1
|
Lato DF, Zeng Q, Golding GB. Genomic inversions in Escherichia coli alter gene expression and are associated with nucleoid protein binding sites. Genome 2022; 65:287-299. [DOI: 10.1139/gen-2021-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genomic reorganization, like rearrangements and inversions, influence how genetic information is organized within bacterial genomes. Inversions in particular, facilitate genome evolution through gene gain and loss, and can alter gene expression. Previous studies investigating the impact inversions have on gene expression induced inversions targeting specific genes or examine inversions between distantly related species. This fails to encompass a genome wide perspective on naturally occurring inversions and their post adaptation impact on gene expression. Here we use bioinformatic techniques and multiple RNA-seq datasets to investigate the short- and long-range impact inversions have on genomic gene expression within <i>Escherichia coli</i>. We observed differences in gene expression between homologous inverted and non-inverted genes, even after long term exposure to adaptive selection. In 4% of inversions representing 33 genes, differential gene expression between inverted and non-inverted homologs was detected, with nearly two thirds (71%) of differentially expressed inverted genes having 9.4-85.6 fold higher gene expression. The identified inversions had more overlap than expected with nucleoid associated protein binding sites, which assist in genomic gene expression regulation. Some inversions can drastically impact gene expression even between different strains of <i>E.coli</i>, and could provide a mechanism for the diversification of genetic content through controlled expression changes.
Collapse
Affiliation(s)
| | - Qing Zeng
- McMaster University, Department of Biology, Hamilton, Ontario, Canada,
| | - G. Brian Golding
- McMaster University, Department of Biology, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4K1,
| |
Collapse
|
2
|
Zhang K, Young R, Zeng L. Bacteriophage P1 does not show spatial preference when infecting Escherichia coli. Virology 2020; 542:1-7. [PMID: 31957661 PMCID: PMC7024032 DOI: 10.1016/j.virol.2019.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/02/2019] [Accepted: 12/30/2019] [Indexed: 11/16/2022]
Abstract
To begin its infection, a bacteriophage first needs to adsorb to cells. The adsorption site on the cell surface may influence viral DNA injection, gene expression and cell-fate development. Here, we study the early steps of the infection cycle of coliphage P1, focusing on their correlation with spatial locations at the single-cell level. By fluorescently labeling P1 virions, we found that P1 shows no spatial preference on cell surface adsorption. In addition, live-cell phage DNA imaging revealed that adsorption sites do not affect the success rate for P1 in injecting its DNA into the cell. Furthermore, the lysis-lysogeny decision of P1 does not depend on the adsorption site, based on fluorescence reporters for the lytic and lysogenic pathways. These findings highlight the different infection strategies used by the two paradigmatic coliphages differ from those found in the paradigmatic phage lambda, highlighting that different infection strategies are used by phages.
Collapse
Affiliation(s)
- Kailun Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Ry Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
3
|
Abstract
Reversible site-specific DNA inversion reactions are widely distributed in bacteria and their viruses. They control a range of biological reactions that most often involve alterations of molecules on the surface of cells or phage. These programmed DNA rearrangements usually occur at a low frequency, thereby preadapting a small subset of the population to a change in environmental conditions, or in the case of phages, an expanded host range. A dedicated recombinase, sometimes with the aid of additional regulatory or DNA architectural proteins, catalyzes the inversion of DNA. RecA or other components of the general recombination-repair machinery are not involved. This chapter discusses site-specific DNA inversion reactions mediated by the serine recombinase family of enzymes and focuses on the extensively studied serine DNA invertases that are stringently controlled by the Fis-bound enhancer regulatory system. The first section summarizes biological features and general properties of inversion reactions by the Fis/enhancer-dependent serine invertases and the recently described serine DNA invertases in Bacteroides. Mechanistic studies of reactions catalyzed by the Hin and Gin invertases are then discussed in more depth, particularly with regards to recent advances in our understanding of the function of the Fis/enhancer regulatory system, the assembly of the active recombination complex (invertasome) containing the Fis/enhancer, and the process of DNA strand exchange by rotation of synapsed subunit pairs within the invertasome. The role of DNA topological forces that function in concert with the Fis/enhancer controlling element in specifying the overwhelming bias for DNA inversion over deletion and intermolecular recombination is emphasized.
Collapse
Affiliation(s)
- Reid C. Johnson
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, CA 90095-1737, Phone: 310 825-7800, Fax: 310 206-5272
| |
Collapse
|
4
|
Muñiz VA, Srinivasan S, Boswell SA, Meinhold DW, Childs T, Osuna R, Colón W. The role of the local environment of engineered Tyr to Trp substitutions for probing the denaturation mechanism of FIS. Protein Sci 2011; 20:302-12. [PMID: 21280122 DOI: 10.1002/pro.561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Factor for inversion stimulation (FIS), a 98-residue homodimeric protein, does not contain tryptophan (Trp) residues but has four tyrosine (Tyr) residues located at positions 38, 51, 69, and 95. The equilibrium denaturation of a P61A mutant of FIS appears to occur via a three-state (N(2) ⇆ I(2) ⇆ 2U) process involving a dimeric intermediate (I(2)). Although it was suggested that this intermediate had a denatured C-terminus, direct evidence was lacking. Therefore, three FIS double mutants, P61A/Y38W, P61A/Y69W, and P61A/Y95W were made, and their denaturation was monitored by circular dichroism and Trp fluorescence. Surprisingly, the P61A/Y38W mutant best monitored the N(2) ⇆ I(2) transition, even though Trp38 is buried within the dimer removed from the C-terminus. In addition, although Trp69 is located on the protein surface, the P61A/Y69W FIS mutant exhibited clearly biphasic denaturation curves. In contrast, P61A/Y95W FIS was the least effective in decoupling the two transitions, exhibiting a monophasic fluorescence transition with modest concentration-dependence. When considering the local environment of the Trp residues and the effect of each mutation on protein stability, these results not only confirm that P61A FIS denatures via a dimeric intermediate involving a disrupted C-terminus but also suggest the occurrence of conformational changes near Tyr38. Thus, the P61A mutation appears to compromise the denaturation cooperativity of FIS by failing to propagate stability to those regions involved mostly in intramolecular interactions. Furthermore, our results highlight the challenge of anticipating the optimal location to engineer a Trp residue for investigating the denaturation mechanism of even small proteins.
Collapse
Affiliation(s)
- Virginia A Muñiz
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Shao Y, Feldman-Cohen LS, Osuna R. Biochemical identification of base and phosphate contacts between Fis and a high-affinity DNA binding site. J Mol Biol 2008; 380:327-39. [PMID: 18514225 DOI: 10.1016/j.jmb.2008.04.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/23/2008] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
Abstract
Fis (factor for inversion stimulation) is a nucleoid-associated protein in Escherichia coli and other bacteria that stimulates certain site-specific DNA recombination events, alters DNA topology, and serves as a global gene regulator. DNA binding is central to the functions of Fis and involves a helix-turn-helix DNA binding motif located in the carboxy-terminal region. Specific DNA binding is observed at a number of sites exhibiting poorly related sequences. Such interactions require four critical base pairs positioned -7, -3, +3, and +7 nucleotides relative to the central nucleotide of a 15-bp core-binding site. To further understand how Fis interacts with DNA, we identified the positions of 14 DNA phosphates (based on ethylation interference assays) that are required for Fis binding. These are the 5' phosphates of the nucleotides at positions -8, -7, -6, +1, +2, +3, and +4 relative to the central nucleotide on both DNA strands. Another five phosphates located in the flanking regions from positions +10 through +14 can serve as additional contact sites. Using a combination of biochemical approaches and various mutant Fis proteins, we probed possible interactions between several key Fis residues and DNA bases or phosphates within a high-affinity binding site. We provide evidence in support of interactions between the R85 Fis residue and a highly conserved guanine at position -7 and between T87 and the critical base pairs at -3 and +3. In addition, we present evidence in support of interactions between N84 and the phosphate 5' to the base at +4, between R89 and the -7 phosphate, between T87 and the +3 and +4 phosphates, and between K90 and the +3 phosphate. This work provides functional evidence for some of the most critical interactions between Fis and DNA required for a high binding affinity and demonstrates the large contribution made by numerous phosphates to the stability of the Fis-DNA complex.
Collapse
Affiliation(s)
- Yongping Shao
- Department of Biological Sciences, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | | | | |
Collapse
|
6
|
Bradley MD, Beach MB, de Koning APJ, Pratt TS, Osuna R. Effects of Fis on Escherichia coli gene expression during different growth stages. MICROBIOLOGY-SGM 2007; 153:2922-2940. [PMID: 17768236 DOI: 10.1099/mic.0.2007/008565-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fis is a nucleoid-associated protein in Escherichia coli that is abundant during early exponential growth in rich medium but is in short supply during stationary phase. Its role as a transcriptional regulator has been demonstrated for an increasing number of genes. In order to gain insight into the global effects of Fis on E. coli gene expression during different stages of growth in rich medium, DNA microarray analyses were conducted in fis and wild-type strains during early, mid-, late-exponential and stationary growth phases. The results uncovered 231 significantly regulated genes that were distributed over 15 functional categories. Regulatory effects were observed at all growth stages examined. Coordinate upregulation was observed for a number of genes involved in translation, flagellar biosynthesis and motility, nutrient transport, carbon compound metabolism, and energy metabolism at different growth stages. Coordinate down-regulation was also observed for genes involved in stress response, amino acid and nucleotide biosynthesis, energy and intermediary metabolism, and nutrient transport. As cells transitioned from the early to the late-exponential growth phase, different functional categories of genes were regulated, and a gradual shift occurred towards mostly down-regulation. The results demonstrate that the growth phase-dependent Fis expression triggers coordinate regulation of 15 categories of functionally related genes during specific stages of growth of an E. coli culture.
Collapse
Affiliation(s)
- Meranda D Bradley
- Department of Biological Science, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Michael B Beach
- Department of Biology, Chemistry, and Physics, Southern Polytechnic State University, 1100 South Marietta Parkway, Marietta, GA 30060-2896, USA
| | - A P Jason de Koning
- Department of Biological Science, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Timothy S Pratt
- New York University - School of Medicine, Department of Environmental Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Robert Osuna
- Department of Biological Science, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
7
|
Abstract
We previously reported that the P1 promoter of topA encoding topoisomerase I of Escherichia coli is activated in response to oxidative stress, in a Fis-dependent manner. Here we show that Fis regulation of topA varies with the intracellular concentrations of Fis. Thus, when Fis levels are low, hydrogen peroxide treatment results in topA activation, whereas at high Fis levels hydrogen peroxide treatment renders topA P1 inactive. In vivo DMS footprinting indicates that only at low Fis levels, when exposed to the stress, the region of the topA promoter changes and P1 becomes active. Potassium permanganate experiments indicate that low levels of Fis activate P1 transcription by facilitating the formation of open complexes, while high levels of this protein shut off the promoter. DNase I footprinting show that Fis binds the promoter region of topA at eight sites with different affinities. One low affinity site overlaps the -10, -35 hexamers of RNA polymerase. We propose that in response to oxidative stress, when present at low levels, Fis binds the promoter region of topA at its high affinity sites, thereby facilitating the recruitment of RNA polymerase to P1, while at high levels, Fis occupies the low affinity sites as well, and thus prevents the binding of RNA polymerase. Our results indicate that the oxidative stress response varies in response to changes in growth phase and nutritional environment.
Collapse
Affiliation(s)
- Dalit Weinstein-Fischer
- Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
8
|
Feldman-Cohen LS, Shao Y, Meinhold D, Miller C, Colón W, Osuna R. Common and variable contributions of Fis residues to high-affinity binding at different DNA sequences. J Bacteriol 2006; 188:2081-95. [PMID: 16513738 PMCID: PMC1428148 DOI: 10.1128/jb.188.6.2081-2095.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fis is a nucleoid-associated protein that interacts with poorly related DNA sequences with a high degree of specificity. A difference of more than 3 orders of magnitude in apparent Kd values was observed between specific (Kd, approximately 1 to 4 nM) and nonspecific (Kd, approximately 4 microM) DNA binding. To examine the contributions of Fis residues to the high-affinity binding at different DNA sequences, 13 alanine substitutions were generated in or near the Fis helix-turn-helix DNA binding motif, and the resulting proteins were purified. In vitro binding assays at three different Fis sites (fis P II, hin distal, and lambda attR) revealed that R85, T87, R89, K90, and K91 played major roles in high-affinity DNA binding and that R85, T87, and K90 were consistently vital for binding to all three sites. Other residues made variable contributions to binding, depending on the binding site. N84 was required only for binding to the lambda attR Fis site, and the role of R89 was dramatically altered by the lambda attR DNA flanking sequence. The effects of Fis mutations on fis P II or hin distal site binding in vitro generally correlated with their abilities to mediate fis P repression or DNA inversion in vivo, demonstrating that the in vitro DNA-binding effects are relevant in vivo. The results suggest that while Fis is able to recognize a minimal common set of DNA sequence determinants at different binding sites, it is also equipped with a number of residues that contribute to the binding strength, some of which play variable roles.
Collapse
Affiliation(s)
- Leah S Feldman-Cohen
- Department of Chemistry, College of Staten Island and Macromolecular Assemblies Institute of the City, University of New York, Staten Island 10314, USA
| | | | | | | | | | | |
Collapse
|
9
|
Łobocka MB, Rose DJ, Plunkett G, Rusin M, Samojedny A, Lehnherr H, Yarmolinsky MB, Blattner FR. Genome of bacteriophage P1. J Bacteriol 2004; 186:7032-68. [PMID: 15489417 PMCID: PMC523184 DOI: 10.1128/jb.186.21.7032-7068.2004] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 07/09/2004] [Indexed: 11/20/2022] Open
Abstract
P1 is a bacteriophage of Escherichia coli and other enteric bacteria. It lysogenizes its hosts as a circular, low-copy-number plasmid. We have determined the complete nucleotide sequences of two strains of a P1 thermoinducible mutant, P1 c1-100. The P1 genome (93,601 bp) contains at least 117 genes, of which almost two-thirds had not been sequenced previously and 49 have no homologs in other organisms. Protein-coding genes occupy 92% of the genome and are organized in 45 operons, of which four are decisive for the choice between lysis and lysogeny. Four others ensure plasmid maintenance. The majority of the remaining 37 operons are involved in lytic development. Seventeen operons are transcribed from sigma(70) promoters directly controlled by the master phage repressor C1. Late operons are transcribed from promoters recognized by the E. coli RNA polymerase holoenzyme in the presence of the Lpa protein, the product of a C1-controlled P1 gene. Three species of P1-encoded tRNAs provide differential controls of translation, and a P1-encoded DNA methyltransferase with putative bifunctionality influences transcription, replication, and DNA packaging. The genome is particularly rich in Chi recombinogenic sites. The base content and distribution in P1 DNA indicate that replication of P1 from its plasmid origin had more impact on the base compositional asymmetries of the P1 genome than replication from the lytic origin of replication.
Collapse
Affiliation(s)
- Małgorzata B Łobocka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Ul. Pawinskiego 5A, 02-106 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Boswell S, Mathew J, Beach M, Osuna R, Colón W. Variable Contributions of Tyrosine Residues to the Structural and Spectroscopic Properties of the Factor for Inversion Stimulation. Biochemistry 2004; 43:2964-77. [PMID: 15005633 DOI: 10.1021/bi035441k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The diverse roles of tyrosine residues in proteins may be attributed to their dual hydrophobic and polar nature, which can result in hydrophobic and ring stacking interactions, as well as hydrogen bonding. The small homodimeric DNA binding protein, factor for inversion stimulation (FIS), contains four tyrosine residues located at positions 38, 51, 69, and 95, each involved in specific intra- or intermolecular interactions. To investigate their contributions to the stability, flexibility, and spectroscopic properties of FIS, each one was independently mutated to phenylalanine. Equilibrium denaturation experiments show that Tyr95 and Tyr51 stabilize FIS by about 2 and 1 kcal/mol, respectively, as a result of their involvement in a hydrogen bond-salt bridge network. In contrast, Tyr38 destabilizes FIS by about 1 kcal/mol due to the placement of a hydroxyl group in a hydrophobic environment. The stability of FIS was not altered when the solvent-exposed Tyr69 was mutated. Limited proteolysis with trypsin and V8 proteases was used to monitor the flexibility of the C-terminus (residues 71-98) and the dimer core (residues 26-70), respectively. The results for Y95F and Y51F FIS revealed a different proteolytic susceptibility of the dimer core compared to the C-terminus, suggesting an increased flexibility of the latter. DNA binding affinity of the various FIS mutants was only modestly affected and correlated inversely with the C-terminal flexibility probed by trypsin proteolysis. Deconvolution of the fluorescence contribution of each mutant revealed that it varies in intensity and direction for each tyrosine in WT FIS, highlighting the role of specific interactions and the local environment in determining the fluorescence of tyrosine residues. The significant changes in stability, flexibility, and signals observed for the Y51F and Y95F mutations are attributed to their coupled participation in the hydrogen bond-salt bridge network. These results highlight the importance of tyrosine hydrogen-bonding and packing interactions for the stability of FIS and demonstrate the varying roles that tyrosine residues can play on the structural and spectroscopic properties of even small proteins.
Collapse
Affiliation(s)
- Sarah Boswell
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, USA
| | | | | | | | | |
Collapse
|
11
|
Yoon H, Lim S, Heu S, Choi S, Ryu S. Proteome analysis of Salmonella enterica serovar Typhimurium fis mutant. FEMS Microbiol Lett 2003; 226:391-6. [PMID: 14553938 DOI: 10.1016/s0378-1097(03)00641-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is an enteric pathogen and a principal cause of gastroenteritis in humans. The factor-for-inversion stimulation protein (Fis) is known to play a pivotal role in the expression of Salmonella pathogenicity island (SPI)-1 genes in addition to various cellular processes such as recombination, replication, and transcription. In order to understand Fis function in pathogenicity of Salmonella, we performed two-dimensional gel electrophoresis and identified proteins whose expression pattern is affected by Fis using mass spectrometry. The results revealed various proteins that can be grouped according to their respective cellular functions. These groups include the genes involved in the metabolism of sugar, flagella synthesis, translation, and SPI expression. Changes in SPI expression suggest the possibility that regulation of genes in SPI-2 as well as SPI-1 is affected by Fis.
Collapse
Affiliation(s)
- Hyunjin Yoon
- Department of Food Science and Technology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | |
Collapse
|
12
|
Hobart SA, Meinhold DW, Osuna R, Colón W. From two-state to three-state: the effect of the P61A mutation on the dynamics and stability of the factor for inversion stimulation results in an altered equilibrium denaturation mechanism. Biochemistry 2002; 41:13744-54. [PMID: 12427037 DOI: 10.1021/bi0265224] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Factor for inversion stimulation (FIS) is a 22 kDa homodimeric protein found in enteric bacteria that is involved in the stimulation of certain DNA recombination events and transcription regulation of many genes. FIS has a central helix with a 20 degrees kink, which is only reduced by 4 degrees after a proline 61 to alanine mutation (P61A). This mutation appears to have little effect on FIS function, yet it is striking that proline 61 is highly conserved among fis genes. Therefore, we studied the role of proline 61 on the stability and flexibility of FIS. The urea-induced equilibrium denaturation of P61A FIS was monitored by circular dichroism and fluorescence anisotropy. Despite the apparent two-state transition, the concentration dependence of the transition slope (m value) shows that a two-state model, as seen for wild-type (WT) FIS, did not adequately describe the denaturation of P61A FIS. Global fitting of the data indicates that the denaturation of P61A FIS occurs via a three-state process involving a dimeric intermediate and has an overall DeltaG(H2O) for unfolding of 18.6 kcal/mol, 4 kcal/mol higher than that for WT FIS. Limited trypsin proteolysis experiments show that the DNA binding C-terminus of P61A FIS is more labile to cleavage than that of WT FIS, suggesting an increased flexibility of this region in P61A FIS. In contrast, the resulting dimeric core (residues 6-71) of P61A FIS is more resistant to proteolysis, consistent with the presence of a dimeric intermediate not seen in WT FIS. Model transition curves generated using the parameters obtained by global fitting predicted a two-state-like transition at low P61A concentrations that becomes less cooperative with increasing protein concentration, as was experimentally observed. At concentrations of P61A FIS much higher than are experimentally feasible, a biphasic transition is predicted. Thus, this work demonstrates that a single mutation may be sufficient to alter a protein's denaturation mechanism and underscores the importance of analyzing the denaturation mechanism of oligomeric proteins over a wide concentration range. These results suggest that proline 61 in FIS may be conserved in order to optimize the global stability and the dynamics of the functionally important C-terminus.
Collapse
Affiliation(s)
- Sarah A Hobart
- Department of Chemistry, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, USA
| | | | | | | |
Collapse
|
13
|
Hobart SA, Ilin S, Moriarty DF, Osuna R, Colón W. Equilibrium denaturation studies of the Escherichia coli factor for inversion stimulation: implications for in vivo function. Protein Sci 2002; 11:1671-80. [PMID: 12070319 PMCID: PMC2373661 DOI: 10.1110/ps.5050102] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2001] [Revised: 04/04/2002] [Accepted: 04/10/2002] [Indexed: 10/14/2022]
Abstract
The Factor for Inversion Stimulation (FIS) is a dimeric DNA binding protein found in enteric bacteria that is involved in various cellular processes, including stimulation of certain specialized DNA recombination events and transcription regulation of a large number of genes. The intracellular FIS concentration, when cells are grown in rich media, varies dramatically during the early logarithmic growth phase. Its broad range of concentrations could potentially affect the nature of its quaternary structure, which in turn, could affect its ability to function in vivo. Thus, we examined the stability of FIS homodimers under a wide range of concentrations relevant to in vivo expression levels. Its urea-induced equilibrium denaturation was monitored by far- and near-UV circular dichroism (CD), tyrosine fluorescence, and tyrosine fluorescence anisotropy. The denaturation transitions obtained were concentration-dependent and showed similar midpoints (C(m)) and m values, suggesting a two-state denaturation process involving the native dimer and unfolded monomers (N(2) <--> 2U). The DeltaG(H(2)O) for the unfolding of FIS determined from global and individual curve fitting was 14.2 kcal/mole. At concentrations <9 microM, the FIS dimer began to dissociate, as noted by the change in CD signal and size-exclusion high-pressure liquid chromatography retention times and peak width. The estimated dimer dissociation constant based on the CD and size-exclusion chromatography data is in the micromolar range, resulting in a DeltaG(H(2)O) of at least 5 kcal/mole less than that calculated from the urea denaturation data. This discrepancy suggests a deviation from a two-state denaturation model, perhaps due to a marginally stable monomeric intermediate. These observations have implications for the stability and function of FIS in vivo.
Collapse
Affiliation(s)
- Sarah A Hobart
- Rensselaer Polytechnic Institute, Department of Chemistry, 110 8th Street, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
14
|
Walker KA, Atkins CL, Osuna R. Functional determinants of the Escherichia coli fis promoter: roles of -35, -10, and transcription initiation regions in the response to stringent control and growth phase-dependent regulation. J Bacteriol 1999; 181:1269-80. [PMID: 9973355 PMCID: PMC93506 DOI: 10.1128/jb.181.4.1269-1280.1999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli Fis is a small DNA binding and bending protein that has been implicated in a variety of biological processes. A minimal promoter sequence consisting of 43 bp is sufficient to generate its characteristic growth phase-dependent expression pattern and is also subject to negative regulation by stringent control. However, information about the precise identification of nucleotides contributing to basal promoter activity and its regulation has been scant. In this work, 72 independent mutations were generated in the fis promoter (fis P) region from -108 to +78 using both random and site-directed PCR mutagenesis. beta-Galactosidase activities from mutant promoters fused to the (trp-lac)W200 fusion on a plasmid were used to conclusively identify the sequences TTTCAT and TAATAT as the -35 and -10 regions, respectively, which are optimally separated by 17 bp. We found that four consecutive substitutions within the GC-rich sequence just upstream of +1 and mutations in the -35 region, but not in the -10 region, significantly reduced the response to stringent control. Analysis of the effects of mutations on growth phase-dependent regulation showed that replacing the predominant transcription initiation nucleotide +1C with a preferred nucleotide (A or G) profoundly altered expression such that high levels of fis P mRNA were detected during late logarithmic and early stationary phases. A less dramatic effect was seen with improvements in the -10 and -35 consensus sequences. These results suggest that the acute growth phase-dependent regulation pattern observed with this promoter requires an inefficient transcription initiation process that is achieved with promoter sequences deviating from the -10 and -35 consensus sequences and, more importantly, a dependence upon the availability of the least favored transcription initiation nucleotide, CTP.
Collapse
Affiliation(s)
- K A Walker
- Department of Biological Sciences, University at Albany, SUNY, Albany, New York
| | | | | |
Collapse
|
15
|
Travers A, Muskhelishvili G. DNA microloops and microdomains: a general mechanism for transcription activation by torsional transmission. J Mol Biol 1998; 279:1027-43. [PMID: 9642081 DOI: 10.1006/jmbi.1998.1834] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prokaryotic transcriptional activation often involves the formation of DNA microloops upstream of the polymerase binding site. There is substantial evidence that these microloops function to bring activator and polymerase into close spatial proximity. However additional functions are suggested by the ability of certain activators, of which FIS is the best characterised example, to facilitate polymerase binding, promoter opening and polymerase escape. We review here the evidence for the concept that the topology of the microloop formed by such activators is tightly coupled to the structural transitions in DNA mediated by RNA polymerase. In this process, which we term torsional transmission, a major function of the activator is to act as a local topological homeostat. We argue that the same mechanism may also be employed in site-specific DNA inversion.
Collapse
Affiliation(s)
- A Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, England
| | | |
Collapse
|
16
|
Hengen PN, Bartram SL, Stewart LE, Schneider TD. Information analysis of Fis binding sites. Nucleic Acids Res 1997; 25:4994-5002. [PMID: 9396807 PMCID: PMC147151 DOI: 10.1093/nar/25.24.4994] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Originally discovered in the bacteriophage Mu DNA inversion system gin, Fis (Factor for Inversion Stimulation) regulates many genetic systems. To determine the base frequency conservation required for Fis to locate its binding sites, we collected a set of 60 experimentally defined wild-type Fis DNA binding sequences. The sequence logo for Fis binding sites showed the significance and likely kinds of base contacts, and these are consistent with available experimental data. Scanning with an information theory based weight matrix within fis, nrd, tgt/sec and gin revealed Fis sites not previously identified, but for which there are published footprinting and biochemical data. DNA mobility shift experiments showed that a site predicted to be 11 bases from the proximal Salmonella typhimurium hin site and a site predicted to be 7 bases from the proximal P1 cin site are bound by Fis in vitro. Two predicted sites separated by 11 bp found within the nrd promoter region, and one in the tgt/sec promoter, were also confirmed by gel shift analysis. A sequence in aldB previously reported to be a Fis site, for which information theory predicts no site, did not shift. These results demonstrate that information analysis is useful for predicting Fis DNA binding.
Collapse
Affiliation(s)
- P N Hengen
- Laboratory of Mathematical Biology, National Cancer Institute, Frederick Cancer Research and Development Center, PO Box B, Building 469, Room 144, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
17
|
Pratt TS, Steiner T, Feldman LS, Walker KA, Osuna R. Deletion analysis of the fis promoter region in Escherichia coli: antagonistic effects of integration host factor and Fis. J Bacteriol 1997; 179:6367-77. [PMID: 9335285 PMCID: PMC179552 DOI: 10.1128/jb.179.20.6367-6377.1997] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fis is a small DNA-binding and -bending protein in Escherichia coli that is involved in several different biological processes, including stimulation of specialized DNA recombination events and regulation of gene expression. fis protein and mRNA levels rapidly increase during early logarithmic growth phase in response to a nutritional upshift but become virtually undetectable during late logarithmic and stationary phases. We present evidence that the growth phase-dependent fis expression pattern is not determined by changes in mRNA stability, arguing in favor of regulation at the level of transcription. DNA deletion analysis of the fis promoter (fis P) region indicated that DNA sequences from -166 to -81, -36 to -26, and +107 to +366 relative to the transcription start site are required for maximum expression. A DNA sequence resembling the integration host factor (IHF) binding site centered approximately at -114 showed DNase I cleavage protection by IHF. In ihf cells, maximum cellular levels of fis mRNA were decreased more than 3-fold and transcription from fis P on a plasmid was decreased about 3.8-fold compared to those in cells expressing wild-type IHF. In addition, a mutation in the ihf binding site resulted in a 76 and 61% reduction in transcription from fis P on a plasmid in the presence or absence of Fis, respectively. Insertions of 5 or 10 bp between this ihf site and fis P suggest that IHF functions in a position-dependent manner. We conclude that IHF plays a role in stimulating transcription from fis P by interacting with a site centered approximately at -114 relative to the start of transcription. We also showed that although the fis P region contains six Fis binding sites, Fis site II (centered at -42) played a predominant role in autoregulation, Fis sites I and III (centered at +26 and -83, respectively) seemingly played smaller roles, and no role in negative autoregulation could be attributed to Fis sites IV, V, and VI (located upstream of site III). The fis P region from -36 to +7, which is not directly regulated by either IHF or Fis, retained the characteristic fis regulation pattern in response to a nutritional upshift.
Collapse
Affiliation(s)
- T S Pratt
- Department of Biological Sciences, University at Albany, New York 12222, USA
| | | | | | | | | |
Collapse
|
18
|
Gosink KK, Gaal T, Bokal AJ, Gourse RL. A positive control mutant of the transcription activator protein FIS. J Bacteriol 1996; 178:5182-7. [PMID: 8752336 PMCID: PMC178315 DOI: 10.1128/jb.178.17.5182-5187.1996] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The FIS protein is a transcription activator of rRNA and other genes in Escherichia coli. We have identified mutants of the FIS protein resulting in reduced rrnB P1 transcription activation that nevertheless retain the ability to bind DNA in vivo. The mutations map to amino acid 74, the N-terminal amino acid of the protein's helix-turn-helix DNA binding motif, and to amino acids 71 and 72 in the adjoining surface-exposed loop. In vitro analyses of one of the activation-defective mutants (with a G-to-S mutation at position 72) indicates that it binds to and bends rrnB P1 FIS site I DNA the same as wild-type FIS. These data suggest that amino acids in this region of FIS are required for transcription activation by contacting RNA polymerase directly, independent of any other role(s) this region may play in DNA binding or protein-induced bending.
Collapse
Affiliation(s)
- K K Gosink
- Department of Bacteriology, University of Wisconsin, Madison 53706, USA
| | | | | | | |
Collapse
|
19
|
Sandmann C, Cordes F, Saenger W. Structure model of a complex between the factor for inversion stimulation (FIS) and DNA: Modeling protein-DNA complexes with dyad symmetry and known protein structures. Proteins 1996. [DOI: 10.1002/(sici)1097-0134(199608)25:4<486::aid-prot8>3.0.co;2-b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Sandmann C, Cordes F, Saenger W. Structure model of a complex between the factor for inversion stimulation (FIS) and DNA: modeling protein-DNA complexes with dyad symmetry and known protein structures. Proteins 1996; 25:486-500. [PMID: 8865343 DOI: 10.1002/prot.8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A method is presented to predict overall conformations of protein-DNA complexes on the basis of the known three-dimensional structures of the proteins. The method is restricted to proteins with a common twofold symmetry axis, which show only minor conformational changes upon binding to DNA. The method uses a numerical finite difference solution of the linearized Poisson-Boltzmann equation and subsequent energy minimization cycles. Structural parameters-the rotation angle of the DNA relative to the protein around the common symmetry axis, the protein-DNA distance, and intermolecular hydrogen-bonding contacts-are presented for two test cases, DNA bound to CAP (catabolite gene activator protein) and to the Cro-repressor of bacteriophage 434. The DNA curvature in the starting model of the docking procedure was chosen as a smoothed approximation of the conformation found in the X-ray structures of these complexes. The method is further used to predict the unknown structure of the complex between the factor for inversion stimulation (FIS) and DNA, which is bent upon binding to FIS. In contrast to the test cases, the unknown curvature of the starting model is derived from a calibration of electrostatic precalculations for different proteins according to crystallographically observed DNA bending. The results of the modeling are in good accordance with the experimentally observed overall structure of protein-DNA complexes for the two test cases; for FIS, they correspond to several of the experimentally proposed protein-DNA contacts.
Collapse
Affiliation(s)
- C Sandmann
- Institut für Kristallographie, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
21
|
Dorman CJ. 1995 Flemming Lecture. DNA topology and the global control of bacterial gene expression: implications for the regulation of virulence gene expression. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 6):1271-1280. [PMID: 7670631 DOI: 10.1099/13500872-141-6-1271] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College,Dublin 2,Republic of Ireland
| |
Collapse
|
22
|
Osuna R, Lienau D, Hughes KT, Johnson RC. Sequence, regulation, and functions of fis in Salmonella typhimurium. J Bacteriol 1995; 177:2021-32. [PMID: 7536730 PMCID: PMC176845 DOI: 10.1128/jb.177.8.2021-2032.1995] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The fis operon from Salmonella typhimurium has been cloned and sequenced, and the properties of Fis-deficient and Fis-constitutive strains were examined. The overall fis operon organization in S. typhimurium is the same as that in Escherichia coli, with the deduced Fis amino acid sequences being identical between both species. While the open reading frames upstream of fis have diverged slightly, the promoter regions between the two species are also identical between -49 and +94. Fis protein and mRNA levels fluctuated dramatically during the course of growth in batch cultures, peaking at approximately 40,000 dimers per cell in early exponential phase, and were undetectable after growth in stationary phase. fis autoregulation was less effective in S. typhimurium than that in E. coli, which can be correlated with the absence or reduced affinity of several Fis-binding sites in the S. typhimurium fis promoter region. Phenotypes of fis mutants include loss of Hin-mediated DNA inversion, cell filamentation, reduced growth rates in rich medium, and increased lag times when the mutants are subcultured after prolonged growth in stationary phase. On the other hand, cells constitutively expressing Fis exhibited normal logarithmic growth but showed a sharp reduction in survival during stationary phase. During the course of these studies, the sigma 28-dependent promoter within the hin-invertible segment that is responsible for fljB (H2) flagellin synthesis was precisely located.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Base Sequence
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Chromosome Mapping
- Cloning, Molecular
- DNA Primers/genetics
- DNA, Bacterial/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Escherichia coli/genetics
- Escherichia coli Proteins
- Factor For Inversion Stimulation Protein
- Flagellin/biosynthesis
- Flagellin/genetics
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Integration Host Factors
- Molecular Sequence Data
- Mutation
- Operon
- Phenotype
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombination, Genetic
- Salmonella typhimurium/genetics
- Salmonella typhimurium/growth & development
- Salmonella typhimurium/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- R Osuna
- Department of Biological Chemistry, School of Medicine, University of California, Los Angeles 90024, USA
| | | | | | | |
Collapse
|
23
|
Spaeny-Dekking L, Nilsson L, von Euler A, van de Putte P, Goosen N. Effects of N-terminal deletions of the Escherichia coli protein Fis on growth rate, tRNA(2Ser) expression and cell morphology. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:259-65. [PMID: 7862098 DOI: 10.1007/bf00294690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Escherichia coli Fis protein is known to be involved in a variety of processes, including the activation of stable RNA operons. In this paper we study the ability of a set of N-terminal Fis deletion mutants to stimulate transcription of the tRNA(2Ser) gene. The results indicate that the domain of the Fis protein containing residues 1-26 is not required for transcription activation. The Fis mutants that are still active in transcription stimulation can also complement the reduced growth rates of Fis- cells, suggesting that the same activating domain is involved in this phenomenon. In addition, we show that in fast growing cultures in the absence of an active Fis protein, minicells are formed. These minicells seem to arise from septum formation near the cell poles. Suppression of minicell formation by Fis also does not require the presence of the N-terminal domain of the protein.
Collapse
Affiliation(s)
- L Spaeny-Dekking
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Abstract
This article examines the published evidence in support of the classification of organisms into three groups (Bacteria, Archae, and Eukarya) instead of two groups (prokaryotes and eukaryotes) and summarizes the comparative biochemistry of each of the known histone-like, nucleoid DNA-binding proteins. The molecular structures and amino acid sequences of Archae are more similar to those of Eukarya than of Bacteria, with a few exceptions. Cytochemical methodology employed for localizing these proteins in archaeal and bacterial cells has also been reviewed. It is becoming increasingly apparent that these proteins participate both in the organization of DNA and in the control of gene expression. Evidence obtained from biochemical properties, structural and functional differences, and the ultrastructural location of these proteins, as well as from gene mutations clearly justifies the division of prokaryotes into bacterial and archaeal groups. Indeed, chromosomes, whether they be nuclear, prokaryotic, or organellar, are invariably complexed with abundant, small, basic proteins that bind to DNA with low sequence specificity. These proteins include the histones, histone-like proteins, and nonhistone high mobility group (HMG) proteins.
Collapse
Affiliation(s)
- M A Hayat
- Department of Biology, Kean College of New Jersey Union 07083, USA
| | | |
Collapse
|
25
|
Bétermier M, Galas DJ, Chandler M. Interaction of Fis protein with DNA: bending and specificity of binding. Biochimie 1994; 76:958-67. [PMID: 7748940 DOI: 10.1016/0300-9084(94)90021-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Escherichia coli Fis protein is a dimeric DNA-binding protein whose specific binding sites share a weak consensus sequence. Use of the gel retardation technique indicates that binding of Fis on a linear DNA fragment leads to the formation of a ladder of defined retarded complexes, independently of the presence of a specific site. This non-specific binding of Fis is consistent with a model where equivalent low-affinity sites on a given fragment would be bound randomly and independently of each other by consecutive Fis dimers. Evidence is presented that non-specific binding of Fis can, however, induce an apparent site-specific conformational change in the DNA. This observation is discussed in terms of a model in which each Fis:DNA complex detected in gel retardation experiments actually represents a dynamic equilibrium of a fixed number of Fis dimers distributed on the fragment.
Collapse
Affiliation(s)
- M Bétermier
- Laboratoire de Microbiologie et Génétique Moléculaire du CNRS, Toulouse, France
| | | | | |
Collapse
|
26
|
Augustin LB, Jacobson BA, Fuchs JA. Escherichia coli Fis and DnaA proteins bind specifically to the nrd promoter region and affect expression of an nrd-lac fusion. J Bacteriol 1994; 176:378-87. [PMID: 8288532 PMCID: PMC205060 DOI: 10.1128/jb.176.2.378-387.1994] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Escherichia coli nrd operon contains the genes encoding the two subunits of ribonucleoside diphosphate reductase. The regulation of the nrd operon has been observed to be very complex. The specific binding of two proteins to the nrd regulatory region and expression of mutant nrd-lac fusions that do not bind these proteins are described. A partially purified protein from an E. coli cell extract was previously shown to bind to the promoter region and to regulate transcription of the nrd operon (C. K. Tuggle and J. A. Fuchs, J. Bacteriol. 172:1711-1718, 1990). We have purified this protein to homogeneity by affinity chromatography and identified it as the E. coli factor for inversion stimulation (Fis). Cu-phenanthroline footprinting experiments showed that Fis binds to a site centered 156 bp upstream of the start of nrd transcription. Mutants with deletion and site-directed mutations that do not bind Fis at this site have two- to threefold-lower expression of an nrd-lac fusion. The previously reported negative regulatory nature of this site (C. K. Tuggle and J. A. Fuchs, J. Bacteriol. 172:1711-1718, 1990) was found to be due to a change in polarity in the vectors used to construct promoter fusions. Two nine-base sequences with homology to the DnaA consensus binding sequence are located immediately upstream of the nrd putative -35 RNA polymerase binding site. Binding of DnaA to these sequences on DNA fragments containing the nrd promoter region was confirmed by in vitro Cu-phenanthroline footprinting. Footprinting experiments on fragments with each as well as both of the mutated 9-mers suggests cooperativity between the two sites in binding DnaA. Assay of in vivo expression from wild-type and DnaA box-mutated nrd promoter fragments fused to lacZ on single-copy plasmids indicates a positive effect of DnaA binding on expression of nrd.
Collapse
Affiliation(s)
- L B Augustin
- Department of Biochemistry, University of Minnesota, St. Paul 55108
| | | | | |
Collapse
|
27
|
Roth A, Urmoneit B, Messer W. Functions of histone-like proteins in the initiation of DNA replication at oriC of Escherichia coli. Biochimie 1994; 76:917-23. [PMID: 7748935 DOI: 10.1016/0300-9084(94)90016-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Using methidiumpropyl-EDTA (MPE) footprinting we found one specific binding site for FIS protein in the E coli replication origin, oriC. We mutagenized the binding sites for FIS and IHF in oriC and analyzed the effect of the mutations on protein binding and oriC function. The replication efficiency of oriC plasmids paralleled the ability of the mutated DNA fragments to bind IHF or FIS. We conclude that these histone-like proteins function in cis in the initiation of DNA replication at oriC.
Collapse
Affiliation(s)
- A Roth
- Max-Planck-Institut für molekulare Genetik, Berlin-Dahlem, Germany
| | | | | |
Collapse
|
28
|
Gosink KK, Ross W, Leirmo S, Osuna R, Finkel SE, Johnson RC, Gourse RL. DNA binding and bending are necessary but not sufficient for Fis-dependent activation of rrnB P1. J Bacteriol 1993; 175:1580-9. [PMID: 8449867 PMCID: PMC203950 DOI: 10.1128/jb.175.6.1580-1589.1993] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Escherichia coli Fis protein binds to three sites in the upstream activation region of the rrnB P1 promoter and enhances transcription 5- to 10-fold in vivo. In this report, we investigate the mechanism of Fis-dependent activation of transcription. We show that stimulation of rrnB P1 transcription by Fis can occur on linear DNA templates and does not require DNA upstream of the promoter-proximal Fis site I. Mutants of Fis defective for Hin-mediated recombination have been isolated previously and have defined an N-terminal domain required for DNA inversion by Hin in addition to the C-terminal domain which is required for DNA binding. Several of these mutants were found to be defective in stimulation of rrnB P1 transcription in vivo and in vitro. Activation-defective mutants fall into three classes: those that fail to bind to the upstream activation region, those that bind but fail to bend the DNA normally, and those that bind and bend but still fail to activate transcription. We conclude that it is unlikely that Fis functions by simply bringing upstream sequences or bound factors into the proximity of RNA polymerase to activate transcription. Rather, the data are most easily interpreted in terms of transcription activation by direct interactions between Fis and RNA polymerase, requiring precise positioning of the two proteins facilitated by bending of the DNA binding site.
Collapse
Affiliation(s)
- K K Gosink
- Department of Bacteriology, University of Wisconsin, Madison 53706
| | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Ball CA, Osuna R, Ferguson KC, Johnson RC. Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J Bacteriol 1992; 174:8043-56. [PMID: 1459953 PMCID: PMC207543 DOI: 10.1128/jb.174.24.8043-8056.1992] [Citation(s) in RCA: 281] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fis is a small basic DNA-binding protein from Escherichia coli that was identified because of its role in site-specific DNA recombination reactions. Recent evidence indicates that Fis also participates in essential cell processes such as rRNA and tRNA transcription and chromosomal DNA replication. In this report, we show that Fis levels vary dramatically during the course of cell growth and in response to changing environmental conditions. When stationary-phase cells are subcultured into a rich medium, Fis levels increase from less than 100 to over 50,000 copies per cell prior to the first cell division. As cells enter exponential growth, nascent synthesis is largely shut off, and intracellular Fis levels decrease as a function of cell division. Fis synthesis also transiently increases when exponentially growing cells are shifted to a richer medium. The magnitude of the peak of Fis synthesis appears to reflect the extent of the nutritional upshift. fis mRNA levels closely resemble the protein expression pattern, suggesting that regulation occurs largely at the transcriptional level. Two RNA polymerase-binding sites and at least six high-affinity Fis-binding sites are present in the fis promoter region. We show that expression of the fis operon is negatively regulated by Fis in vivo and that purified Fis can prevent stable complex formation by RNA polymerase at the fis promoter in vitro. However, autoregulation only partially accounts for the expression pattern of Fis. We suggest that the fluctuations in Fis levels may serve as an early signal of a nutritional upshift and may be important in the physiological roles Fis plays in the cell.
Collapse
Affiliation(s)
- C A Ball
- Molecular Biology Institute, University of California, Los Angeles 90024
| | | | | | | |
Collapse
|
31
|
Abstract
Higher-order nucleoprotein complexes are associated with many biological processes. In bacteria the formation of these macromolecular structures for DNA recombination, replication, and transcription often requires not only the participation of specific enzymes and co-factors, but also a class of DNA-binding proteins collectively known as 'nucleoid-associated' or 'histone-like' proteins. Examples of this class of proteins are HU, Integration Host Factor, H-NS, and Fis. Fis was originally identified as the factor for inversion stimulation of the homologous Hin and Gin site-specific DNA recombinases of Salmonella and phage Mu, respectively. This small, basic, DNA-bending protein has recently been shown to function in many other reactions including phage lambda site-specific recombination, transcriptional activation of rRNA and tRNA operons, repression of its own synthesis, and oriC-directed DNA replication. Cellular concentrations of Fis vary tremendously under different growth conditions which may have important regulatory implications for the physiological role of Fis in these different reactions. The X-ray crystal structure of Fis has been determined and insights into its mode of DNA binding and mechanisms of action in these disparate systems are being made.
Collapse
Affiliation(s)
- S E Finkel
- Department of Biological Chemistry, UCLA School of Medicine 90024-1737
| | | |
Collapse
|
32
|
Slany RK, Kersten H. The promoter of the tgt/sec operon in Escherichia coli is preceded by an upstream activation sequence that contains a high affinity FIS binding site. Nucleic Acids Res 1992; 20:4193-8. [PMID: 1508713 PMCID: PMC334125 DOI: 10.1093/nar/20.16.4193] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The tgt/sec operon in E. coli consists of five genes: queA, tgt, ORF12, secD, and secF. QueA and Tgt participate in the biosynthesis of the hypermodified t-RNA nucleoside Queuosine, whereas SecD and SecF are involved in protein secretion. Examination of the promoter region of the operon showed structural similarity to promoter regions of the rrn-operons. An upstream activation sequence (UAS) containing a potential binding site for the factor of inversion stimulation (FIS) was found. Gel retardation assays and DNaseI footprinting indicated, that FIS binds specifically and with high affinity to a site centred at position -58. Binding of FIS caused bending of the DNA, as deduced from circular permutation analysis. Various 5' deletion mutants of the promoter region were constructed and fused to a lacZ reporter gene to determine the influence of the UAS element on the promoter strength. An approximately two-fold activation of the promoter by the UAS element was observed.
Collapse
Affiliation(s)
- R K Slany
- Institut für Biochemie, Universität Erlangen-Nürnberg, Germany
| | | |
Collapse
|
33
|
Filutowicz M, Ross W, Wild J, Gourse RL. Involvement of Fis protein in replication of the Escherichia coli chromosome. J Bacteriol 1992; 174:398-407. [PMID: 1309527 PMCID: PMC205730 DOI: 10.1128/jb.174.2.398-407.1992] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We report evidence indicating that Fis protein plays a role in initiation of replication at oriC in vivo. At high temperatures, fis null mutants form filamentous cells, show aberrant nucleoid segregation, and are unable to form single colonies. DNA synthesis is inhibited in these fis mutant strains following upshift to 44 degrees C. The pattern of DNA synthesis inhibition upon temperature upshift and the requirement for RNA synthesis, but not protein synthesis, for resumed DNA synthesis upon downshift to 32 degrees C indicate that synthesis is affected in the initiation phase. fis mutations act synergistically with gyrB alleles known to affect initiation. oriC-dependent plasmids are poorly established and maintained in fis mutant strains. Finally, purified Fis protein interacts in vitro with sites in oriC. These interactions could be involved in mediating the effect of Fis on DNA synthesis in vivo.
Collapse
Affiliation(s)
- M Filutowicz
- Department of Bacteriology, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
34
|
Sandmeier H, Iida S, Hübner P, Hiestand-Nauer R, Arber W. Gene organization in the multiple DNA inversion region min of plasmid p15B of E.coli 15T-: assemblage of a variable gene. Nucleic Acids Res 1991; 19:5831-8. [PMID: 1945872 PMCID: PMC329034 DOI: 10.1093/nar/19.21.5831] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The bacteriophage P1-related plasmid p15B of E. coli 15T- contains a 3.5 kb long region which frequently undergoes complex rearrangements by DNA inversion. Site-specific recombination mediated by the Min DNA invertase occurs at six crossover sites and it eventually results in a population of 240 isomeric configurations of this region. We have determined 8.3-kb sequences of the invertible DNA and its flanking regions. The result explains how DNA inversion fuses variable 3' parts to a constant 5' part, thereby alternatively assembling one out of six different open reading frames (ORF). The resulting variable gene has a coding capacity of between 739 and 762 amino acids. A large portion of its constant part is composed of repeated sequences. The p15B sequences in front of the variable fusion gene encode a small ORF and a phage-specific late promoter and are highly homologous to P1 DNA. Adjacent to the DNA invertase gene min, we have found a truncated 5' region of a DNA invertase gene termed psi cin which is highly homologous to the phage P1 cin gene. Its recombinational enhancer segment is inactive, but it can be activated by the substitution of two nucleotides.
Collapse
Affiliation(s)
- H Sandmeier
- Abteilung Mikrobiologie, Universität Basel, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Ball CA, Johnson RC. Efficient excision of phage lambda from the Escherichia coli chromosome requires the Fis protein. J Bacteriol 1991; 173:4027-31. [PMID: 1829453 PMCID: PMC208050 DOI: 10.1128/jb.173.13.4027-4031.1991] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Escherichia coli protein Fis has been shown to bind a single site in the recombination region of phage lambda and to stimulate excisive recombination in vitro (J. F. Thompson, L. Moitoso de Vargas, C. Koch, R. Kahmann, and A. Landy, Cell 50:901-908, 1987). We demonstrate that mutant strains deficient in fis expression show dramatically reduced rates of lambda excision in vivo. Phage yields after induction of a stable lysogen are reduced more than 200-fold in fis cells. The defect observed in phage yield is not due to inefficient phage replication or lytic growth. Direct examination of excisive recombination products reveals a severe defect in the rate of recombination in the absence of Fis. The excision defect observed in fis cells can be fully reproduced in fis+ cells by using phages that lack the Fis binding site on attR, indicating that the entire stimulatory effect of Fis on excisive recombination is due to binding at that site.
Collapse
Affiliation(s)
- C A Ball
- Molecular Biology Institute, University of California, Los Angeles
| | | |
Collapse
|
36
|
Kawula TH, Orndorff PE. Rapid site-specific DNA inversion in Escherichia coli mutants lacking the histonelike protein H-NS. J Bacteriol 1991; 173:4116-23. [PMID: 1648076 PMCID: PMC208061 DOI: 10.1128/jb.173.13.4116-4123.1991] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Escherichia coli pilG mutants are thought to have a dramatically higher DNA inversion rate as measured by the site-specific DNA inversion of the type 1 pili pilA promoter. DNA sequence of the pilG gene confirmed its identity to the gene encoding the bacterial histonelike protein H-NS. Unlike other histonelike protein complexes that enhance site-specific DNA recombination, the H-NS protein inhibited this process. This inhibition was indicated by the increased inversion rate of the pilA promoter region effected by two different mutant pilG alleles. One of these alleles, pilG1, conferred a mutant phenotype only at low temperature attributable to a T-to-G transversion in the -35 sequence of the pilG promoter. The other allele, pilG2-tetR, was an insertion mutation in the pilG coding region that conferred the mutant phenotype independent of temperature. We measured an approximately 100-fold-increased pilA promoter inversion rate in the mutant by exploiting the temperature-dependent expression of pilG1 and using a novel rapid-population-sampling method. Contrary to one current view on how the H-NS protein might act to increase DNA inversion rate, we found no evidence to support the hypothesis that DNA supercoiling affected pilA promoter inversion.
Collapse
Affiliation(s)
- T H Kawula
- Department of Microbiology, Pathology and Parasitology, NCSU College of Veterinary Medicine, North Carolina State University, Raleigh 27606
| | | |
Collapse
|
37
|
Bosch L, Nilsson L, Vijgenboom E, Verbeek H. FIS-dependent trans-activation of tRNA and rRNA operons of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1050:293-301. [PMID: 2145039 DOI: 10.1016/0167-4781(90)90184-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two mechanisms controlling stable RNA synthesis have been described: growth rate-dependent control and stringent response. Although the mechanism underlying growth rate-dependent control is still a matter of dispute, this control is commonly assumed to operate through repression of transcription initiation of stable RNA operons. The same is true for the stringent response. Here we show that the cell utilizes an additional control system operating through activation of the thrU(tufB) operon. This operon, the tyrT and the rrnB operon share a common trans-activating protein that binds to cis-acting DNA regions upstream of the promoters of the two tRNA operons and of the P1 promoter of the rrnB operon. Conceivably, more stable RNA operons may be regulated by trans-activation. Both in vivo and in vitro experiments show that the Escherichia coli protein FIS (Factor for Inversion Stimulation) is involved in the trans-activation. This protein is known to stimulate the inversion of various DNA segments by binding to cis-acting recombinational enhancers and functions as a host factor for the bacteriophages Mu and Lambda.
Collapse
Affiliation(s)
- L Bosch
- Department of Biochemistry, Leiden University, Gorlaeus Laboratories, The Netherlands
| | | | | | | |
Collapse
|
38
|
Kanaar R, van Hal JP, van de Putte P. The recombinational enhancer for DNA inversion functions independent of its orientation as a consequence of dyad symmetry in the Fis-DNA complex. Nucleic Acids Res 1989; 17:6043-53. [PMID: 2549506 PMCID: PMC318259 DOI: 10.1093/nar/17.15.6043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Escherichia coli Fis protein binds to specific DNA sequences whose base composition varies enormously. One known function of Fis is to stimulate site-specific DNA recombination. We used the Gin-mediated DNA inversion system of bacteriophage Mu to analyze Fis-DNA interaction. Efficient inversion requires an enhancer which consists of two Fis binding sites at a fixed distance from each other. Using mutant enhancers in which one of the Fis binding sites is replaced we show that Fis binds symmetrically to the DNA and we locate the center of symmetry. Furthermore, we show that one of the Fis binding sites can be replaced by a Fis binding site that normally functions in a process other than site-specific recombination.
Collapse
Affiliation(s)
- R Kanaar
- Department of Biochemistry, Leiden University, The Netherlands
| | | | | |
Collapse
|
39
|
|
40
|
Wada M, Kutsukake K, Komano T, Imamoto F, Kano Y. Participation of the hup gene product in site-specific DNA inversion in Escherichia coli. Gene X 1989; 76:345-52. [PMID: 2666260 DOI: 10.1016/0378-1119(89)90174-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The closely related Escherichia coli genes hupA and hupB each encode a bacterial histone-like protein HU. We report here that DNA inversion mediated by hin, gin, pin and rci but not by cin is blocked in a hupA hupB double mutant, although inversions in these systems occur in the hupA or hupB single mutant as efficiently as in the wild-type strain. These findings show that HU protein participates in site-specific DNA inversion in E. coli and that only one subunit, either HU-1 or HU-2, is sufficient for this inversion.
Collapse
Affiliation(s)
- M Wada
- Laboratory of Molecular Genetics, Riken, Tsukuba Life Science Center, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
41
|
Hübner P, Haffter P, Iida S, Arber W. Bent DNA is needed for recombinational enhancer activity in the site-specific recombination system Cin of bacteriophage P1. The role of FIS protein. J Mol Biol 1989; 205:493-500. [PMID: 2648006 DOI: 10.1016/0022-2836(89)90220-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A series of recombinational enhancer mutants was constructed by manipulating the ClaI site between the two FIS binding sites of the Hin enhancer. These mutants include insertions from two to 12 base-pairs and two deletions of one or two base-pairs. Recombinational enhancer activity was found only with four mutants carrying either a four base-pair substitution, ten base-pair insertions or a one base-pair deletion, respectively; two other ten base-pair insertion mutants, however, were inactive, although FIS protein binding was unaffected. So, besides binding of FIS protein to its specific sites within the enhancer sequence and the correct helical positioning of these sites on the DNA, another criterion for enhancer activity must be fulfilled. DNA bending assays identify this requirement as a change of the enhancer DNA conformation, which FIS protein is able to induce and to stabilize. This conformational change of the DNA can be blocked by mutations in the central segment between the two FIS binding sites of the Hin enhancer. This sequence has special functions for the recombinational enhancer activity.
Collapse
Affiliation(s)
- P Hübner
- Department of Microbiology, Biozentrum der Universität Basel, Switzerland
| | | | | | | |
Collapse
|
42
|
Haffter P, Pripfl T, Bickle TA. A mutational analysis of the bacteriophage P1 cin recombinase gene: intragenic complementation. MOLECULAR & GENERAL GENETICS : MGG 1989; 215:245-9. [PMID: 2651879 DOI: 10.1007/bf00339724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bacteriophage P1 encodes a site-specific recombinase, Cin, which regulates the alternate expression of tail fibre genes by inverting a DNA segment. To define regions of Cin important for the recombination process, we have isolated and characterised 24 different mutations of the cin gene. Most of these mutations affected amino acids that are highly conserved in other related recombinases. Some of these mutants complement each other in vivo. This intragenic complementation could be due to the assembly of heteromers containing both mutant proteins, suggesting that the active enzyme is at least a dimer.
Collapse
Affiliation(s)
- P Haffter
- Department of Microbiology, Biozentrum, Basel University, Switzerland
| | | | | |
Collapse
|
43
|
Abstract
An efficient method for random mutagenesis was applied to a 75-bp target sequence. The mutational changes in the target region are introduced by the technique of oligodeoxyribonucleotide(oligo)-directed, site-specific mutagenesis using mixtures of degenerate oligos. These are designed in such a way that they carry with a high probability randomly distributed substitutions, which are introduced into the oligos by utilizing appropriate concentrations of all four nucleotide precursors during each chain elongation step. These mixtures of degenerate oligos were hybridized to the appropriate M13-hybrid ss-template and then extended in vitro using PolIk. In order to avoid any bias artificially created by the Escherichia coli mismatch repair system, homoduplex molecules were synthesized in vitro according to the method of Taylor et al. [Nucleic Acids Res. 13 (1985) 8765-8785]. After transformation of the appropriate E. coli host, M13 plaques were randomly analysed by DNA sequencing. Using appropriate preparations of template DNA and oligos we attained mutagenesis efficiencies in the range of 20-50%. The analysis of 85 different mutants revealed that the distribution of the mutations is random and that all expected substitutions occur with about the same probability.
Collapse
Affiliation(s)
- P Hübner
- Department of Microbiology, Biozentrum der Universität Basel, Switzerland
| | | | | |
Collapse
|