuclease S1 and cobra venom ribonuclease. An insertion of four A residues in the four-membered connecting loop L1 that crosses the deep groove of the pseudoknot reduces aminoacylation efficiency. Deletions up to three nucleotides do not affect aminoacylation or RNA pseudoknot formation. Deletion of the entire loop abolishes aminoacylation. Although elimination of the pseudoknot is presumed, this could not be demonstrated. Unlike the mutations in loop L1, all mutations in the three-membered connecting loop L2 that crosses the shallow groove of the RNA pseudoknot decrease the aminoacylation efficiency considerably. Nonetheless, the RNA pseudoknot is still present in most mutated RNAs. These results indicate that a number of mutations can be introduced in both loops without abolishing aminoacylation. Results obtained with the introduction of mismatches and A.U base-pairs in stem S1 of the pseudoknot, containing three G.C base-pairs in wild-type RNA, indicate that the pseudoknot is only marginally stable. Our estimation of the gain of free energy due to the pseudoknot formation is at most 2.0 kcal/mol. The pseudoknot structure can, however, be stabilized upon binding the valyl-tRNA synthetase.
Collapse
Affiliation(s)
- R M Mans
- Department of Biochemistry, University of Leiden Gorlaeus Laboratories, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Mans RM, Pleij CW, Bosch L. tRNA-like structures. Structure, function and evolutionary significance. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 201:303-24. [PMID: 1935928 DOI: 10.1111/j.1432-1033.1991.tb16288.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- R M Mans
- Department of Biochemistry, State University of Leiden, The Netherlands
| | | | | |
Collapse
|
13
|
Tamura K, Himeno H, Asahara H, Hasegawa T, Shimizu M. Identity determinants of E. coli tRNA(Val). Biochem Biophys Res Commun 1991; 177:619-23. [PMID: 2049085 DOI: 10.1016/0006-291x(91)91833-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In order to study the identity elements of valine tRNA, various transcripts of E. coli valine tRNA mutants were constructed. Both mutations at the second letter A35 of the anticodon and at the discriminator base A73 seriously damaged valine charging activity. Mutations at either the G3-C70 or U4-A69 base pairs in the acceptor stem also affected the activity. Only one nucleotide substitution of the second letter G35 of the anticodon with A35 brought an 18% valine charging activity into alanine tRNA, which acquired an almost full charging activity with valine by introducing an additional change at those two base pairs in the acceptor stem. These results indicate that the second letter A35 of the anticodon, discriminator base and acceptor stem are involved in recognition by valyl-tRNA synthetase.
Collapse
Affiliation(s)
- K Tamura
- Institute of Space and Astronautical Science, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
14
|
Tsai CH, Dreher TW. Turnip yellow mosaic virus RNAs with anticodon loop substitutions that result in decreased valylation fail to replicate efficiently. J Virol 1991; 65:3060-7. [PMID: 2033666 PMCID: PMC240961 DOI: 10.1128/jvi.65.6.3060-3067.1991] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Single and multiple nucleotide substitutions have been introduced into the anticodon loop of the tRNA-like structure of turnip yellow mosaic virus (TYMV) genomic RNA. We studied the effects of these mutations on in vitro valylation and on replication in Chinese cabbage protoplasts and plants. Only those mutants capable of efficient and complete valylation showed efficient replication in protoplasts and gave rise to systemic symptoms in whole plants. Mutants that accepted valine inefficiently (in some cases Vmax/Km values were less than 10(-3) relative to wild-type values) replicated to levels 200- to 500-fold below wild-type levels in protoplasts (estimated on the basis of coat protein and genomic RNA levels). These mutants could not support systemic spread in plants. In one plant inoculated with TYMC-A55 RNA, which replicates poorly in protoplasts, systemic symptoms developed after a delay. The reversion in replication was accompanied by improved valine acceptance and the appearance of a U57 second-site mutation. Our results indicate a correlation between valine acceptance activity and viral yield. Possible roles for valylation are discussed, and the results are compared with those of similar studies with brome mosaic virus which suggested that tyrosylation is not crucial for brome mosaic virus replication (T. W. Dreher, A. L. N. Rao, and T. C. Hall, J. Mol. Biol. 206:425-438, 1989).
Collapse
Affiliation(s)
- C H Tsai
- Department of Agricultural Chemistry, Oregon State University, Corvallis 97331-6502
| | | |
Collapse
|
15
|
Florentz C, Dreher TW, Rudinger J, Giege R. Specific valylation identity of turnip yellow mosaic virus RNA by yeast valyl-tRNA synthetase is directed by the anticodon in a kinetic rather than affinity-based discrimination. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 195:229-34. [PMID: 1991471 DOI: 10.1111/j.1432-1033.1991.tb15698.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Variants with mutations in three parts of the tRNA-like structure of turnip yellow mosaic virus RNA (the anticodon, the discriminator position in the amino acid acceptor stem, and in the variable loop) were created via site-directed mutagenesis of a cDNA clone and transcription with T7 RNA polymerase. The valylation properties of transcripts were studied in the presence of pure yeast valyl-tRNA synthetase. Mutation of the central position of the anticodon triplet resulted in a quasi-total loss of valylation activity, indicating that the anticodon is a principal determinant for valylation of the turnip yellow mosaic virus tRNA-like structure. These anticodon mutants interacted with yeast valyl-tRNA synthetase with affinities comparable to those of the wild-type RNA and behaved as competitive inhibitors in the valylation reaction of yeast tRNAVal. The defective aminoacylation of these mutants therefore results from kinetic rather than affinity effects. Minor negative effects on valylation efficiency were observed for mutants with substitutions at the two other sites studied, suggesting a structural role or a limited contribution to the valine identity of the tRNA-like molecule.
Collapse
Affiliation(s)
- C Florentz
- Laboratoire de Biochimie, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | |
Collapse
|
16
|
Recognition of the tRNA-like structure in tobacco mosaic viral RNA by ATP/CTP:tRNA nucleotidyltransferases from Escherichia coli and Saccharomyces cerevisiae. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)38182-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
17
|
Mans RM, Verlaan PW, Pleij CW, Bosch L. Aminoacylation of 3' terminal tRNA-like fragments of turnip yellow mosaic virus RNA: the influence of 5' nonviral sequences. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1050:186-92. [PMID: 2207143 DOI: 10.1016/0167-4781(90)90164-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present model of the L-shaped tRNA-like structure of turnip yellow mosaic virus (TYMV) RNA encompasses 82 nucleotides. A previous kinetic study on 3' terminal TYMV RNA fragments that contain the tRNA-like structure and a 5' nonviral GGGAGA sequence, suggested that viral sequences upstream of the tRNA-like domain, i.e., upstream of nucleotide 82, increase the rate of aminoacylation (Dreher et al. (1988) Biochimie 70, 1719-1727). Here we report an increase in the aminoacylation rate when the number of nonviral nucleotides at the 5' end of TYMV RNA transcripts was reduced. The influence of these 5' proximal nonviral sequences on the conformation of the RNA molecule was investigated by structure mapping experiments. A structure that deviates from the tRNA-like structure was found in some of the transcripts. The formation of this alternative structure is dependent upon: (1) the nature and number of the nonviral nucleotides; (2) the number and secondary structure of viral nucleotides between the nonviral nucleotides and the tRNA-like domain. Footprinting experiments with valyl-tRNA synthetase from yeast suggest that the enzyme does not recognize the alternative structure.
Collapse
Affiliation(s)
- R M Mans
- Department of Biochemistry, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
18
|
Giegé R, Rudinger J, Dreher T, Perret V, Westhof E, Florentz C, Ebel JP. Search of essential parameters for the aminoacylation of viral tRNA-like molecules. Comparison with canonical transfer RNAs. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1050:179-85. [PMID: 2207141 DOI: 10.1016/0167-4781(90)90163-v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Comparative structural and functional results on the valine and tyrosine accepting tRNA-like molecules from turnip yellow mosaic virus (TYMV) and brome mosaic virus (BMV), and the corresponding cognate yeast tRNAs are presented. Novel experiments on TYMV RNA include design of variant genes of the tRNA-like domain and their transcription in vitro by T7 RNA polymerase, analysis of their valylation catalyzed by yeast valyl-tRNA synthetase, and structural mapping with dimethyl sulfate and carbodiimide combined with graphical modelling. Particular emphasis is given to conformational effects affecting the valylation capacity of the TYMV tRNA-like molecule (e.g., the effect of the U43----C43 mutation). The contacts of the TYMV and BMV RNAs with valyl- and tyrosyl-tRNA synthetases are compared with the positions in the molecules affecting their aminoacylation capacities. Finally, the involvement of the putative valine and tyrosine anticodons in the tRNA-like valylation and tyrosylation reactions is discussed. While an anticodon-like sequence participates in the valine identity of TYMV RNA, this seems not to be the case for the tyrosine identity of BMV RNA despite the fact that the tyrosine anticodon has been shown to be involved in the tyrosylation of canonical tRNA.
Collapse
Affiliation(s)
- R Giegé
- Laboratoire de Biochimie, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The structure of the 5' GCGAUUUCUGACCGCUUUUUUGUCAG 3' RNA oligonucleotide was investigated using biochemical and chemical probes and nuclear magnetic resonance spectroscopy. Formation of a pseudoknot is indicated by the imino proton spectrum. Imino protons are observed consistent with formation of two helical stem regions; nuclear Overhauser enhancements between imino protons show that the two stem regions stack to form a continuous helix. In the stem regions, nucleotide conformations (3'-endo, anti) and internucleotide distances, derived from two-dimensional correlated, spectroscopy and two-dimensional nuclear Overhauser effect spectra, are characteristic of A-form geometry. The data suggest minor distortion in helical stacking at the junctions of stems and loops. The model of the pseudoknot is consistent with the structure originally proposed by Pleij et al.
Collapse
Affiliation(s)
- J D Puglisi
- Department of Chemistry, University of California, Berkeley 94720
| | | | | |
Collapse
|
20
|
Dietrich A, Romby P, Maréchal-Drouard L, Guillemaut P, Giegé R. Solution conformation of several free tRNALeu species from bean, yeast and Escherichia coli and interaction of these tRNAs with bean cytoplasmic Leucyl-tRNA synthetase. A phosphate alkylation study with ethylnitrosourea. Nucleic Acids Res 1990; 18:2589-97. [PMID: 2187177 PMCID: PMC330741 DOI: 10.1093/nar/18.9.2589] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The solution conformation of eight leucine tRNAs from Phaseolus vulgaris, baker's yeast and Escherichia coli, characterized by long variable regions, and the interaction of four of them with bean cytoplasmic leucyl-tRNA synthetase were studied by phosphate mapping with ethylnitrosourea. Phosphate reactivities in the variable regions agree with the existence of RNA helices closed by miniloops. At the junction of these regions with the T-stem, phosphate 48 is strongly protected, in contrast to small variable region tRNAs where P49 is protected. The constant protection of P22 is another characteristics of leucine tRNAs. Conformational differences between leucine isoacceptors concern the anticodon region, the D-arm and the variable region. In several parts of free tRNALeu species, e.g. in the T-loop, phosphate reactivities are similar to those found in tRNAs of other specificities, indicating conformational similarities among tRNAs. Phosphate alkylation of four leucine tRNAs complexed to leucyl-tRNA synthetase indicates that the 3'-side of the anticodon stem, the D-stem and the hinge region between the anticodon and D-stems are in contact with the plant enzyme.
Collapse
Affiliation(s)
- A Dietrich
- Laboratoire de Biochimie, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Perret V, Florentz C, Dreher T, Giege R. Structural analogies between the 3' tRNA-like structure of brome mosaic virus RNA and yeast tRNATyr revealed by protection studies with yeast tyrosyl-tRNA synthetase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 185:331-9. [PMID: 2684668 DOI: 10.1111/j.1432-1033.1989.tb15120.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Contacts between the tRNA-like domain in brome mosaic virus RNA and yeast tyrosyl-tRNA synthetase have been determined by footprinting with enzymatic probes. Regions in which the synthetase caused protections indicative of direct interaction coincide with loci identified by mutational studies as being important for efficient tyrosylation [Dreher, T. W. & Hall, T. C. (1988) J. Mol. Biol. 201, 41-55]. Additional extensive contacts were found upstream of the core of the tRNA-like structure. In parallel, the contacts of yeast tRNATyr with its cognate synthetase were determined by the same methodology and comparison of protected nucleotides in the two RNAs has permitted the assignment of structural analogies between domains in the viral tRNA-like structure and tRNATyr. Amino acid acceptor stems are similarly recognized by yeast tyrosyl-tRNA synthetase in the two RNAs, indicating that the pseudoknotted fold in the viral RNA does not perturb the interaction with the synthetase. A further important analogy appears between the anticodon/D arm of the L-conformation of tRNAs and a complex branched arm of the viral tRNA-like structure. However, no apparent anticodon triplet exists in the viral RNA. These results suggest that the major determinants for tyrosylation of yeast tRNATyr lie outside the anticodon stem and loop, possibly in the amino acid acceptor stem.
Collapse
Affiliation(s)
- V Perret
- Laboratoire de Biochimie, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | |
Collapse
|
23
|
Abstract
The three-dimensional structures adopted by RNA molecules are crucial to their biological functions. The nucleotides of an RNA molecule interact to form characteristic secondary-structure motifs. Tertiary interactions orient these secondary-structure elements with respect to each other to form the functional RNA. Here we describe the basic structural elements with special emphasis on a novel tertiary motif, the pseudoknot.
Collapse
|
24
|
Weiland JJ, Dreher TW. Infectious TYMV RNA from cloned cDNA: effects in vitro and in vivo of point substitutions in the initiation codons of two extensively overlapping ORFs. Nucleic Acids Res 1989; 17:4675-87. [PMID: 2473440 PMCID: PMC318024 DOI: 10.1093/nar/17.12.4675] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Full-length cDNA of the 6.3 kb turnip yellow mosaic virus (TYMV) genome was placed between a T7 promoter and a unique Hind III site. In vitro transcription of Hind III-linearized DNA of clone pTYMC yielded full-length RNA transcripts. In inoculations of Chinese cabbage protoplasts and plants, capped transcripts and virion RNA had similar specific infectivities and produced similar systemic symptoms. We have used the pTYMC clone in studies of the expression of two overlapping open reading frames (1.9 kb and 5.5 kb ORFs) by making mutants with alterations in the initiation codons. Evidence is presented from in vitro translations of mutant and wild type RNAs that both ORFs are expressed from TYMV RNA. A mutant in the initiation codon of the 5.5 kb ORF did not replicate in protoplasts, while mutants in the initiation codon of the 1.9 kb ORF replicated at low levels. The two groups of mutants were not able to complement each other.
Collapse
Affiliation(s)
- J J Weiland
- Department of Agricultural Chemistry, Oregon State University, Corvallis 97331-6502
| | | |
Collapse
|
25
|
Dreher TW, Florentz C, Giege R. Valylation of tRNA-like transcripts from cloned cDNA of turnip yellow mosaic virus RNA demonstrate that the L-shaped region at the 3' end of the viral RNA is not sufficient for optimal aminoacylation. Biochimie 1988; 70:1719-27. [PMID: 3150675 DOI: 10.1016/0300-9084(88)90030-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Clones containing different lengths of cDNA corresponding to the 3' region of turnip yellow mosaic virus RNA were constructed and transcribed in vitro into the corresponding RNAs. Each transcript contained the L-shaped tRNA domain (N = 82) plus (i) in the case of 3 upstream sequences up to N = 93, 109 and 258; and (ii) in all cases an additional 6 nucleotide-stretch at the 5' end derived from the T7 promoter. The valylation of these molecules, as well as that of a fragment (N = 159) purified from viral RNA, was studied. Although all transcripts could be valylated by wheat germ valyl-tRNA synthetase, the 3 shorter fragments showed incomplete charging and slower rates, due mainly to lower Vmax values. Thus, although the tRNA-like L-shaped structure is the functional core permitting amino-acylation, upstream nucleotides between positions 82 and 159 play an important role in allowing the highest rates and levels of valylation. Structural arguments supporting this view are discussed.
Collapse
Affiliation(s)
- T W Dreher
- Department of Agricultural Chemistry, Oregon State University, Corvallis 97331-6502
| | | | | |
Collapse
|
26
|
García-Arenal F. Sequence and structure at the genome 3' end of the U2-strain of tobacco mosaic virus, a histidine-accepting tobamovirus. Virology 1988; 167:201-6. [PMID: 3188396 DOI: 10.1016/0042-6822(88)90070-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The primary sequence of the 3' noncoding region of U2-TMV RNA was determined. A structural model was proposed based on chemical and enzymatic structure mapping as well as on analyses of nuclease protection by aminoacyl-tRNA-synthetase. The model agrees with those proposed for TMV "vulgare" RNA and confirms their general validity for the tobamoviruses. The RNA appears to have a tRNA-like, L-shaped structure at the 3' terminus, linked to a quasi-continuous double-helical stalk, with five pseudoknots involved in the formation of the whole structure. However, the structure of U2-TMV RNA is less stringently conserved than the 3' termini of "vulgare" and other histidine-accepting tobamoviruses. This difference is reflected in the kinetics of aminoacylation of the RNA.
Collapse
Affiliation(s)
- F García-Arenal
- Departamento de Patología Vegetal, E.T.S.I. Agrónomos, Madrid, Spain
| |
Collapse
|
27
|
Theobald A, Springer M, Grunberg-Manago M, Ebel JP, Giege R. Tertiary structure of Escherichia coli tRNA(3Thr) in solution and interaction of this tRNA with the cognate threonyl-tRNA synthetase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 175:511-24. [PMID: 2457500 DOI: 10.1111/j.1432-1033.1988.tb14223.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The solution structure of Escherichia coli tRNA(3Thr) (anticodon GGU) and the residues of this tRNA in contact with the alpha 2 dimeric threonyl-tRNA synthetase were studied by chemical and enzymatic footprinting experiments. Alkylation of phosphodiester bonds by ethylnitrosourea and of N-7 positions in guanosines and N-3 positions in cytidines by dimethyl sulphate as well as carbethoxylation of N-7 positions in adenosines by diethyl pyrocarbonate were conducted on different conformers of tRNA(3Thr). The enzymatic structural probes were nuclease S1 and the cobra venom ribonuclease. Results will be compared to those of three other tRNAs, tRNA(Asp), tRNA(Phe) and tRNA(Trp), already mapped with these probes. The reactivity of phosphates towards ethylnitrosourea of the unfolded tRNA was compared to that of the native molecule. The alkylation pattern of tRNA(3Thr) shows some similarities to that of yeast tRNA(Phe) and mammalian tRNA(Trp), especially in the D-arm (positions 19 and 24) and with tRNA(Trp), at position 50, the junction between the variable region and the T-stem. In the T-loop, tRNA(3Thr), similarly to the three other tRNAs, shows protections against alkylation at phosphates 59 and 60. However, tRNA(3Thr) is unique as far as very strong protections are also found for phosphates 55 to 58 in the T-loop. Compared with yeast tRNA(Asp), the main differences in reactivity concern phosphates 19, 24 and 50. Mapping of bases with dimethyl sulphate and diethyl pyrocarbonate reveal conformational similarities with yeast tRNA(Phe). A striking conformational feature of tRNA(3Thr) is found in the 3'-side of its anticodon stem, where G40, surrounded by two G residues, is alkylated under native conditions, in contrast to other G residues in stem regions of tRNAs which are unreactive when sandwiched between two purines. This data is indicative of a perturbed helical conformation in the anticodon stem at the level of the 30-40 base pairs. Footprinting experiments, with chemical and enzymatic probes, on the tRNA complexed with its cognate threonyl-tRNA synthetase indicate significant protections in the anticodon stem and loop region, in the extra-loop, and in the amino acid accepting region. The involvement of the anticodon of tRNA(3Thr) in the recognition process with threonyl-tRNA synthetase was demonstrated by nuclease S1 mapping and by the protection of G34 and G35 against alkylation by dimethyl sulphate. These data are discussed in the light of the tRNA/synthetase recognition problem and of the structural and functional properties of the tRNA-like structure present in the operator region of the thrS mRNA.
Collapse
Affiliation(s)
- A Theobald
- Institut de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | |
Collapse
|
28
|
van Belkum A, Verlaan P, Kun JB, Pleij C, Bosch L. Temperature dependent chemical and enzymatic probing of the tRNA-like structure of TYMV RNA. Nucleic Acids Res 1988; 16:1931-50. [PMID: 2833723 PMCID: PMC338191 DOI: 10.1093/nar/16.5.1931] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In this paper we report on the thermal unfolding of the tRNA-like structure present at the 3' end of turnip yellow mosaic virus (TYMV) RNA. Diethyl pyrocarbonate (DEP), sodium bisulphite, nuclease S1 and ribonuclease T1 were used as structure probes at a broad range of temperatures. In this way most of the nucleotides present in the tRNA-like moiety were analysed. The melting behaviour of both secondary and tertiary interactions could be followed on the basis of the temperature dependent accessibility of the individual nucleotides or bases towards the various probes. The three-dimensional model of the tRNA-like domain (Dumas et al., J. Biomol. Struct. and Dyn. 4, 707 (1987] was supported by the results to a large extent. The interactions occurring between the T- and D-loop appear to be more complex than proposed in the latter model. Additional evidence for the presence of the RNA pseudoknot (Rietveld et al., Nucleic Acids Res. 10, 1929 (1982] was derived from the fact that the three coaxially stacked helical segments in the aminoacylacceptor arm displayed different melting transitions under certain experimental conditions. Aspects of melting behaviour and thermal stability of double helical regions within the tRNA-like structure are discussed, as well as the applicability of nucleases and modifying reagents at various temperatures in the analysis of RNA structure.
Collapse
Affiliation(s)
- A van Belkum
- Department of Biochemistry, University of Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Godar DE, Yang DC. Mammalian high molecular weight and monomeric forms of valyl-tRNA synthetase. Biochemistry 1988; 27:2181-6. [PMID: 3378054 DOI: 10.1021/bi00406a055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Valyl-tRNA synthetase from rat liver sediments at 15.5 S with a Stokes radius of 90 A, corresponding to a native molecular weight of 585,000. Purification of valyl-tRNA synthetase to homogeneity by a combination of conventional and affinity column chromatography yields a fully active monomeric form of valyl-tRNA synthetase with a sedimentation coefficient of 7.7 S and a Stokes radius of 45 A. The subunit molecular weight of the monomeric valyl-tRNA synthetase is 140,000, as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. In the presence of 400 mM KCl, the purified monomeric valyl-tRNA synthetase associates to a high molecular weight form. The high molecular weight valyl-tRNA synthetase in the homogenate can be readily converted to the monomeric form by controlled trypsinization. The kinetic parameters of the two forms are nearly identical. The results suggest that the high molecular weight valyl-tRNA synthetase is a homotypic tetramer and converts to the monomeric valyl-tRNA synthetase after the cleavage of a small peptide.
Collapse
Affiliation(s)
- D E Godar
- Department of Chemistry, Georgetown University, Washington, D.C. 20057
| | | |
Collapse
|
30
|
Faulhammer HG, Joshi RL. Structural features in aminoacyl-tRNAs required for recognition by elongation factor Tu. FEBS Lett 1987; 217:203-11. [PMID: 3297780 DOI: 10.1016/0014-5793(87)80664-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In bacterial polypeptide synthesis aminoacyl-tRNA (aa-tRNA) bound to elongation factor Tu (EF-Tu) and GTP is part of a crucial intermediate ribonucleoprotein complex involved in the decoding of messenger RNA. The conformation and topology as well as the affinity of the macromolecules in this ternary aa-tRNA X EF-Tu X GTP complex are of fundamental importance for the nature of the interaction of the complex with the ribosome. The structural elements of aa-tRNA required for interaction with EF-Tu and GTP and the resulting functional implications are presented here.
Collapse
|
31
|
Dumas P, Moras D, Florentz C, Giegé R, Verlaan P, Van Belkum A, Pleij CW. 3-D graphics modelling of the tRNA-like 3'-end of turnip yellow mosaic virus RNA: structural and functional implications. J Biomol Struct Dyn 1987; 4:707-28. [PMID: 3270524 DOI: 10.1080/07391102.1987.10507674] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The tRNA-like structure of the aminoacylatable 3'-end of turnip yellow mosaic virus (TYMV) RNA was submitted to 3-D graphics modelling. A model of this structure has been inferred previously from both biochemical results and sequence comparisons which presents a new RNA folding feature, the "pseudoknot". It has been verified that this structure can be constructed without compromising accepted RNA stereochemical rules, namely base stacking and preferential 3'-endo sugar pucker. The model has aided interpretation of previous structural mapping experiments using chemical and enzymatic probes, and new accessibilities of residues could be predicted and tested. Pseudoknots have been considered as potential splice sites because they form antiparallel helical segments in a single RNA molecule. We have examined this possibility with the constructed 3-D model and could verify the hypothesis on a structural basis. The model presents a striking similarity with canonical tRNA and allows a valuable comparison between the protection patterns of yeast tRNA(Val) and tRNA-like viral RNA by cognate yeast valyl-tRNA synthetase against structural probes.
Collapse
Affiliation(s)
- P Dumas
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|