1
|
Yang Q, Liu Y, Wang M, Wu Y, Bin T, Ou X, Mao S, Huang J, Sun D, Gao Q, Zhao X, Zhang S, Chen S, Liu M, Zhu D, Jia R, Cheng A. Duck plague virus pUL15 performs a nonspecial cleavage activity through its C terminal nuclease domain in vitro. Vet Microbiol 2023; 279:109671. [PMID: 36731190 DOI: 10.1016/j.vetmic.2023.109671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 01/30/2023]
Abstract
Duck plague virus (DPV), also known as anatid herpesvirus, is a double-stranded DNA virus and a member of α herpesvirus. DPV pUL15 is a homolog of herpes simplex virus 1 (HSV-1) pUL15, a terminase large subunit, and plays a key role in the cleavage and packaging of the viral concatemeric genome. However, the sequence similarity between DPV pUL15 and its homologs is low, and it is not sure if DPV pUL15 has the potential to cleave the concatemeric genome as same as its homologs. Here, we expressed the C terminal domain of DPV pUL15 to explore the nuclease function of DPV pUL15. The main results showed that (Ⅰ) DPV pUL15 C-terminal domain possesses nonspecific nuclease activity and lacks the DNA binding ability. (Ⅱ) DPV pUL15 nuclease activity needs to coordinate with divalent metal ions and tends to be more active at high temperatures. (Ⅲ) Even though the structure of DPV pUL15 nuclease domain is relatively conserved, the mutations of conserved amino acids on the nuclease domain do not significantly inhibit the nuclease activity.
Collapse
Affiliation(s)
- Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China
| | - Yiheng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China
| | - Tian Bin
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China.
| |
Collapse
|
2
|
Abstract
Bacteriophages (phages) are ubiquitous in nature. These viruses play a number of central roles in microbial ecology and evolution by, for instance, promoting horizontal gene transfer (HGT) among bacterial species. The ability of phages to mediate HGT through transduction has been widely exploited as an experimental tool for the genetic study of bacteria. As such, bacteriophage P1 represents a prototypical generalized transducing phage with a broad host range that has been extensively employed in the genetic manipulation of Escherichia coli and a number of other model bacterial species. Here we demonstrate that P1 is capable of infecting, lysogenizing, and promoting transduction in members of the bacterial genus Sodalis, including the maternally inherited insect endosymbiont Sodalis glossinidius. While establishing new tools for the genetic study of these bacterial species, our results suggest that P1 may be used to deliver DNA to many Gram-negative endosymbionts in their insect host, thereby circumventing a culturing requirement to genetically manipulate these organisms. IMPORTANCE A large number of economically important insects maintain intimate associations with maternally inherited endosymbiotic bacteria. Due to the inherent nature of these associations, insect endosymbionts cannot be usually isolated in pure culture or genetically manipulated. Here we use a broad-host-range bacteriophage to deliver exogenous DNA to an insect endosymbiont and a closely related free-living species. Our results suggest that broad-host-range bacteriophages can be used to genetically alter insect endosymbionts in their insect host and, as a result, bypass a culturing requirement to genetically alter these bacteria.
Collapse
|
3
|
Ordyan M, Alam I, Mahalingam M, Rao VB, Smith DE. Nucleotide-dependent DNA gripping and an end-clamp mechanism regulate the bacteriophage T4 viral packaging motor. Nat Commun 2018; 9:5434. [PMID: 30575768 PMCID: PMC6303390 DOI: 10.1038/s41467-018-07834-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/23/2018] [Indexed: 11/24/2022] Open
Abstract
ATP-powered viral packaging motors are among the most powerful biomotors known. Motor subunits arranged in a ring repeatedly grip and translocate the DNA to package viral genomes into capsids. Here, we use single DNA manipulation and rapid solution exchange to quantify how nucleotide binding regulates interactions between the bacteriophage T4 motor and DNA substrate. With no nucleotides, there is virtually no gripping and rapid slipping occurs with only minimal friction resisting. In contrast, binding of an ATP analog engages nearly continuous gripping. Occasional slips occur due to dissociation of the analog from a gripping motor subunit, or force-induced rupture of grip, but multiple other analog-bound subunits exert high friction that limits slipping. ADP induces comparably infrequent gripping and variable friction. Independent of nucleotides, slipping arrests when the end of the DNA is about to exit the capsid. This end-clamp mechanism increases the efficiency of packaging by making it essentially irreversible. Packaging of viral DNA depends on strong molecular motors that are powered by ATP hydrolysis. Here, the authors develop a single-molecule assay to monitor how nucleotide binding regulates motor-DNA interactions and reveal a generic mechanism that prevents exit of the whole DNA from the viral capsid during packaging.
Collapse
Affiliation(s)
- Mariam Ordyan
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Mail Code 0379, La Jolla, CA, 92093-0379, USA
| | - Istiaq Alam
- Department of Biology, The Catholic University of America, 620 Michigan Ave. NE, Washington, DC, 20064, USA
| | - Marthandan Mahalingam
- Department of Biology, The Catholic University of America, 620 Michigan Ave. NE, Washington, DC, 20064, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, 620 Michigan Ave. NE, Washington, DC, 20064, USA.
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Mail Code 0379, La Jolla, CA, 92093-0379, USA.
| |
Collapse
|
4
|
Gilcrease EB, Casjens SR. The genome sequence of Escherichia coli tailed phage D6 and the diversity of Enterobacteriales circular plasmid prophages. Virology 2018; 515:203-214. [PMID: 29304472 PMCID: PMC5800970 DOI: 10.1016/j.virol.2017.12.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 11/29/2022]
Abstract
The temperate Escherichia coli bacteriophage D6 can exist as a circular plasmid prophage, and we report here its 91,159bp complete genome sequence. It is a distant relative of the well-studied phage P1, but it is sufficiently different that it typifies a previously undescribed tailed phage type or cluster. Examination of the database of bacterial genome sequences revealed that phage P1 and D6 prophage plasmids are common in the Enterobacteriales, and in addition, previously described Salmonella phage SSU5 represents a different type of temperate tailed phage with a circular plasmid prophage that is also very common in this host order. This analysis also discovered additional divergent clusters of putative circular plasmid prophages within the two larger P1 and SSU5 groups (superclusters) that inhabit the Enterobacteriales as well as bacteria in several other orders in the Gamma-proteobacteria class. Very few of these sequences are annotated as putative prophages.
Collapse
Affiliation(s)
- Eddie B Gilcrease
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Biology Department, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Abstract
Cre-lox of bacteriophage P1 has become one of the most widely used tools for genetic engineering in eukaryotes. The origins of this tool date to more than 30 years ago when Nat L. Sternberg discovered the recombinase, Cre, and its specific locus of crossover, lox, while studying the maintenance of bacteriophage P1 as a stable plasmid. Recombinations mediated by Cre assist in cyclization of the DNA of infecting phage and in resolution of prophage multimers created by generalized recombination. Early in vitro work demonstrated that, although it shares similarities with the well-characterized bacteriophage λ integration, Cre-lox is in many ways far simpler in its requirements for carrying out recombination. These features would prove critical for its development as a powerful and versatile tool in genetic engineering. We review the history of the discovery and characterization of Cre-lox and touch upon the present direction of Cre-lox research.
Collapse
Affiliation(s)
- Michael Yarmolinsky
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892;
| | | |
Collapse
|
6
|
Abstract
Translocation of viral double-stranded DNA (dsDNA) into the icosahedral prohead shell is catalyzed by TerL, a motor protein that has ATPase, endonuclease, and translocase activities. TerL, following endonucleolytic cleavage of immature viral DNA concatemer recognized by TerS, assembles into a pentameric ring motor on the prohead's portal vertex and uses ATP hydrolysis energy for DNA translocation. TerL's N-terminal ATPase is connected by a hinge to the C-terminal endonuclease. Inchworm models propose that modest domain motions accompanying ATP hydrolysis are amplified, through changes in electrostatic interactions, into larger movements of the C-terminal domain bound to DNA. In phage ϕ29, four of the five TerL subunits sequentially hydrolyze ATP, each powering translocation of 2.5 bp. After one viral genome is encapsidated, the internal pressure signals termination of packaging and ejection of the motor. Current focus is on the structures of packaging complexes and the dynamics of TerL during DNA packaging, endonuclease regulation, and motor mechanics.
Collapse
Affiliation(s)
- Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC 20064;
| | - Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| |
Collapse
|
7
|
Bacteriophage P1 pac sites inserted into the chromosome greatly increase packaging and transduction of Escherichia coli genomic DNA. Virology 2014; 468-470:274-282. [PMID: 25213407 DOI: 10.1016/j.virol.2014.07.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 03/29/2014] [Accepted: 07/17/2014] [Indexed: 11/20/2022]
Abstract
The Escherichia coli bacteriophage P1 packages host chromosome separately from phage DNA, and transfers it to recipient cells at low frequency in a process called generalized transduction. Phage genomes are packaged from concatemers beginning at a specific site, pac. To increase transduction rate, we have inserted pac into the chromosome at up to five equally spaced positions; at least this many are fully tolerated in the absence of P1 infection. A single chromosomal pac greatly increases transduction of downstream markers without decreasing phage yields; 3.5 × as much total chromosomal DNA is packaged. Additional insertions decrease phage yield by > 90% and also decrease phage DNA synthesis, although less dramatically. Packaging of chromosomal markers near to and downstream of each inserted pac site is, at the same time, increased by greater than 10 fold. Transduction of markers near an inserted pac site can be increased by over 1000-fold, potentially allowing identification of such transductants by screening.
Collapse
|
8
|
The structure of the NTPase that powers DNA packaging into Sulfolobus turreted icosahedral virus 2. J Virol 2013; 87:8388-98. [PMID: 23698307 DOI: 10.1128/jvi.00831-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biochemical reactions powered by ATP hydrolysis are fundamental for the movement of molecules and cellular structures. One such reaction is the encapsidation of the double-stranded DNA (dsDNA) genome of an icosahedrally symmetric virus into a preformed procapsid with the help of a genome-translocating NTPase. Such NTPases have been characterized in detail from both RNA and tailed DNA viruses. We present four crystal structures and the biochemical activity of a thermophilic NTPase, B204, from the nontailed, membrane-containing, hyperthermoacidophilic archaeal dsDNA virus Sulfolobus turreted icosahedral virus 2. These are the first structures of a genome-packaging NTPase from a nontailed, dsDNA virus with an archaeal host. The four structures highlight the catalytic cycle of B204, pinpointing the molecular movement between substrate-bound (open) and empty (closed) active sites. The protein is shown to bind both single-stranded and double-stranded nucleic acids and to have an optimum activity at 80°C and pH 4.5. The overall fold of B204 places it in the FtsK-HerA superfamily of P-loop ATPases, whose cellular and viral members have been suggested to share a DNA-translocating mechanism.
Collapse
|
9
|
Oliveira L, Tavares P, Alonso JC. Headful DNA packaging: Bacteriophage SPP1 as a model system. Virus Res 2013; 173:247-59. [DOI: 10.1016/j.virusres.2013.01.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 01/15/2023]
|
10
|
Genome, integration, and transduction of a novel temperate phage of Helicobacter pylori. J Virol 2012; 86:8781-92. [PMID: 22696647 DOI: 10.1128/jvi.00446-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori is a common human pathogen that has been identified to be carcinogenic. This study isolated the temperate bacteriophage 1961P from the lysate of a clinical strain of H. pylori isolated in Taiwan. The bacteriophage has an icosahedral head and a short tail, typical of the Podoviridae family. Its double-stranded DNA genome is 26,836 bp long and has 33 open reading frames. Only 9 of the predicted proteins have homologs of known functions, while the remaining 24 are only similar to unknown proteins encoded by Helicobacter prophages and remnants. Analysis of sequences proximal to the phage-host junctions suggests that 1961P may integrate into the host chromosome via a mechanism similar to that of bacteriophage lambda. In addition, 1961P is capable of generalized transduction. To the best of our knowledge, this is the first report of the isolation, characterization, genome analysis, integration, and transduction of a Helicobacter pylori phage.
Collapse
|
11
|
Structure and function of the small terminase component of the DNA packaging machine in T4-like bacteriophages. Proc Natl Acad Sci U S A 2011; 109:817-22. [PMID: 22207623 DOI: 10.1073/pnas.1110224109] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Tailed DNA bacteriophages assemble empty procapsids that are subsequently filled with the viral genome by means of a DNA packaging machine situated at a special fivefold vertex. The packaging machine consists of a "small terminase" and a "large terminase" component. One of the functions of the small terminase is to initiate packaging of the viral genome, whereas the large terminase is responsible for the ATP-powered translocation of DNA. The small terminase subunit has three domains, an N-terminal DNA-binding domain, a central oligomerization domain, and a C-terminal domain for interacting with the large terminase. Here we report structures of the central domain in two different oligomerization states for a small terminase from the T4 family of phages. In addition, we report biochemical studies that establish the function for each of the small terminase domains. On the basis of the structural and biochemical information, we propose a model for DNA packaging initiation.
Collapse
|
12
|
Sternberg N, Shepherd NS. Construction of bacteriophage P1 libraries with large inserts. CURRENT PROTOCOLS IN HUMAN GENETICS 2008; Chapter 5:Unit 5.3. [PMID: 18428291 DOI: 10.1002/0471142905.hg0503s09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The bacteriophage P1 cloning system was originally developed as an alternative to YAC and cosmid systems for cloning high-molecular-weight genomic DNA. This unit details the preparation of the bacteriophage P1 library. Three support protocols provide the raw materials for the basic procedure, including the vector (pAd10sacBII), the mammalian DNA inserts, and the two packaging extracts that contain the viral proteins necessary to construct a P1 bacteriophage incorporating the vector and insert. A fourth support protocol describes how to induce replication of the plasmids cloned in the basic protocol, isolate the cloned DNA, and analyze the final products.
Collapse
Affiliation(s)
- N Sternberg
- Du Pont/Merck Pharmaceuticals, Glenolden, Pennsylvania, USA
| | | |
Collapse
|
13
|
Casjens SR, Gilcrease EB, Winn-Stapley DA, Schicklmaier P, Schmieger H, Pedulla ML, Ford ME, Houtz JM, Hatfull GF, Hendrix RW. The generalized transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy. J Bacteriol 2005; 187:1091-104. [PMID: 15659686 PMCID: PMC545730 DOI: 10.1128/jb.187.3.1091-1104.2005] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 11/03/2004] [Indexed: 11/20/2022] Open
Abstract
The generalized transducing double-stranded DNA bacteriophage ES18 has an icosahedral head and a long noncontractile tail, and it infects both rough and smooth Salmonella enterica strains. We report here the complete 46,900-bp genome nucleotide sequence and provide an analysis of the sequence. Its 79 genes and their organization clearly show that ES18 is a member of the lambda-like (lambdoid) phage group; however, it contains a novel set of genes that program assembly of the virion head. Most of its integration-excision, immunity, Nin region, and lysis genes are nearly identical to those of the short-tailed Salmonella phage P22, while other early genes are nearly identical to Escherichia coli phages lambda and HK97, S. enterica phage ST64T, or a Shigella flexneri prophage. Some of the ES18 late genes are novel, while others are most closely related to phages HK97, lambda, or N15. Thus, the ES18 genome is mosaically related to other lambdoid phages, as is typical for all group members. Analysis of virion DNA showed that it is circularly permuted and about 10% terminally redundant and that initiation of DNA packaging series occurs across an approximately 1-kbp region rather than at a precise location on the genome. This supports a model in which ES18 terminase can move substantial distances along the DNA between recognition and cleavage of DNA destined to be packaged. Bioinformatic analysis of large terminase subunits shows that the different functional classes of phage-encoded terminases can usually be predicted from their amino acid sequence.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Department of Pathology, University of Utah Medical School, Salt Lake City, UT 84132, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Łobocka MB, Rose DJ, Plunkett G, Rusin M, Samojedny A, Lehnherr H, Yarmolinsky MB, Blattner FR. Genome of bacteriophage P1. J Bacteriol 2004; 186:7032-68. [PMID: 15489417 PMCID: PMC523184 DOI: 10.1128/jb.186.21.7032-7068.2004] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 07/09/2004] [Indexed: 11/20/2022] Open
Abstract
P1 is a bacteriophage of Escherichia coli and other enteric bacteria. It lysogenizes its hosts as a circular, low-copy-number plasmid. We have determined the complete nucleotide sequences of two strains of a P1 thermoinducible mutant, P1 c1-100. The P1 genome (93,601 bp) contains at least 117 genes, of which almost two-thirds had not been sequenced previously and 49 have no homologs in other organisms. Protein-coding genes occupy 92% of the genome and are organized in 45 operons, of which four are decisive for the choice between lysis and lysogeny. Four others ensure plasmid maintenance. The majority of the remaining 37 operons are involved in lytic development. Seventeen operons are transcribed from sigma(70) promoters directly controlled by the master phage repressor C1. Late operons are transcribed from promoters recognized by the E. coli RNA polymerase holoenzyme in the presence of the Lpa protein, the product of a C1-controlled P1 gene. Three species of P1-encoded tRNAs provide differential controls of translation, and a P1-encoded DNA methyltransferase with putative bifunctionality influences transcription, replication, and DNA packaging. The genome is particularly rich in Chi recombinogenic sites. The base content and distribution in P1 DNA indicate that replication of P1 from its plasmid origin had more impact on the base compositional asymmetries of the P1 genome than replication from the lytic origin of replication.
Collapse
Affiliation(s)
- Małgorzata B Łobocka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Ul. Pawinskiego 5A, 02-106 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wu H, Sampson L, Parr R, Casjens S. The DNA site utilized by bacteriophage P22 for initiation of DNA packaging. Mol Microbiol 2002; 45:1631-46. [PMID: 12354230 DOI: 10.1046/j.1365-2958.2002.03114.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Virion proteins recognize their cognate nucleic acid for encapsidation into virions through recognition of a specific nucleotide sequence contained within that nucleic acid. Viruses like bacteriophage P22, which have partially circularly permuted, double-stranded virion DNAs, encapsidate DNA through processive series of packaging events in which DNA is recognized for packaging only once at the beginning of the series. Thus a single DNA recognition event programmes the encapsidation of multiple virion chromosomes. The protein product of P22 gene 3, a terminase component, is thought to be responsible for this recognition. The site on the P22 genome that is recognized by the gene 3 protein to initiate packaging series is called the pac site. We report here a strategy for assaying pac site activity in vivo, and the utilization of this system to identify and characterize the site genetically. It is an asymmetric site that spans 22 basepairs and is located near the centre of P22 gene 3.
Collapse
Affiliation(s)
- Hongyu Wu
- Department of Pathology, University of Utah Medical Center, Salt Lake City 84132, USA
| | | | | | | |
Collapse
|
16
|
Abstract
We have recovered a DNase-protected, chloroform-resistant molecule of DNA from the cell-free supernatant of a Borrelia burgdorferi culture. The DNA is a 32-kb double-stranded linear molecule that is derived from the 32-kb circular plasmids (cp32s) of the B. burgdorferi genome. Electron microscopy of samples from which the 32-kb DNA molecule was purified revealed bacteriophage particles. The bacteriophage has a polyhedral head with a diameter of 55 nm and appears to have a simple 100-nm-long tail. The phage is produced constitutively at low levels from growing cultures of some B. burgdorferi strains and is inducible to higher levels with 10 microg of 1-methyl-3-nitroso-nitroguanidine (MNNG) ml(-1). In addition, the prophage can be induced with MNNG from some Borrelia isolates that do not naturally produce phage. We have isolated and partially characterized the phage associated with B. burgdorferi CA-11.2A. To our knowledge, this is the first molecular characterization of a bacteriophage of B. burgdorferi.
Collapse
Affiliation(s)
- C H Eggers
- Division of Biological Sciences, The University of Montana, Missoula, Montana 59812, USA
| | | |
Collapse
|
17
|
Tavares P, Lurz R, Stiege A, Rückert B, Trautner TA. Sequential headful packaging and fate of the cleaved DNA ends in bacteriophage SPP1. J Mol Biol 1996; 264:954-67. [PMID: 9000623 DOI: 10.1006/jmbi.1996.0689] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The virulent Bacillus subtilis bacteriophage SPP1 packages its DNA from a precursor concatemer by a headful mechanism. Following disruption of mature virions with chelating agents the chromosome end produced by the headful cut remains stably bound to the phage tail. Cleavage of this tail-chromosome complex with restriction endonucleases that recognize single asymmetric positions within the SPP1 genome yields several distinct classes of DNA molecules whose size reflects the packaging cycle they were generated from. A continuous decrease in the number of molecules within each class derived from successive encapsidation rounds indicates that there are several packaging series which end after each headful packaging cycle. The frequency of molecules in each packaging class follows the distribution expected for a sequential mechanism initiated unidirectionally at a defined position in the genome (pac). The heterogeneity of the DNA fragment sizes within each class reveals an imprecision in headful cleavage of approximately 2.5 kb (5.6% of the genome size). The number of encapsidation events in a packaging series (processivity) was observed to increase with time during the infection process. DNA ejection through the tail can be induced in vitro by a variety of mild denaturing conditions. The first DNA extremity to exit the virion is invariably the same that was observed to be bound to the tail, implying that the viral chromosome is ejected with a specific polarity to penetrate the host. In mature virions a short segment of this chromosome end (55 to 67 bp equivalent to 187 to 288 A) is fixed to the tail area proximal to the head (connector). Upon ejection this extremity is the first to move along the tail tube to exit from the virion through the region where the tail spike was attached.
Collapse
Affiliation(s)
- P Tavares
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | | | | | |
Collapse
|
18
|
Abstract
Phage terminases are protein complexes that cleave concatemeric phage DNA and generate termini of the packaged DNA molecule. In phage T4, the DNA packaging proteins gp16 and gp17 are supposed to function as terminases. The recombinant T4 terminase proteins, upon expression in vivo from strong promoters, cleaved plasmid DNA in a sequence-independent manner. Resolution of the cleaved DNA by agarose-gel electrophoresis showed a smear throughout the lane including a fraction that was retained in the well [Bhattacharyya and Rao, Virology 196 (1993) 34-44]. The appearance of a smear in the high-M(r) region could not be explained solely on the basis of a simple random-cutting mechanism. Various hypotheses were tested to elucidate the structure of the high-M(r) DNA. The data show that the high-M(r) DNA did not arise either by attachment of protein(s) to DNA, or by covalent linkage of cleaved DNA molecules by a recombinational mechanism. It appears that the high-M(r) DNA arose as a result of non-covalent linkage of plasmid DNA through single strands. A working model for the action of T4 terminase is presented.
Collapse
Affiliation(s)
- S P Bhattacharyya
- Department of Biology, Catholic University of America, Washington, DC 20064
| | | |
Collapse
|
19
|
Affiliation(s)
- N Sternberg
- DuPont Merck Pharmaceutical Company, Glenolden Laboratory, Pennsylvania 19036
| |
Collapse
|
20
|
Valpuesta JM, Carrascosa JL. Structure of viral connectors and their function in bacteriophage assembly and DNA packaging. Q Rev Biophys 1994; 27:107-155. [PMID: 7984775 DOI: 10.1017/s0033583500004510] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The viruses have been an attractive model for the study of basic mechanisms of protein/protein and protein/nucleic acid interactions involved in the assembly of macromolecular aggregates. This has been due primarily to their relative genetic simplicity as compared to their structural and functional complexity. Although most of the initial studies were carried out on bacterial and plant viruses, increasing data has also been accumulated from animal viruses, which has led to an understanding of some basic principles, as well as to many specific strategies in every system. The study of virus assembly has been a source of ideas that underlie our present knowledge of the organization of biological systems. It has also provided, since the production of bacteriophage mutants which have allowed the study of assembly intermediates, the first system in which the genetic studies played a dominant role. The increasing volume of data over the last years has revealed how the structural components can interact sequentially through an ordered pathway to yield macromolecular assemblies that satisfy the demands of stability required for a successful transfer of genetic information from host to host.
Collapse
Affiliation(s)
- J M Valpuesta
- Centro Nacional de Biotecnología, CSIC, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | |
Collapse
|
21
|
|
22
|
Lehnherr H, Velleman M, Guidolin A, Arber W. Bacteriophage P1 gene 10 is expressed from a promoter-operator sequence controlled by C1 and Bof proteins. J Bacteriol 1992; 174:6138-44. [PMID: 1400162 PMCID: PMC207680 DOI: 10.1128/jb.174.19.6138-6144.1992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gene 10 of bacteriophage P1 encodes a regulatory function required for the activation of P1 late promoter sequences. In this report cis and trans regulatory functions involved in the transcriptional control of gene 10 are identified. Plasmid-borne fusions of gene 10 to the indicator gene lacZ were constructed to monitor expression from the gene 10 promoter. Production of gp10-LacZ fusion protein became measurable at about 15 min after prophage induction, whereas no expression was observed during lysogenic growth. The activity of an Escherichia coli-like promoter, Pr94, upstream of gene 10, was confirmed by mapping the initiation site of transcription in primer extension reactions. Two phage-encoded proteins cooperate in the trans regulation of transcription from Pr94: C1 repressor and Bof modulator. Both proteins are necessary for complete repression of gene 10 expression during lysogeny. Under conditions that did not ensure repression by C1 and Bof, the expression of gp10-LacZ fusion proteins from Pr94 interfered with transformation efficiency and cell viability. Results of in vitro DNA-binding studies confirmed that C1 binds specifically to an operator sequence, Op94, which overlaps the -35 region of Pr94. Although Bof alone does not bind to DNA, together with C1 it increases the efficiency of the repressor-operator interaction. These results are in line with the idea that gp10 plays the role of mediator between early and late gene transcription during lytic growth of bacteriophage P1.
Collapse
Affiliation(s)
- H Lehnherr
- Department of Microbiology, University of Basel, Switzerland
| | | | | | | |
Collapse
|
23
|
Tavares P, Santos MA, Lurz R, Morelli G, de Lencastre H, Trautner TA. Identification of a gene in Bacillus subtilis bacteriophage SPP1 determining the amount of packaged DNA. J Mol Biol 1992; 225:81-92. [PMID: 1583695 DOI: 10.1016/0022-2836(92)91027-m] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The virulent Bacillus subtilis bacteriophage SPP1 encapsidates its DNA by a headful mechanism. Analyzing phage missense mutants, which package less DNA than SPP1 wild-type but show no other affected properties, we have identified a gene whose product is involved in the sizing of phage DNA during maturation. Characterization of this gene and its product provides an experimental access to the poorly understood mechanism of DNA sizing in packaging. The gene (gene 6 or siz) was cloned and sequenced. An open reading frame (ORF) coding for a 57.3 kDa polypeptide was identified. All the single nucleotide substitutions present in different siz mutants affect the net charge of that protein. The gene was further characterized by assignment of several nonsense mutations (sus) to the ORF. Phages carrying the latter type of mutations could be complemented in trans when gene 6 is provided by a plasmid.
Collapse
Affiliation(s)
- P Tavares
- Departamento Genética Molecular, Centro de Tecnologia Química e Biológica, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
24
|
Chai S, Bravo A, Lüder G, Nedlin A, Trautner TA, Alonso JC. Molecular analysis of the Bacillus subtilis bacteriophage SPP1 region encompassing genes 1 to 6. The products of gene 1 and gene 2 are required for pac cleavage. J Mol Biol 1992; 224:87-102. [PMID: 1548711 DOI: 10.1016/0022-2836(92)90578-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Packaging of Bacillus subtilis phage SPP1 DNA into viral capsids is initiated at a specific DNA site termed pac. Using an in vivo assay for pac cleavage, we show that initiation of DNA synthesis and DNA packaging are uncoupled. When the DNA products of pac cleavage were analyzed, we could detect the pac end that was destined to be packaged, but we failed to detect the other end of the cleavage reaction. SPP1 conditional lethal mutants, which map adjacent to pac, were analyzed with our assay. This revealed that the products of gene 1 and gene 2 are essential for pac cleavage. SPP1 mutants that are affected in the genes necessary for viral capsid formation (gene 41) or involved in headful cleavage (gene 6) remain proficient in pac site cleavage. Analysis of the nucleotide sequence (2.769 x 10(3) base-pairs) of the region of the genes required for pac cleavage revealed five presumptive genes. We have assigned gene 1 and gene 2 to two of these open reading frames (orf), giving the gene order gene 1-gene 2-orf 3-orf 4-orf 5. The direction of transcription of the gene 1 to orf 5 operon and the length of the mRNAs was determined. We have identified, upstream from gene 1, the major transcriptional start point (P1). Transcription originating from P1 requires a phage-encoded factor for activity. The organization of gene 1 and gene 2 of SPP1 resembles the organization of genes in the pac/cos region of different Escherichia coli double-stranded DNA phages. We propose that the conserved gene organization is representative of the packaging machinery of a primordial packaging system.
Collapse
Affiliation(s)
- S Chai
- Max-Planck-Institut für molekulare Genetik, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Skorupski K, Pierce JC, Sauer B, Sternberg N. Bacteriophage P1 genes involved in the recognition and cleavage of the phage packaging site (pac). J Mol Biol 1992; 223:977-89. [PMID: 1538406 DOI: 10.1016/0022-2836(92)90256-j] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The packaging of bacteriophage P1 DNA is initiated by cleavage of the viral DNA at a specific site, designated pac. The proteins necessary for that cleavage, and the genes that encode those proteins, are described in this report. By sequencing wild-type P1 DNA and DNA derived from various P1 amber mutants that are deficient in pac cleavage, two distinct genes, referred to as pacA and pacB, were identified. These genes appear to be coordinately transcribed with an upstream P1 gene that encodes a regulator of late P1 gene expression (gene 10). pacA is located upstream from pacB and contains the 161 base-pair pac cleavage site. The predicted sizes of the PacA and PacB proteins are 45 kDa and 56 kDa, respectively. These proteins have been identified on SDS-polyacrylamide gels using extracts derived from Escherichia coli cells that express these genes under the control of a bacteriophage T7 promoter. Extracts prepared from cells expressing both PacA and PacB are proficient for site-specific cleavage of the P1 packaging site, whereas those lacking either protein are not. However, the two defective extracts can complement each other to restore functional pac cleavage activity. Thus, PacA and PacB are two essential bacteriophage proteins required for recognition and cleavage of the P1 packaging site. PacB extracts also contain a second P1 protein that is encoded within the pacB gene. We have identified this protein on SDS-polyacrylamide gels and have shown that it is translated in the same reading frame as is PacB. Its role, if any, in pac cleavage is yet to be determined.
Collapse
Affiliation(s)
- K Skorupski
- Du Pont Merck Pharmaceutical Co., Du Pont Experimental Station, Wilmington, DE 19880-0328
| | | | | | | |
Collapse
|
26
|
Pierce JC, Sternberg NL. Using bacteriophage P1 system to clone high molecular weight genomic DNA. Methods Enzymol 1992; 216:549-74. [PMID: 1336104 DOI: 10.1016/0076-6879(92)16049-p] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J C Pierce
- Cancer Therapeutic Program, Du Pont Merck Pharmaceutical Company, Wilmington, Delaware 19880
| | | |
Collapse
|
27
|
Nonradioactive in situ hybridization with digoxigenin. Trends Genet 1992. [DOI: 10.1016/0168-9525(92)90008-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Lehnherr H, Guidolin A, Arber W. Bacteriophage P1 gene 10 encodes a trans-activating factor required for late gene expression. J Bacteriol 1991; 173:6438-45. [PMID: 1917870 PMCID: PMC208978 DOI: 10.1128/jb.173.20.6438-6445.1991] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Amber mutants of bacteriophage P1 were used to identify functions involved in late regulation of the P1 lytic growth cycle. A single function has been genetically identified to be involved in activation of the phage-specific late promoter sequence Ps. In vivo, P1 gene 10 amber mutants fail to trans activate a lacZ operon fusion under the transcriptional control of promoter Ps. Several P1 segments, mapping around position 95 on the P1 chromosome, were cloned into multicopy plasmid vectors. Some of the cloned DNA segments had a deleterious effect on host cells unless they were propagated in a P1 lysogenic background. By deletion and sequence analysis, the harmful effect could be delimited to a 869-bp P1 fragment, containing a 453-bp open reading frame. This open reading frame was shown to be gene 10 by sequencing the amber mutation am10.1 and by marker rescue experiments with a number of other gene 10 amber mutants. Gene 10 codes for an 18.1-kDa protein showing an unusually high density of charged amino acid residues. No significant homology to sequences present in the EMBL/GenBank data base was found, and the protein contained none of the currently known DNA-binding motifs. An in vivo trans activation assay system, consisting of gene 10 under the transcriptional control of an inducible promoter and a gene S/lacZ fusion transcribed from Ps, was used to show that gene 10 is the only phage-encoded function required for late promoter activation.
Collapse
Affiliation(s)
- H Lehnherr
- Department of Microbiology, University of Basel, Switzerland
| | | | | |
Collapse
|
29
|
Sternberg NL, Maurer R. Bacteriophage-mediated generalized transduction in Escherichia coli and Salmonella typhimurium. Methods Enzymol 1991; 204:18-43. [PMID: 1943777 DOI: 10.1016/0076-6879(91)04004-8] [Citation(s) in RCA: 186] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Sternberg N, Coulby J. Cleavage of the bacteriophage P1 packaging site (pac) is regulated by adenine methylation. Proc Natl Acad Sci U S A 1990; 87:8070-4. [PMID: 2236019 PMCID: PMC54894 DOI: 10.1073/pnas.87.20.8070] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The packaging of bacteriophage PI DNA is initiated when the phage packaging site (pac) is recognized and cleaved and continues until the phage head is full. We have previously shown that pac is a 162-base-pair segment of P1 DNA that contains seven DNA adenine methyltransferase methylation sites (5'-GATC). We show here that cleavage of pac is methylation sensitive. Both in vivo and in vitro experiments indicate that methylated pac is cleavable, whereas unmethylated pac is not. Moreover, DNA isolated from P1 phage and containing an uncut pac site was a poor substrate for in vitro cleavage until it was methylated by the Escherichia coli DNA adenine methyltransferase. Comparison of that uncut pac DNA with other viral DNA fragments by digestion with methylation-sensitive restriction enzymes indicated that the uncut pac DNA was preferentially undermethylated. In contrast, virion DNA containing a cut pac site was not undermethylated. We believe these results indicate that pac cleavage is regulated by adenine methylation during the phage lytic cycle.
Collapse
Affiliation(s)
- N Sternberg
- E. I. duPont de Nemours & Co. Inc., Central Research and Development Department, Wilmington, DE 19880-0328
| | | |
Collapse
|
31
|
Affiliation(s)
- N L Sternberg
- E.I. du Pont de Nemours & Co., Inc., Wilmington, DE 19880-0328
| |
Collapse
|
32
|
Bravo A, Alonso JC, Trautner TA. Functional analysis of the Bacillus subtilis bacteriophage SPP1 pac site. Nucleic Acids Res 1990; 18:2881-6. [PMID: 2161515 PMCID: PMC330814 DOI: 10.1093/nar/18.10.2881] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Encapsidation of the DNA of the virulent Bacillus subtilis phage SPP1 follows a processive unidirectional headful-mechanism and initiates at a unique genomic location (pac). We have cloned a fragment of SPP1 DNA containing the pac site flanked by reporter genes into the chromosome of B. subtilis. Infection of such cells with SPP1 led to highly efficient packaging, initiated at the inserted pac site, of chromosomal DNA. The directionality in the packaging of this DNA was the same as observed with vegetative phage DNA. Mutagenizing the chromosomal pac insert defined an 83 base pair segment containing the pac cleavage site which is sufficient to direct phage specific DNA encapsidation. The packaging recognition signal as defined can also be utilized by the SPP1 related phages 41c, SF6 and rho 15.
Collapse
Affiliation(s)
- A Bravo
- Max-Planck-Institut für Molekulare Genetik, Berlin, FRG
| | | | | |
Collapse
|
33
|
Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc Natl Acad Sci U S A 1990; 87:103-7. [PMID: 2404272 PMCID: PMC53208 DOI: 10.1073/pnas.87.1.103] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The development of a bacteriophage P1 cloning system capable of accepting DNA fragments as large as 100 kilobase pairs (kbp) is described. The vectors used in this system contain a P1 packaging site (pac) to package vector and cloned DNA into phage particles, two P1 loxP recombination sites to cyclize the packaged DNA once it has been injected into a strain of Escherichia coli containing the P1 Cre recombinase, a kanr gene to select bacterial clones containing the cyclized DNA, a P1 plasmid replicon to stably maintain that DNA in E. coli at one copy per cell chromosome, and a lac promoter-regulated P1 lytic replicon to amplify the DNA before it is reisolated. An essential feature of the cloning system is a two-stage in vitro packaging reaction that packages vector DNA containing cloned inserts into phage particles that can deliver their DNA to E. coli with near unit efficiency. The packaging reaction can generate 10(5) clones with high molecular weight DNA inserts per microgram of vector DNA. Using NotI fragments from E. coli DNA, it was shown that the system can clone 95- and 100-kbp fragments but not a 106-kbp fragment. Presumably, the combined size of the latter fragment and the vector DNA (13 kbp) exceeds the headful capacity of P1.
Collapse
|
34
|
Sternberg N, Cohen G. Genetic analysis of the lytic replicon of bacteriophage P1. II. Organization of replicon elements. J Mol Biol 1989; 207:111-33. [PMID: 2661830 DOI: 10.1016/0022-2836(89)90444-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The region of bacteriophage P1 DNA containing a lytic (vegetative) replicon has been identified by cloning P1 fragments into a phage lambda vector. We present the sequence of that replicon. Using a novel fusion vector containing two P1 loxP recombination sites, we have developed a transformation assay for replicon function and have used that assay to identify some of the components of the P1 lytic replicon. Among those components is a transcription promoter, P53, whose activity is essential for replicon function. When that promoter is inactivated by the binding of P1 repressor to an operator site, Op53, whose sequence overlaps the promoter, replicon function is blocked. The P53 promoter can be replaced for replicon function by other promoters and, when the lacZ promoter was used, the extent of replication was shown to be proportional to promoter activity. Two open reading frames are located downstream from P53. The promoter-proximal reading frame is 266 amino acid residues long and is not essential for replicon function. In fact, expression of that open reading frame either interferes with plasmid establishment after transformation or is lethal to cells. The promoter-distal reading frame, designated the repL open reading frame, is either 269 or 281 amino acid residues long and is essential for replicon function. Insertion of a Tn5 transposon into the 266 amino acid residue open reading frame inactivates the cloned lytic replicon probably by interfering with the transcription of the repL open reading frame from P53. In P1, this Tn5 insertion mutation completely blocks lytic replication, indicating that the replicon identified here is either the only P1 lytic replicon or, if not, is at least necessary for the function of any other lytic replicon. A four base insertion in the repL open reading frame has largely the same inhibitory effect on phage lytic replication as the Tn5 insertion.
Collapse
Affiliation(s)
- N Sternberg
- Central Research and Development Department, E. I. du Pont de Nemours Co., Wilmington, DE 19898
| | | |
Collapse
|
35
|
Cohen G, Sternberg N. Genetic analysis of the lytic replicon of bacteriophage P1. I. Isolation and partial characterization. J Mol Biol 1989; 207:99-109. [PMID: 2738927 DOI: 10.1016/0022-2836(89)90443-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Despite the extensive genetic analysis of bacteriophage P1, the region of the viral genome that is responsible for its lytic (vegetative) replication has not been identified. In this paper we describe the identification of various fragments of P1 DNA that can replicate an otherwise replication-defective lambda vector when they are cloned into that vector. The fragments share a 2800 base-pair segment of the P1 genome that is located adjacent to the immI region of the phage. Replication mediated by the cloned P1 fragments is abolished by the product of the P1 c1 gene, the repressor of phage lytic functions. Since these properties resemble those of the P1 lytic replicon, we suggest that the 2800 base-pair segment identified here contains that replicon.
Collapse
Affiliation(s)
- G Cohen
- Central Research and Development Department, E. I. du Pont de Nemours and Co., Wilmington, DE 19898
| | | |
Collapse
|
36
|
Hanks MC, Newman B, Oliver IR, Masters M. Packaging of transducing DNA by bacteriophage P1. MOLECULAR & GENERAL GENETICS : MGG 1988; 214:523-32. [PMID: 3063949 DOI: 10.1007/bf00330490] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
P1 transduces bacterial chromosomal markers with widely differing frequencies. We use quantitative Southern hybridisations here to show that, despite this, most markers are packaged at similar levels. Exceptions are a group of markers near 2 min and another at 90 min which seem to be packaged at levels two- to threefold higher. We thus conclude that certain marker frequency variations in transduction can be explained by differences in packaging level, but that most cannot. The limited range in packaging levels suggests that P1 can initiate the packaging of chromosomal DNA from many sites. This idea is supported by our failure to find any chromosomal sequences with homology to the phage pac site and by the occurrence of hybridising bands which seem to suggest sequential packaging from a large number of specific sites. We eliminate the possibility that chromosomal DNA packaging is the result of endonucleolytic cutting by the P1 res enzyme.
Collapse
Affiliation(s)
- M C Hanks
- Department of Molecular Biology, King's Buildings, Edinburgh, Scotland
| | | | | | | |
Collapse
|
37
|
|
38
|
Sternberg N, Coulby J. Recognition and cleavage of the bacteriophage P1 packaging site (pac). II. Functional limits of pac and location of pac cleavage termini. J Mol Biol 1987; 194:469-79. [PMID: 3625770 DOI: 10.1016/0022-2836(87)90675-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bacteriophage P1 initiates the processive packaging of its DNA at a unique site called pac. We show that a functional pac site is contained within a 161 base-pair segment of P1 EcoRI fragment 20. It extends from a position 71 base-pairs to a position 232 base-pairs from the EcoRI-22 proximal side of that fragment. The 3' and 5' pac termini are located centrally within that 161 base-pair region and are distributed over about a turn of the DNA helix. The DNA sequence of the terminus region is shown below, with the large arrows indicating the positions of termini that are frequently represented in the PI population and the small arrows indicating the positions of termini that are rarely represented in the P1 population. (Sequence: in text). Digestion of P1 virus DNA with EcoRI generates two major EcoRI-pac fragments, which differ in size by about five or six base-pairs. While the structure and position of the double-stranded pac ends of these fragments have not been determined precisely, the 5' termini at those ends probably correspond to the two major pac cleavage sites in the upper strand of the sequences shown above. The 161 base-pair pac site contains the hexanucleotide sequence 5'-TGATCAG-3' repeated four times at one end and three times at the other. Removal of just one of those elements from either the right or left ends of pac reduces pac cleavage by about tenfold. Moreover, the elements appear to be additive in their effect on pac cleavage, as removal of one and a half elements or all three elements from the right side of pac reduces pac cleavage 100-fold, and greater than 1000-fold, respectively.
Collapse
|
39
|
Casjens S, Huang WM, Hayden M, Parr R. Initiation of bacteriophage P22 DNA packaging series. Analysis of a mutant that alters the DNA target specificity of the packaging apparatus. J Mol Biol 1987; 194:411-22. [PMID: 3041006 DOI: 10.1016/0022-2836(87)90671-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bacteriophage P22 is thought to package its double-stranded DNA chromosome from concatemeric replicating DNA in a "processive" sequential fashion. According to this model, during the initial packaging event in such a series the packaging apparatus recognizes a nucleotide sequence, called pac, on the DNA, and then condenses DNA within the coat protein shell unidirectionally from that point. DNA ends are generated near the pac site before or during the condensation reaction. The opposite end of the mature chromosome is created by a cut made in the DNA after a complete chromosome is condensed within the phage head. Subsequent packaging events on that concatemeric DNA begin at the end generated by the headful cut of the previous event and proceed in the same direction as the previous event. We report here the identification of a consensus nucleotide sequence for the pac site, and present evidence that supports the idea that the gene 3 protein is a central participant in this recognition event. In addition, we tentatively locate the portion of the gene 3 protein that contacts the pac site during the initiation of packaging.
Collapse
|
40
|
Abstract
Generalized transduction has for about 30 years been a major tool in the genetic manipulation of bacterial chromosomes. However, throughout that time little progress has been made in understanding how generalized transducing particles are produced. The experiments presented in this paper use phage lambda to assess some of the factors that affect that process. The results of those experiments indicate: the production of generalized transducing particles by bacteriophage lambda is inhibited by the phage lambda exonuclease (Exo). Also inhibited by lambda Exo is the production of lambda docR particles, a class of particles whose packaging is initiated in bacterial DNA and terminated at the normal phage packaging site, cos. In contrast, the production of lambda docL particles, a class of particles whose packaging is initiated at cos and terminated in bacterial DNA, is unaffected by lambda Exo; lambda-generalized transducing particles are not detected in induced lysis-defective (S-) lambda lysogens until about 60-90 min after prophage induction. Since wild-type lambda would normally lyse cells by 60 min, the production of lambda-generalized transducing particles depends on the phage being lysis-defective; if transducing lysates are prepared by phage infection then the frequency of generalized transduction for different bacterial markers varies over a 10-20-fold range. In contrast, if transducing lysates are prepared by the induction of a lambda lysogen containing an excision-defective prophage, then the variation in transduction frequency is much greater, and markers adjacent to, and on both sides of, the prophage are transduced with much higher frequencies than are other markers; if the prophage is replication-defective then the increased transduction of prophage-proximal markers is eliminated; measurements of total DNA in induced lysogens indicate that part of the increase in transduction frequency following prophage induction can be accounted for by an increase in the amount of prophage-proximal bacterial DNA in the cell. Measurements of DNA in transducing particles indicate that the rest of the increase is probably due to the preferential packaging of the prophage-proximal bacterial DNA. These results are most easily interpreted in terms of a model for the initiation of bacterial DNA packaging by lambda, in which the proteins involved (Ter) do not recognize any particular sequence in bacterial DNA but rather recognize some feature of the DNA tht is sensitive to lambda exonuclease, such as a nick or a double-stranded cut.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|