1
|
Bredemeyer KR, Hillier L, Harris AJ, Hughes GM, Foley NM, Lawless C, Carroll RA, Storer JM, Batzer MA, Rice ES, Davis BW, Raudsepp T, O'Brien SJ, Lyons LA, Warren WC, Murphy WJ. Single-haplotype comparative genomics provides insights into lineage-specific structural variation during cat evolution. Nat Genet 2023; 55:1953-1963. [PMID: 37919451 PMCID: PMC10845050 DOI: 10.1038/s41588-023-01548-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/20/2023] [Indexed: 11/04/2023]
Abstract
The role of structurally dynamic genomic regions in speciation is poorly understood due to challenges inherent in diploid genome assembly. Here we reconstructed the evolutionary dynamics of structural variation in five cat species by phasing the genomes of three interspecies F1 hybrids to generate near-gapless single-haplotype assemblies. We discerned that cat genomes have a paucity of segmental duplications relative to great apes, explaining their remarkable karyotypic stability. X chromosomes were hotspots of structural variation, including enrichment with inversions in a large recombination desert with characteristics of a supergene. The X-linked macrosatellite DXZ4 evolves more rapidly than 99.5% of the genome clarifying its role in felid hybrid incompatibility. Resolved sensory gene repertoires revealed functional copy number changes associated with ecomorphological adaptations, sociality and domestication. This study highlights the value of gapless genomes to reveal structural mechanisms underpinning karyotypic evolution, reproductive isolation and ecological niche adaptation.
Collapse
Affiliation(s)
- Kevin R Bredemeyer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - LaDeana Hillier
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Andrew J Harris
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - Graham M Hughes
- School of Biology & Environmental Sciences, University College Dublin, Dublin, Ireland
| | - Nicole M Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Colleen Lawless
- School of Biology & Environmental Sciences, University College Dublin, Dublin, Ireland
| | - Rachel A Carroll
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | | | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Edward S Rice
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Brian W Davis
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - Terje Raudsepp
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - Stephen J O'Brien
- Guy Harvey Oceanographic Center, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO, USA
| | - Wesley C Warren
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA.
| | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
2
|
Ferreira D, Soares M, Correia J, Adega F, Ferreira F, Chaves R. Satellite Noncoding RNAs (ncRNA) as Cancer Biomarkers? New Insights from FA-SAT ncRNA Molecular and Clinical Profiles in Feline Mammary Tumors. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:622-632. [PMID: 36342778 DOI: 10.1089/omi.2022.0114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Satellite noncoding RNAs (ncRNAs) are a new frontier of cancer biology research and biomarkers. While the knowledge on ncRNAs in human cancers is still limited, studies in other species can be informative to guide future translational research and development for cancer molecular targets and diagnostics. In this context, FA-SAT is the major satellite DNA of the cat genome, which is also present in humans, being transcribed in both species. In this study, we report new insights on FA-SAT (DNA and RNA) profile in feline mammary tumors, using disease-free tissues from the same animals as reference. We quantified the FA-SAT DNA and RNA levels (long and small transcripts) by real-time quantitative polymerase chain reaction (qPCR) and RT-qPCR. The comparison of the FA-SAT DNA and RNA levels with clinicopathological parameters revealed several associations, such as (1) the FA-SAT DNA levels' positive relation with lymphovascular invasion, (2) the FA-SAT long RNA negative correlation with Ki-67 index, and its positive association with Estrogen Receptor status, and (3) the FA-SAT small RNA level positive correlation with tumor size and skin ulceration. Also, FA-SAT long RNA is correlated with ERBB2 and c-MYC RNA levels. These data collectively suggest that FA-SAT ncRNA offers prospects as a potential cancer biomarker in cats. Further studies in humans are also needed to decipher the emerging role of ncRNAs in cancer biology and precision medicine fields. This work brings new information on the relation of FA-SAT ncRNAs with the oncogenic process, uncovering a new potential cancer biomarker.
Collapse
Affiliation(s)
- Daniela Ferreira
- CAG-Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Maria Soares
- IUEM, Instituto Universitário Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior, CRL, Caparica, Portugal
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Jorge Correia
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Filomena Adega
- CAG-Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Fernando Ferreira
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Raquel Chaves
- CAG-Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
3
|
Ferreira D, Escudeiro A, Adega F, Anjo SI, Manadas B, Chaves R. FA-SAT ncRNA interacts with PKM2 protein: depletion of this complex induces a switch from cell proliferation to apoptosis. Cell Mol Life Sci 2020; 77:1371-1386. [PMID: 31346634 PMCID: PMC11104958 DOI: 10.1007/s00018-019-03234-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 01/11/2023]
Abstract
FA-SAT is a highly conserved satellite DNA sequence transcribed in many Bilateria species. To disclose the cellular and functional profile of FA-SAT non-coding RNAs, a comprehensive experimental approach, including the transcripts location in the cell and in the cell cycle, the identification of its putative protein interactors, and silencing/ectopic expression phenotype analysis, was performed. FA-SAT non-coding RNAs play a nuclear function at the G1 phase of the cell cycle and the interactomic assay showed that the PKM2 protein is the main interactor. The disruption of the FA-SAT non-coding RNA/PKM2 protein complex, by the depletion of either FA-SAT or PKM2, results in the same phenotype-apoptosis, and the ectopic overexpression of FA-SAT did not affect the cell-cycle progression, but promotes the PKM2 nuclear accumulation. Overall, our data first describe the importance of this ribonucleoprotein complex in apoptosis and cell-cycle progression, what foresees a promising novel candidate molecular target for cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Daniela Ferreira
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Ana Escudeiro
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Sandra I Anjo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisbon, Portugal.
| |
Collapse
|
4
|
Ferreira D, Escudeiro A, Adega F, Chaves R. DNA Methylation Patterns of a Satellite Non-coding Sequence - FA-SAT in Cancer Cells: Its Expression Cannot Be Explained Solely by DNA Methylation. Front Genet 2019; 10:101. [PMID: 30809250 PMCID: PMC6379292 DOI: 10.3389/fgene.2019.00101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/29/2019] [Indexed: 02/05/2023] Open
Abstract
Satellite ncRNAs are emerging as key players in cell and cancer pathways. Cancer-linked satellite DNA hypomethylation seems to be responsible for the overexpression of satellite non-coding DNAs in several tumors. FA-SAT is the major satellite DNA of Felis catus and recently, its presence and transcription was described across Bilateria genomes. This satellite DNA is GC-rich and includes a CpG island, what is suggestive of transcription regulation via DNA methylation. In this work, it was studied for the first time the FA-SAT methylation profile in cat primary cells, in four passages of the cat tumor cell line FkMTp and in eight feline mammary tumors and the respective disease-free tissues. Contrary to what was expected, we found that in most of the tumor samples analyzed, FA-SAT DNA was not hypomethylated. Furthermore, in these samples the transcription of FA-SAT does not correlate with the methylation status. The use of a global demethylating agent, 5-Azacytidine, in cat primary cells caused an increase in the FA-SAT non-coding RNA levels. However, global demethylation in the tumor FkMTp cells only resulted in the increased levels of the FA-SAT small RNA fraction. Our data suggests that DNA methylation of FA-SAT is involved in the regulation of this satellite DNA, however, other mechanisms are certainly contributing to the transcriptional status of the sequence, specifically in cancer.
Collapse
Affiliation(s)
- Daniela Ferreira
- Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Ana Escudeiro
- Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Chaves R, Ferreira D, Mendes-da-Silva A, Meles S, Adega F. FA-SAT Is an Old Satellite DNA Frozen in Several Bilateria Genomes. Genome Biol Evol 2018; 9:3073-3087. [PMID: 29608678 PMCID: PMC5714208 DOI: 10.1093/gbe/evx212] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2017] [Indexed: 12/17/2022] Open
Abstract
In recent years, a growing body of evidence has recognized the tandem repeat sequences, and specifically satellite DNA, as a functional class of sequences in the genomic “dark matter.” Using an original, complementary, and thus an eclectic experimental design, we show that the cat archetypal satellite DNA sequence, FA-SAT, is “frozen” conservatively in several Bilateria genomes. We found different genomic FA-SAT architectures, and the interspersion pattern was conserved. In Carnivora genomes, the FA-SAT-related sequences are also amplified, with the predominance of a specific FA-SAT variant, at the heterochromatic regions. We inspected the cat genome project to locate FA-SAT array flanking regions and revealed an intensive intermingling with transposable elements. Our results also show that FA-SAT-related sequences are transcribed and that the most abundant FA-SAT variant is not always the most transcribed. We thus conclude that the DNA sequences of FA-SAT and their transcripts are “frozen” in these genomes. Future work is needed to disclose any putative function that these sequences may play in these genomes.
Collapse
Affiliation(s)
- Raquel Chaves
- CAG-Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Daniela Ferreira
- CAG-Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Ana Mendes-da-Silva
- CAG-Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Susana Meles
- CAG-Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Filomena Adega
- CAG-Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| |
Collapse
|
6
|
Matoso Silva R, Adega F, Kjöllerström HJ, Labuschagne K, Kotze A, Fernandes C, Chaves R, do Mar Oom M. Classical and Molecular Cytogenetics of the Panther Genet Genetta maculata (Mammalia, Carnivora, Viverridae). Cytogenet Genome Res 2016; 149:274-281. [DOI: 10.1159/000450627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2016] [Indexed: 11/19/2022] Open
Abstract
Genets (Genetta) are a genus of African mammalian carnivorans with 14 currently recognized species, although taxonomic uncertainties remain, particularly regarding the number of species within the large-spotted genet complex. This study presents the first banded karyotype and molecular cytogenetic analysis of a genetically identified panther genet, Genetta maculata, the most common and widespread taxon of the large-spotted genet complex, with a wide distribution in sub-Saharan Africa. Sampled in Gauteng Province, South Africa, it could be assigned to the subspecies G. m. letabae on geographic grounds and had a similar karyotype (2n = 52, FNa = 96) to those published for a panther genet from Ethiopia and for the West African large-spotted genet G. pardina. Notably, the specimen had a different autosomal morphology (2 acrocentric chromosomes) from that previously attributed to letabae (a single acrocentric chromosome), but the latter assignment was uncertain because the studied individuals were captive born and assigned based solely on a presumed origin in the former Transvaal Province of South Africa. Fluorescence in situ hybridization with a telomere repeat probe revealed the presence of telomeric sequences in the centromeres of most chromosomes, the so-called interstitial telomeric sites (ITSs). Since genets seem to have a unique, highly rearranged karyotype among feliforms and relatively low interspecific karyotypic variation, and considering the known instability of ITSs, we suggest that the large amount of ITSs found here might be due to evolutionarily recent extensive genomic rearrangements. This study provides cytogenetic information that contributes to our understanding of chromosomal variation and genomic rearrangements in genets, and valuable baseline data for future studies of karyotype evolution in carnivores in general and viverrids in particular.
Collapse
|
7
|
Dobrynin P, Liu S, Tamazian G, Xiong Z, Yurchenko AA, Krasheninnikova K, Kliver S, Schmidt-Küntzel A, Koepfli KP, Johnson W, Kuderna LFK, García-Pérez R, Manuel MD, Godinez R, Komissarov A, Makunin A, Brukhin V, Qiu W, Zhou L, Li F, Yi J, Driscoll C, Antunes A, Oleksyk TK, Eizirik E, Perelman P, Roelke M, Wildt D, Diekhans M, Marques-Bonet T, Marker L, Bhak J, Wang J, Zhang G, O'Brien SJ. Genomic legacy of the African cheetah, Acinonyx jubatus. Genome Biol 2015; 16:277. [PMID: 26653294 PMCID: PMC4676127 DOI: 10.1186/s13059-015-0837-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/17/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Patterns of genetic and genomic variance are informative in inferring population history for human, model species and endangered populations. RESULTS Here the genome sequence of wild-born African cheetahs reveals extreme genomic depletion in SNV incidence, SNV density, SNVs of coding genes, MHC class I and II genes, and mitochondrial DNA SNVs. Cheetah genomes are on average 95 % homozygous compared to the genomes of the outbred domestic cat (24.08 % homozygous), Virunga Mountain Gorilla (78.12 %), inbred Abyssinian cat (62.63 %), Tasmanian devil, domestic dog and other mammalian species. Demographic estimators impute two ancestral population bottlenecks: one >100,000 years ago coincident with cheetah migrations out of the Americas and into Eurasia and Africa, and a second 11,084-12,589 years ago in Africa coincident with late Pleistocene large mammal extinctions. MHC class I gene loss and dramatic reduction in functional diversity of MHC genes would explain why cheetahs ablate skin graft rejection among unrelated individuals. Significant excess of non-synonymous mutations in AKAP4 (p<0.02), a gene mediating spermatozoon development, indicates cheetah fixation of five function-damaging amino acid variants distinct from AKAP4 homologues of other Felidae or mammals; AKAP4 dysfunction may cause the cheetah's extremely high (>80 %) pleiomorphic sperm. CONCLUSIONS The study provides an unprecedented genomic perspective for the rare cheetah, with potential relevance to the species' natural history, physiological adaptations and unique reproductive disposition.
Collapse
Affiliation(s)
- Pavel Dobrynin
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 41A Sredniy Avenue, St. Petersburg, 199004, Russia.
| | - Shiping Liu
- National Genbank, BGI-Shenzhen, Shenzhen, 518083, China. .,State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Gaik Tamazian
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 41A Sredniy Avenue, St. Petersburg, 199004, Russia.
| | - Zijun Xiong
- National Genbank, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Andrey A Yurchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 41A Sredniy Avenue, St. Petersburg, 199004, Russia.
| | - Ksenia Krasheninnikova
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 41A Sredniy Avenue, St. Petersburg, 199004, Russia.
| | - Sergey Kliver
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 41A Sredniy Avenue, St. Petersburg, 199004, Russia.
| | - Anne Schmidt-Küntzel
- Life Technologies Conservation Genetics Laboratory, Cheetah Conservation Fund, Otjiwarongo, Otjiwarongo, 9000, Namibia.
| | - Klaus-Peter Koepfli
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 41A Sredniy Avenue, St. Petersburg, 199004, Russia. .,National Zoological Park, Smithsonian Conservation Biology Institute, Washington DC, 20007, USA.
| | - Warren Johnson
- National Zoological Park, Smithsonian Conservation Biology Institute, Washington DC, 20007, USA.
| | - Lukas F K Kuderna
- Institut de Biologia Evolutiva (CSIC/UPF), Dr. Aiguader, 88, Barcelona, 08003, Spain.
| | - Raquel García-Pérez
- Institut de Biologia Evolutiva (CSIC/UPF), Dr. Aiguader, 88, Barcelona, 08003, Spain.
| | - Marc de Manuel
- Institut de Biologia Evolutiva (CSIC/UPF), Dr. Aiguader, 88, Barcelona, 08003, Spain.
| | - Ricardo Godinez
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, 02138, Massachusetts, USA.
| | - Aleksey Komissarov
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 41A Sredniy Avenue, St. Petersburg, 199004, Russia.
| | - Alexey Makunin
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 41A Sredniy Avenue, St. Petersburg, 199004, Russia. .,Institute of Molecular and Cellular Biology of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Vladimir Brukhin
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 41A Sredniy Avenue, St. Petersburg, 199004, Russia.
| | - Weilin Qiu
- National Genbank, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Long Zhou
- National Genbank, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Fang Li
- National Genbank, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Jian Yi
- National Genbank, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Carlos Driscoll
- Laboratory of Neurogenetics, NIAAA, 5625 Fishers Lane, Rockville, 20852, Maryland, USA.
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas, 177, Porto, 4050-123, Portugal. .,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto, 4169-007, Portugal.
| | - Taras K Oleksyk
- Biology Department, University of Puerto-Rico at Mayaguez, Mayaguez, Puerto Rico.
| | - Eduardo Eizirik
- PUCRS, Faculdade de Biociencias, Laboratorio de Biología Genómica e Molecular, Porto Alegre, 90619-900, Brazil.
| | - Polina Perelman
- Institute of Molecular and Cellular Biology of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Melody Roelke
- Laboratory of Animal Sciences Progras, Leídos Biomedical Research Inc., Frederick National Laboratory, Frederick, 21702, Maryland, USA.
| | - David Wildt
- National Zoological Park, Smithsonian Conservation Biology Institute, Washington DC, 20007, USA.
| | - Mark Diekhans
- Center for Biomolecular Science and Engineering, University of California, Santa-Cruz, USA.
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (CSIC/UPF), Dr. Aiguader, 88, Barcelona, 08003, Spain. .,Centro Nacional de Analisis Genomics (CNAG), Baldiri Reixach 4, Barcelona, 08013, Spain. .,State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Laurie Marker
- Cheetah Conservation Fund, Otjiwarongo, Otjiwarongo, 9000, Namibia.
| | - Jong Bhak
- Biomedical Engineering Department, UNIST, Ulsan National Institute of Science and Technology, Ulsan, Korea.
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, 518083, China. .,Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, 2200, Denmark. .,Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah, 21589, Saudi Arabia. .,Macau University of Science and Technology, Taipa, 999078, Macau, China.
| | - Guojie Zhang
- National Genbank, BGI-Shenzhen, Shenzhen, 518083, China. .,Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, DK-2100, Denmark.
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 41A Sredniy Avenue, St. Petersburg, 199004, Russia. .,Oceanographic Center, Nova Southeastern University Ft Lauderdale, 8000 N. Ocean Drive, Ft Lauderdale, 33004, Florida, USA.
| |
Collapse
|
8
|
The involvement of repetitive sequences in the remodelling of karyotypes: The Phodopus genomes (Rodentia, Cricetidae). Micron 2013; 46:27-34. [DOI: 10.1016/j.micron.2012.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 02/08/2023]
|
9
|
Hayden KE, Willard HF. Composition and organization of active centromere sequences in complex genomes. BMC Genomics 2012; 13:324. [PMID: 22817545 PMCID: PMC3422206 DOI: 10.1186/1471-2164-13-324] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/20/2012] [Indexed: 01/13/2023] Open
Abstract
Background Centromeres are sites of chromosomal spindle attachment during mitosis and meiosis. While the sequence basis for centromere identity remains a subject of considerable debate, one approach is to examine the genomic organization at these active sites that are correlated with epigenetic marks of centromere function. Results We have developed an approach to characterize both satellite and non-satellite centromeric sequences that are missing from current assemblies in complex genomes, using the dog genome as an example. Combining this genomic reference with an epigenetic dataset corresponding to sequences associated with the histone H3 variant centromere protein A (CENP-A), we identify active satellite sequence domains that appear to be both functionally and spatially distinct within the overall definition of satellite families. Conclusions These findings establish a genomic and epigenetic foundation for exploring the functional role of centromeric sequences in the previously sequenced dog genome and provide a model for similar studies within the context of less-characterized genomes.
Collapse
Affiliation(s)
- Karen E Hayden
- Genome Biology Group, Duke Institute for Genome Sciences & Policy, Duke University, Durham, NC, USA.
| | | |
Collapse
|
10
|
Pontius JU, O'Brien SJ. Artifacts of the 1.9x feline genome assembly derived from the feline-specific satellite sequence. J Hered 2009; 100 Suppl 1:S14-8. [PMID: 19531733 DOI: 10.1093/jhered/esp035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Two percentage of the cat genome is a repetitive, feline-specific satellite sequence (FA-SAT) of 483 bp and 65% guanine-cytosine content. Previous chromosomal localization of the satellite has demonstrated the satellite's presence on several discrete regions of the telomeres of chromosomes, predominately on the D, E, and F chromosome groups. The recent assembly of the 1.9x whole-genome shotgun (WGS) sequence of cat illustrates the challenge of the assembly of these large numbers of relatively short, similar sequences. Clones with paired end reads that include FA-SAT sequence have a high level of assembly discrepancies compared with clones with other types of repetitive elements, such as short interspersed nuclear elements (SINEs) and long interspersed nuclear elements (LINEs). The influence of the presence of FA-SAT but not SINEs and LINEs on genome assembly may likely reflect the evolutionary emergence of FA-SAT, which has lead to an excess of FA-SAT copies with identical sequence, which is less an issue with older, more diverse SINE and LINE sequences. The FA-SATs are restricted to a few hundred discrete regions of the cat genome, and associated errors in the assembly seem to be restricted to these loci. The findings regarding the feline-specific sequence should be considered in the pending 8x assembly of the cat genome.
Collapse
Affiliation(s)
- Joan U Pontius
- Laboratory of Genomic Diversity, Basic Research Program, Science Applications International Corporation-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| | | |
Collapse
|
11
|
Pontius JU, Mullikin JC, Smith DR, Lindblad-Toh K, Gnerre S, Clamp M, Chang J, Stephens R, Neelam B, Volfovsky N, Schäffer AA, Agarwala R, Narfström K, Murphy WJ, Giger U, Roca AL, Antunes A, Menotti-Raymond M, Yuhki N, Pecon-Slattery J, Johnson WE, Bourque G, Tesler G, O'Brien SJ. Initial sequence and comparative analysis of the cat genome. Genome Res 2008; 17:1675-89. [PMID: 17975172 DOI: 10.1101/gr.6380007] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The genome sequence (1.9-fold coverage) of an inbred Abyssinian domestic cat was assembled, mapped, and annotated with a comparative approach that involved cross-reference to annotated genome assemblies of six mammals (human, chimpanzee, mouse, rat, dog, and cow). The results resolved chromosomal positions for 663,480 contigs, 20,285 putative feline gene orthologs, and 133,499 conserved sequence blocks (CSBs). Additional annotated features include repetitive elements, endogenous retroviral sequences, nuclear mitochondrial (numt) sequences, micro-RNAs, and evolutionary breakpoints that suggest historic balancing of translocation and inversion incidences in distinct mammalian lineages. Large numbers of single nucleotide polymorphisms (SNPs), deletion insertion polymorphisms (DIPs), and short tandem repeats (STRs), suitable for linkage or association studies were characterized in the context of long stretches of chromosome homozygosity. In spite of the light coverage capturing approximately 65% of euchromatin sequence from the cat genome, these comparative insights shed new light on the tempo and mode of gene/genome evolution in mammals, promise several research applications for the cat, and also illustrate that a comparative approach using more deeply covered mammals provides an informative, preliminary annotation of a light (1.9-fold) coverage mammal genome sequence.
Collapse
Affiliation(s)
- Joan U Pontius
- Laboratory of Genomic Diversity, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Meles S, Adega F, Guedes-Pinto H, Chaves R. The karyotype and sex chromosomes of Praomys tullbergi (Muridae, Rodentia): a detailed characterization. Micron 2007; 39:559-68. [PMID: 17714950 DOI: 10.1016/j.micron.2007.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 07/13/2007] [Accepted: 07/15/2007] [Indexed: 10/23/2022]
Abstract
Here we present the first detailed characterization of Praomys tullbergi karyotype, enlightening several chromosome features such as constitutive heterochromatin, telomeric and LINE-1 sequences. The combination of these approaches provided some interesting insights about the genome organization of this African species, which is one of the tullbergi complex elements, a group of species belonging to Murinae (Rodentia, Muridae). Evolutionary considerations on Praomys chromosomes were also achieved, namely, the autosomal complement and the X chromosome from P. tullbergi seem to be derivative chromosomes, most probably resulting from extensive reshufflings during the course of evolution. This conclusion came from the fact that the majority of the chromosomes telomeric sequences are located interstitially, seeming footprints of evolutionary chromosome rearrangements. The detailed analysis of Praomys tullbergi X chromosome suggests that chromosome rearrangements and/or centromere transpositions and addition/elimination of heterochromatin must have been the main evolutionary events that shaped this chromosome.
Collapse
Affiliation(s)
- Susana Meles
- Institute for Biotechnology and Bioengineering, Centre of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (CGB-UTAD/IBB), Vila Real, Portugal
| | | | | | | |
Collapse
|
13
|
Paoloni-Giacobino A, D’Aiuto L, Cirio MC, Reinhart B, Chaillet JR. Conserved features of imprinted differentially methylated domains. Gene 2007; 399:33-45. [PMID: 17544602 PMCID: PMC2729497 DOI: 10.1016/j.gene.2007.04.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/17/2007] [Accepted: 04/23/2007] [Indexed: 11/19/2022]
Abstract
Genomic imprinting is a conserved epigenetic phenomenon in eutherian mammals, with regards both to the genes that are imprinted and the mechanism underlying the expression of just one of the parental alleles. Epigenetic modifications of alleles of imprinted genes are established during oogenesis and spermatogenesis, and these modifications are then inherited. Differentially methylated domains (DMDs) of imprinted genes are the genomic sites of these inherited epigenetic imprints. We previously showed that CpG-rich imperfect tandem direct repeats within three different mouse DMDs (Snurf/Snrpn, Kcnq1 and Igf2r), each with a unique sequence, play a central role in maintaining the differential methylation. This finding implicates repeat-related DNA structure, not sequence, in the imprinting mechanism. To better define the important features of this signal, we compared sequences of these three DMD tandem repeats among mammalian species. All DMD repeats contain short indirect repeats, many of which are organized into larger unit repeats. Even though the larger repeat units undergo deletion and addition during evolution (most likely through unequal crossovers during meiosis), the size of DMD tandem repeated regions has remained remarkably stable during mammalian evolution. Moreover, all three DMD tandem repeats have a high-CpG content, an ordered arrangement of CpG dinucleotides, and similar predicted secondary structures. These observations suggest that a structural feature or features of these DMD tandem repeats is the conserved DMD imprinting signal.
Collapse
Affiliation(s)
| | | | | | | | - J. Richard Chaillet
- Address for correspondence: Department of Molecular Genetics and Biochemistry, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261 USA, Tel: (001) 412 383 7974, fax: (001) 412 383 7984, Email address:
| |
Collapse
|
14
|
Santos S, Chaves R, Adega F, Bastos E, Guedes-Pinto H. Amplification of the major satellite DNA family (FA-SAT) in a cat fibrosarcoma might be related to chromosomal instability. ACTA ACUST UNITED AC 2006; 97:114-8. [PMID: 16469867 DOI: 10.1093/jhered/esj016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Most mammalian chromosomes have satellite DNA sequences located at or near the centromeres, organized in arrays of variable size and higher order structure. The implications of these specific repetitive DNA sequences and their organization for centromere function are still quite cloudy. In contrast to most mammalian species, the domestic cat seems to have the major satellite DNA family (FA-SAT) localized primarily at the telomeres and secondarily at the centromeres of the chromosomes. In the present work, we analyzed chromosome preparations from a fibrosarcoma, in comparison with nontumor cells (epithelial tissue) from the same individual, by in situ hybridization of the FA-SAT cat satellite DNA family. This repetitive sequence was found to be amplified in the cat tumor chromosomes analyzed. The amplification of these satellite DNA sequences in the cat chromosomes with variable number and appearance (marker chromosomes) is discussed and might be related to mitotic instability, which could explain the exhibition of complex patterns of chromosome aberrations detected in the fibrosarcoma analyzed.
Collapse
Affiliation(s)
- Sara Santos
- Department of Genetics and Biotechnology, Centre of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, P-5001-801 Vila Real, Portugal
| | | | | | | | | |
Collapse
|
15
|
Carvalho de Azevedo MF, Oliveira C, Martins C, Pinto Wasko A, Foresti F. Isolation and Characterization of a Satellite DNA Family in Achirus lineatus (Teleostei: Pleuronectiformes: Achiridae). Genetica 2005; 125:205-10. [PMID: 16247692 DOI: 10.1007/s10709-005-8419-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 06/03/2005] [Indexed: 11/25/2022]
Abstract
Agarose gels stained with Ethidium bromide and Southern blot experiments of HindIII-digested genomic DNA of Achirus lineatus evidenced the presence of monomers and multimers of a DNA segment of about 200 bp, named here Al-HindIII sequence. No signals were observed in Southern blot experiments with genomic DNA of other flatfish species. The DNA sequencing of four recombinant clones showed that Al-HindIII sequences had 204 bp and were 63.72% AT-rich. FISH experiments using a Al-HindIII sequence as probe showed bright signals in the centromeric position of all chromosomes of A. lineatus.
Collapse
|
16
|
de la Herrán R, Cuñado N, Navajas-Pérez R, Santos JL, Ruiz Rejón C, Garrido-Ramos MA, Ruiz Rejón M. The controversial telomeres of lily plants. Cytogenet Genome Res 2005; 109:144-7. [PMID: 15753570 DOI: 10.1159/000082393] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Accepted: 02/27/2004] [Indexed: 11/19/2022] Open
Abstract
The molecular structure of the exceptional telomeres of six plant species belonging to the order Asparagales and two species of the order Liliales was analyzed using Southern blot and fluorescence in situ hybridization. Three different situations were found, namely: i) In the two Liliales species, Tulipa australis (Liliaceae) and Merendera montana (Colchicaceae), the chromosome ends display hybridization signals with oligonucleotides resembling telomere repeats of both plants (TTTAGGG)n and vertebrates (TTAGGG)n. ii) Asparagales species such as Phormium tenax (Hemerocallidaceae), Muscari comosum (Hyacinthaceae), Narcissus jonquilla (Amaryllidaceae) and Allium sativum (Alliaceae) lack both the plant telomere repeats and the vertebrate telomere repeats. iii) Two other Asparagales species, Aloe vera (Asphodelaceae) and an Iris hybrid (Iridaceae), display positive hybridization with the vertebrate telomere repeats but not with the plant telomere repeats. Southern blot hybridization revealed concurring results. On this basis, the composition of the telomere structure in this plant group is discussed.
Collapse
Affiliation(s)
- R de la Herrán
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Beck TW, Menninger J, Murphy WJ, Nash WG, O'brien SJ, Yuhki N. The feline major histocompatibility complex is rearranged by an inversion with a breakpoint in the distal class I region. Immunogenetics 2004; 56:702-9. [PMID: 15592824 DOI: 10.1007/s00251-004-0742-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 10/19/2004] [Indexed: 10/26/2022]
Abstract
In order to determine the genomic organization of the major histocompatibility complex (MHC) of the domestic cat (Felis catus), DNA probes for 61 markers were designed from human MHC reference sequences and used to construct feline MHC BAC contig map spanning ARE1 in the class II region to the olfactory receptor complex in the extended class I region. Selected BAC clones were then used to identify feline-specific probes for the three regions of the mammalian MHC (class II-class III-class I) for radiation hybrid mapping and fluorescent in situ hybridization to refine the organization of the domestic cat MHC. The results not only confirmed that the p-arm of domestic cat B2 is inverted relative to human Chromosome 6, but also demonstrated that one inversion breakpoint localized to the distal segment of the MHC class I between TRIM39 and TRIM26. The inversion thus disjoined the approximately 2.85 Mb of MHC containing class II-class III-class I (proximal region) from the approximately 0.50 Mb of MHC class I/extended class I region, such that TRIM39 is adjacent to the Chromosome B2 centromere and TRIM26 is adjacent to the B2 telomere in the domestic cat.
Collapse
Affiliation(s)
- Thomas W Beck
- Basic Research Program, SAIC-Frederick, National Cancer Institute-Frederick, Frederick, MD, 21702-1201, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Zhu XD, Niedernhofer L, Kuster B, Mann M, Hoeijmakers JHJ, de Lange T. ERCC1/XPF removes the 3' overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol Cell 2004; 12:1489-98. [PMID: 14690602 DOI: 10.1016/s1097-2765(03)00478-7] [Citation(s) in RCA: 288] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human telomeres are protected by TRF2. Inhibition of this telomeric protein results in partial loss of the telomeric 3' overhang and chromosome end fusions formed through nonhomologous end-joining (NHEJ). Here we report that ERCC1/XPF-deficient cells retained the telomeric overhang after TRF2 inhibition, identifying this nucleotide excision repair endonuclease as the culprit in overhang removal. Furthermore, these cells did not accumulate telomere fusions, suggesting that overhang processing is a prerequisite for NHEJ of telomeres. ERCC1/XPF was also identified as a component of the telomeric TRF2 complex. ERCC1/XPF-deficient mouse cells had a novel telomere phenotype, characterized by Telomeric DNA-containing Double Minute chromosomes (TDMs). We speculate that TDMs are formed through the recombination of telomeres with interstitial telomere-related sequences and that ERCC1/XPF functions to repress this process. Collectively, these data reveal an unanticipated involvement of the ERCC1/XPF NER endonuclease in the regulation of telomere integrity and establish that TRF2 prevents NHEJ at telomeres through protection of the telomeric overhang from ERCC1/XPF.
Collapse
Affiliation(s)
- Xu-Dong Zhu
- The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
19
|
Garagna S, Ronchetti E, Mascheretti S, Crovella S, Formenti D, Rumpler Y, Manfredi Romanini MG. Non-telomeric chromosome localization of (TTAGGG)n repeats in the genus Eulemur. Chromosome Res 1997; 5:487-91. [PMID: 9421267 DOI: 10.1023/a:1018425215516] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The chromosomal distribution of the (TTAGGG)n telomeric repetitive sequences was studied in the Malagasy species Eulemur fulvus fulvus (2n = 60), Eulemur rubriventer (2n = 50), Eulemur coronatus (2n = 46) and Eulemur macaco (2n = 44). These sequences hybridize to the telomeres of all chromosomes of the four species and also to the pericentromeres of all chromosomes of E. fulvus, E. coronatus and E. macaco, with the exception of the pericentromeres of E. coronatus and E. macaco chromosomes 9, the homeologous E. fulvus chromosomes 2 and E. macaco chromosomes 1. In E. rubriventer only a very weak signal was detected at the pericentromeres of a few chromosomes. In E. fulvus, E. coronatus and E. macaco, non-telomeric (TTAGGG)n sequences collocalize with constitutive heterochromatin. The interspecific differences of the hybridization pattern of (TTAGGG)n sequences at the pericentromeres suggest that E. rubriventer branched off the common trunk before amplification of endogenous (TTAGGG)n sequences occurred in pericentromeric regions.
Collapse
Affiliation(s)
- S Garagna
- Dipartimento di Biologia Animale, Universita degli Studi di Pavia, Italia
| | | | | | | | | | | | | |
Collapse
|
20
|
Ono T, Yoshida MC. Differences in the chromosomal distribution of telomeric (TTAGGG)n sequences in two species of the vespertilionid bats. Chromosome Res 1997; 5:203-5. [PMID: 9246415 DOI: 10.1023/a:1018403215999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- T Ono
- Chromosome Research Unit, Faculty of Science, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
21
|
Abstract
The ends of eukaryotic chromosomes have special properties and roles in chromosome behavior. Selection for telomere function in yeast, using a Chinese hamster hybrid cell line as the source DNA, generated a stable yeast artificial chromosome clone containing 23 kb of DNA adjacent to (TTAGGG)n, the vertebrate telomeric repeat. The common repetitive element d(GT)n appeared to be responsible for most of the other stable clones. Circular derivatives of the TTAGGG-positive clone that could be propagated in E. coli were constructed. These derivatives identify a single pair of hamster telomeres by fluorescence in situ hybridization. The telomeric repeat tract consists of (TTAGGG)n repeats with minor variations, some of which can be cleaved with the restriction enzyme MnlI. Blot hybridization with genomic hamster DNA under stringent conditions confirms that the TTAGGG tracts are cleaved into small fragments due to the presence of this restriction enzyme site, in contrast to mouse telomeres. Additional blocks of (TTAGGG)n repeats are found approximately 4-5 kb internally on the clone. The terminal region of the clone is dominated by a novel A-T rich 78 bp tandemly repeating sequence; the repeat monomer can be subdivided into halves distinguished by more or less adherence to the consensus sequence. The sequence in genomic DNA has the same tandem organization in probably a single primary locus of >20-30 kb and is thus termed a minisatellite.
Collapse
Affiliation(s)
- J Shampay
- Department of Biology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202-8199, USA
| | | | | |
Collapse
|
22
|
Huertas D, Lipps H, Azorin F. Characterization of the Structural Conformation Adopted by (TTAGGG)nTelomeric DNA Repeats of Different Length in Closed Circular DNA. J Biomol Struct Dyn 1994; 12:79-90. [DOI: 10.1080/07391102.1994.10508089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Haaf T, Schmid M, Steinlein C, Galetti PM, Willard HF. Organization and molecular cytogenetics of a satellite DNA family from Hoplias malabaricus (Pisces, Erythrinidae). Chromosome Res 1993; 1:77-86. [PMID: 8143092 DOI: 10.1007/bf00710610] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The chromosomes of the primitive South American teleost fish Hoplias malabaricus have been analyzed by classical cytogenetic (C-, AgNOR-, Hoechst 33258-, and Q-banding) techniques. A highly repetitive DNA family has been cloned and sequenced. It is a tandemly repeated sequence of about 355 bp, yielding an overall base pair composition of 67% AT with long runs of > 50% As and 70% Ts. Analysis of sequence variation has allowed the further categorization of Hoplias satellite DNA into two evolutionary related subfamilies A and B, distinguishable by characteristic insertions and deletions within this 355-bp monomer. Subfamily A satellite is found (in diverged form) at the centromeres of most H. malabaricus chromosomes. Sequence variants are clustered on specific chromosomal subsets. Subfamily B satellite is highly specific for the paracentromeric heterochromatin on one particular chromosome pair by fluorescence in situ hybridization. These results indicate that the Hoplias satellite DNA family has evolved in a concerted manner predominantly via recombination events involving homologous, rather than non-homologous chromosome regions. The clones isolated here may be useful for the molecular, genetic, and cytological analysis of the genus Hoplias.
Collapse
Affiliation(s)
- T Haaf
- Department of Genetics, Stanford University School of Medicine, CA 94305
| | | | | | | | | |
Collapse
|
24
|
Ugarković DL, Plohl M, Lucijanić-Justić V, Borstnik B. Detection of satellite DNA in Palorus ratzeburgii: analysis of curvature profiles and comparison with Tenebrio molitor satellite DNA. Biochimie 1992; 74:1075-82. [PMID: 1292615 DOI: 10.1016/0300-9084(92)90005-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Very abundant and homogenous satellite DNA has been found in the flour beetle Palorus ratzeburgii, representing 40% of its genome. Sequencing of 14 randomly cloned satellite monomers revealed a conserved monomer length of 142 bp and an average A+T content of 68%. Sequence variation analysis showed that base substitutions, appearing with a frequency of 2.3%, are predominant differences among satellite monomers. The satellite sequence is unique without significant direct repeats and with only two potentially stable inverted repeats. After electrophoresis of satellite monomers on native polyacrylamide gel retarded mobilities characteristic for curved DNA molecules are observed. The curvature profiles and DNA helix axis trajectory are calculated on the basis of three different algorithms. These calculations predict that P ratzeburgii satellite DNA forms a left-handed solenoid superstructure. Comparison of described features with other satellite DNAs reveals some striking similarities with satellite DNA from related species Tenebrio molitor, which belongs to the same family of Tenebrionidae. Both satellites are very abundant and homogenous with the same, highly conserved monomer length, although there is no homology at the nucleotide level. Their monomers, as well as multimers, exhibit very similar retarded electrophoretic mobilities. The calculated curvature profiles predict two bend centers in monomers of each satellite, resulting in a model of left-handed solenoid superstructures of similar appearance.
Collapse
Affiliation(s)
- D L Ugarković
- Department of Organic Chemistry and Biochemistry, Ruder Bosković Institute, Zagreb, Croatia
| | | | | | | |
Collapse
|
25
|
Abstract
We have identified a DNA-binding activity with specificity for the TTAGGG repeat arrays found at mammalian telomeres. This factor, called TTAGGG repeat factor (TRF), is present in nuclear extracts of human, mouse, and monkey cells. TRF from HeLa cells was characterized in detail by electrophoretic mobility shift assays. It binds double-stranded TTAGGG repeats in linear and circular DNAs. Single-stranded repeats are not recognized. The optimal site for TRF appears to contain more than six contiguous TTAGGG repeats. Tandem arrays of TAGGG, TTTAGGG, TTTTAGGG, TTGGGG, and TTAGGC repeats do not bind TRF well, indicating that TRF preferentially recognizes the telomeric repeat sequence present at mammalian chromosome ends. The apparent molecular mass of this factor, based on recovery of TRF from sodium dodecyl sulfate-polyacrylamide gels, is approximately 50 kDa. We suggest that TRF binds along the length of mammalian telomeres.
Collapse
|
26
|
Zhong Z, Shiue L, Kaplan S, de Lange T. A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol Cell Biol 1992; 12:4834-43. [PMID: 1406665 PMCID: PMC360416 DOI: 10.1128/mcb.12.11.4834-4843.1992] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have identified a DNA-binding activity with specificity for the TTAGGG repeat arrays found at mammalian telomeres. This factor, called TTAGGG repeat factor (TRF), is present in nuclear extracts of human, mouse, and monkey cells. TRF from HeLa cells was characterized in detail by electrophoretic mobility shift assays. It binds double-stranded TTAGGG repeats in linear and circular DNAs. Single-stranded repeats are not recognized. The optimal site for TRF appears to contain more than six contiguous TTAGGG repeats. Tandem arrays of TAGGG, TTTAGGG, TTTTAGGG, TTGGGG, and TTAGGC repeats do not bind TRF well, indicating that TRF preferentially recognizes the telomeric repeat sequence present at mammalian chromosome ends. The apparent molecular mass of this factor, based on recovery of TRF from sodium dodecyl sulfate-polyacrylamide gels, is approximately 50 kDa. We suggest that TRF binds along the length of mammalian telomeres.
Collapse
Affiliation(s)
- Z Zhong
- Rockefeller University, New York, New York 10021
| | | | | | | |
Collapse
|
27
|
Plohl M, Borstnik B, Lucijanić-Justić V, Ugarković D. Evidence for random distribution of sequence variants in Tenebrio molitor satellite DNA. Genet Res (Camb) 1992; 60:7-13. [PMID: 1452016 DOI: 10.1017/s0016672300030615] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tenebrio molitor satellite DNA has been analysed in order to study sequential organization of tandemly repeated monomers, i.e. to see whether different monomer variants are distributed randomly over the whole satellite, or clustered locally. Analysed sequence variants are products of single base substitutions in a consensus satellite sequence, producing additional restriction sites. The ladder of satellite multimers obtained after digestion with restriction enzymes was compared with theoretical calculations and revealed the distribution pattern of particular monomer variants within the satellite. A defined higher order repeating structure, indicating the existence of satellite subfamilies, could not be observed. Our results show that some sequence variants are very abundant, being present in nearly 50% of the monomers, while others are very rare (0-1% of monomers). However, the distribution of either very frequent, or very rare sequence variants in T. molitor satellite DNA is always random. Monomer variants are randomly distributed in the total satellite DNA and thus spread across all chromosomes, indicating a relatively high rate of sequence homogenization among different chromosomes. Such a distribution of monomer variants represents a transient stage in the process of sequence homogenization, indicating the high rate of spreading in comparison with the rate of sequence variant amplification.
Collapse
Affiliation(s)
- M Plohl
- Ruder Bosković Institute, Zagreb, Croatia
| | | | | | | |
Collapse
|
28
|
Varley JM, Macgregor HC, Barnett L. Characterisation of a short, highly repeated and centromerically localised DNA sequence in crested and marbled newts of the genus Triturus. Chromosoma 1990; 100:15-31. [PMID: 2101348 DOI: 10.1007/bf00337599] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A 32-33 bp highly repeated DNA sequence, TkS1, has been isolated from genomic DNA of the newt Triturus karelini digested with the restriction endonucleases HaeIII or AluI. TkS1 is known to be localised in the centromeric heterochromatin of all the chromosomes in T. karelini and the related species T. cristatus. TkS1 has been shown to be present in varying amounts in the genomic DNA of a range of species of Triturus, including representatives of the two main subgenera Triturus and Palaeotriton. A programme of sequencing of monomers, dimers and trimers of TkS1 was carried out in order to determine the level of conservation of the sequence within and between species of Triturus. Altogether 204 monomer (32/33 bp) clones were made of TkS1 from three individuals of T. karelini, and one individual each of T. cristatus, T. carnifex, T. dobrogicus and T. marmoratus, all members of the subgenus Triturus and the cristatus species group. A number of dimer (64 bp) and trimer (96 bp) clones were also made from DNA of a single specimen of T. karelini digested with HaeIII or AluI. Three distinct types of TkS1 were identified in all species examined, except for T. marmoratus where only two of the types were found. The types were distinguished on the basis of certain recurring divergent patterns in monomers sequenced from T. karelini. Type 1 is mainly characterised by the presence of an AluI site at positions 24-27 and type 3 mainly by the presence of an additional base (C) at position 14. Type 2 normally lacks the AluI site and the C at position 14, as well as having a number of other distinguishing features. TkS1 and its three types have remained remarkably constant in sequence since before the divergence of T. marmoratus from other species in the cristatus species group, about 10 million years ago. Examination of all 204 monomer clones and comparison with consensus sequences for the three types shows less than 5% divergence at any one position in the sequence. There is good evidence from examination of dimer and trimer clones of TkS1 that the different types are intermingled with each other, and all three types are likely to be present on all chromosomes. Dimeric (64 bp) TkS1 clones constructed from AluI fragments of T. karelini DNA show evidence of a trimeric (96 bp) "supertype" with the pattern type 1-type 3-type 1 that is much more common than would be expected on a random basis.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J M Varley
- Department of Pathology, University of Leicester, UK
| | | | | |
Collapse
|
29
|
A conserved tandemly repeated DNA sequence inCruciferae. J Genet 1990. [DOI: 10.1007/bf02927977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Meyne J, Baker RJ, Hobart HH, Hsu TC, Ryder OA, Ward OG, Wiley JE, Wurster-Hill DH, Yates TL, Moyzis RK. Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma 1990; 99:3-10. [PMID: 2340757 DOI: 10.1007/bf01737283] [Citation(s) in RCA: 416] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The intrachromosomal distribution of non-telomeric sites of the (TTAGGG)n telomeric repeat was determined for 100 vertebrate species. The most common non-telomeric location of this sequence was in the pericentric regions of chromosomes. A variety of species showed relatively large amounts of this sequence present within regions of constitutive heterochromatin. We discuss possible relationships between the non-telomeric distribution of the (TTAGGG)n sequence and the process of karyotype evolution, during which these sites may provide potential new telomeres.
Collapse
Affiliation(s)
- J Meyne
- Genetics Group, Los Alamos National Laboratory, NM 87545
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The major centromeric satellite nt sequences present in the domestic dog (Canis familiaris) and in the grey fox (Urocyon cineroargenteus) have been examined. The dog satellite monomer is 737 bp long and contains 51% G + C; the grey fox satellite monomer is 880 b long and contains 54% G + C. The two satellites share three regions of 78, 92 and 314 bp with 70-80% sequence similarity. Sequence data from 16 monomers of dog satellite and 19 monomers of grey fox satellite demonstrate that the substitution spectra are different in the two canid species. For example, substitutions involving G or C residues are much more common in the grey fox satellite than in the domestic dog satellite despite their similar G + C contents.
Collapse
Affiliation(s)
- T G Fanning
- Laboratory of Biochemistry, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
32
|
Fanning TG, Seuánez HN, Forman L. Satellite DNA sequences in the neotropical marmoset Callimico goeldii (Primates, Platyrrhini). Chromosoma 1989; 98:396-401. [PMID: 2516790 DOI: 10.1007/bf00292784] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Two families of tandemly repeated satellite DNAs were isolated from the neotropical primate Callimico goeldii (Goeldi's marmoset). One satellite, CgoA, is over 70% A + T and has a monomer length of 338 bp. The other satellite, CgoB, is 50% A + T and has a monomer length of 916 bp. Both CgoA and CgoB hybridize strongly with Callimico DNA, but not with the DNA of other new and old world primates. Based upon a neutral substitution rate of 1.5 X 10(-9)/site per year for primates, sequence data from 15 CgoA monomers indicate that the tandem array is at least 30 million years old. Since no other neotropical primate has amplified CgoA sequences, the data suggest that the ancestor of Callimico separated from the other neotropical primates at least 30 million years ago. This value is about fourfold larger than the value of 7-9 million years derived from immunological data by Sarich and Cronin (1980). Possible reasons for this discrepancy are discussed.
Collapse
Affiliation(s)
- T G Fanning
- National Cancer Institute, Bethesda, MD 20892
| | | | | |
Collapse
|
33
|
Abstract
To determine the consensus sequence of a 142-bp-long satellite monomer from the mealworm Tenebrio molitor, 22 clones were sequenced. Only nucleotide (nt) substitutions were found. The average sequence variability is 2.5 nt per monomer; changes are predominantly C----T and G----A transitions and the sequence tends to become A + T-rich. T. molitor satellite DNA is undermethylated and transcriptionally inactive.
Collapse
Affiliation(s)
- D Ugarković
- Department of Organic Chemistry and Biochemistry, Ruder Bosković Institute, Zagreb, Croatia, Yugoslavia
| | | | | |
Collapse
|
34
|
Brown TC, Jiricny J. Different base/base mispairs are corrected with different efficiencies and specificities in monkey kidney cells. Cell 1988; 54:705-11. [PMID: 2842064 DOI: 10.1016/s0092-8674(88)80015-1] [Citation(s) in RCA: 172] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mismatches arise during recombination, as errors of DNA replication, and from deamination of 5-methylcytosine to thymine. We determined the efficiency and specificity of mismatch correction in simian cells. Analysis of plaques, obtained after transfection with SV40 DNA molecules harboring a single mispair in a defined orientation within the intron of the large T antigen gene, revealed that all types of base/base mispairs were corrected, albeit with different efficiencies and specificities. Heterogeneous mispairs G/T, A/C, C/T, and A/G, corrected with 96%, 78%, 72%, and 39% efficiencies, respectively, tended to be corrected to G/C. Homogeneous mispairs G/C, C/C, A/A, and T/T were corrected with 92%, 66%, 58%, and 39% efficiencies, respectively, and repair bias was influenced by mismatch flanking sequences.
Collapse
Affiliation(s)
- T C Brown
- Friedrich Miescher Institute, Basel, Switzerland
| | | |
Collapse
|